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Methods

Simulations

Simulations were performed using the simulation software SLiM 2.0 [1]. The
size of each population was Ne = 10, 000. We first simulated these scenarios
under parameters suitable for human populations, with mutation and recombi-
nation rates of π = r = 2.5 x 10−8. Similar to that in [2], we did so under a
model of constant population size, of a population bottleneck (population size
drops to Ne = 5, 500 from generations 320,000 to 328,000), and of expansion
(population expands to Ne = 20, 000 at generation 302,000). Two populations
(corresponding to human and chimpanzee) were simulated, diverging 250,000
generations prior to the ending of the simulation. 100,000 generations of burn-
in was simulated prior to this speciation event.

We simulated both neutral regions, and regions with a balanced variant in
the center. In each simulations of balancing selection, we introduced an over-
dominant balanced allele. In the balanced case, we introduced a balanced SNP
in the human population either at the time of speciation, or 150,000 generations
after speciation. We conditioned our simulations on the balanced SNP remain-
ing in the population until the final generation. If the mutation was lost, we
repeated the simulation until maintenance was achieved. Each balanced SNP
had an overdominance coefficient h and selection coefficient s. The fitness of
the heterozygote is then 1 + hs, and the fitness of the ancestral and derived
homozygotes are 1 and 1 + s, respectively. We simulated two different s values:
10−2 (our default) and 10−4. We simulated six different equilibrium frequencies:
.17, .25, .5, .75, .83. More extreme equilibrium frequencies were not possible to
simulate, because the frequency with which the balanced variant drifted out of
the population was very high. Previous studies have not conditioned on main-
tenance of the balanced polymorphism in the population [2]. However, without
conditioning on maintenance, the power analysis captures the fixation/loss prob-
abilities at that equilibrium frequency rather than just the power of the method
to detect any balanced loci at the frequency that are maintained.

To increase simulation speed, we rescaled our simulation by a factor of 10
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for specified power analyses in the supporting information [3]. A minimum of
2000 simulation replicates was performed for each parameter set. We simulated
10kb regions for each simulation replicate.

Power Analysis

To calculate the power of each method, we compared the score of the balanced
variant in balanced simulations with the score of SNPs matched for equilibrium
frequency in neutral simulations. For each neutral simulation replicate, we
randomly identified one SNP in the region at a frequency within 10 percent
of the equilibrium frequency of the corresponding simulations with a balanced
SNP. All power calculations were performed with p=20 for Beta, and w=20 for
T1 and T2, unless otherwise specified.

Choice of p parameter

The power of our method lies in capturing allele frequency correlations. The
parameter p controls how similar of allele frequencies to the core site are cap-
tured. As p approaches infinity, the only sites that contribute towards θB are
those that exactly match the frequency of the core SNP. At p = 0, all SNPs con-
tribute the same amount to the estimate of θ̂B , and so θ̂B becomes equivalent
to θ̂w. Simulations show that our method is fairly robust to choice of p (Table
S4). The optimal p will depend on the data set at hand. If allele frequency
estimates are known to be inaccurate, then a lower p may be more optimal, be-
cause variants fixed in allelic class may not accurately be called at exactly the
same frequency as the core SNP. In addition, allowing variants at very similar
frequency to the core SNP contribute to θ̂B allows it to capture SNPs that are
very close to fixing in allelic class, or were once fixed in class, but are no longer
due to recombination followed by a small amount of drift. In our analysis, we
chose a p = 20, which gives the most weight to exact frequency matches, and a
small amount of weight to very near, but not exact frequencies.

Substitutions and β

We also wanted to explore whether taking the number of fixed differences with
an outgroup (substitutions) would increase power. Substitutions are used by
the HKA, T1 and T2 tests. However, we observed that the number of sub-
stitutions does not greatly increase predictive capabilities over that of just β
values (AIC with logistic regression of 2523 with just Beta values, 6246 with
just substitutions and 2434 combined). Thus, we decided to focus our method
only on polymorphism data.
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Size of the ancestral region

We want to derive the expected length of the ancestral region around the bal-
anced SNP, i.e., what is the distribution of region sizes around the balanced site
where the coalescent tree looks identical to that of the balanced loci, ignoring
mutation. The ancestral region is the region starting at the balanced loci, mov-
ing outwards in either direction until an observable recombination event has
occurred in the history of the sample. An observable recombination event is
one in which there was recombination between allelic classes. This concept is
similar to that in Gao et al. [4]; however we are not concerned with an outgroup
species, which simplifies the derivation.

The ancestral region roughly corresponds to the optimal window size to
calculate β on, because it contains the region in which alleles can fix in allelic
class, and have not been decoupled from selection due to recombination. In
reality, this may slightly underestimate the optimal window size, because it is
possible for a position to ”re-fix” in allelic class. In this scenario, a recombination
event occurred, then a new mutation arose and drifted up to the balanced
frequency.

The probability of recombination between allelic classes is equal to the to-
tal coalescent branch length in the allelic class multiplied by the probability of
recombination onto the other allelic class. Because we are detecting long-term
selection, most of the coalescent branch length will fall into the portion between
coalescence within each allelic class and coalescence of the two allelic classes.
We can therefore put an upper bound on the size of the ancestral region. The
probability of any recombination event occurring at a certain position at any
time point in T generations is ρ*T, where ρ is the individual recombination rate.
The probability of a recombination occurring between a chromosome from al-
lelic class 1 and any chromosome from allelic class 2, given that a recombination
event occurs in a chromosome from class 1, is just the frequency of allelic class
2. Similarly, the probability that if a recombination event occurs in class 2, it
is with any chromosome from class 1 is just the frequency of allelic class 1. Let
λ be the rate of observable recombination, in units of basepairs, where p and q
are the frequencies of the 2 allelic classes, which must sum to 1 by definition.

λ = Tρp+ Tρq

λ = Tρ

The distribution of ancestral segments on either side of the balanced loci is then
exponential with rate parameter Tρ.

For our analysis of the 1000 Genomes Project, we are focusing on detecting
events that occurred after a split with chimpanzee, but that are old enough
that our method has power. Assuming a recombination rate of 2.5e-8 and a
split time of 250, 000 generations prior with selection starting at the same time,
the 95 quantile on either side is then 479. The most recent events we can hope to
detect are closer to 100, 000 generations prior to present, giving a 95th quantile
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of 1198 bases on either side of the core SNP. Therefore, for our analysis, we
choose 500 basepairs on either side, for a total window size of 1kb.
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Figure 1: Site frequency spectrum of derived alleles in balanced or neutral cases,
with core variant removed. Window size is 500 basepairs on either side of the
core site, with sample size 100 chromosomes.
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Figure 2: Distribution of Beta in 1kb windows around a core SNP at different
equilibrium frequencies.

Figure 3: Distribution of Beta in 4 populations. Beta scores binned in units of
4.
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Derivation of Unfolded θB

Let n be the number of chromosomes samples, di be the similarity measure (see
main text) and Si be the number of variants at frequency i in the sample. For
ease of calculation, assume no covariance between sites:
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Power Analysis

Table 1: Power of methods to detect ancient balancing selection for various
demographies and selection equilibrium frequencies.

Equilibrium
Older Selection1 Newer Selection2

Method 0.17 0.25 0.5 0.75 0.83 .17 0.25 0.5 0.75 .83

Beta unfolded 0.65 0.64 0.67 0.58 0.5 0.28 0.29 0.36 0.23 0.18
Beta folded 0.59 0.65 0.67 0.52 0.35 0.29 0.32 0.36 0.19 0.11
HKA 0.43 0.42 0.29 0.36 0.46 0.14 0.13 0.08 0.08 0.15
Tajima’s D 0.10 0.08 0.35 0.12 0.02 0.01 0.03 0.14 0.04 0.02
T1 0.69 0.52 0.44 0.58 0.67 0.30 0.17 0.11 0.15 0.28
T2 0.77 0.75 0.79 0.68 0.67 0.36 0.31 0.46 0.24 0.28

Table 2: Power of methods to detect ancient balancing selection under model
of population bottleneck.

Older Selection Newer Selection
Method 0.25 0.5 0.75 0.25 0.5 0.75

Beta unfolded 0.69 0.49 0.41 0.40 0.18 0.15
Beta folded 0.7 0.48 0.43 0.42 0.17 0.16
HKA 0.42 0.29 0.33 0.12 0.10 0.08
Tajima’s D 0.17 0.48 0.19 0.07 0.23 0.11
T1 0.63 0.44 0.47 0.22 0.17 0.12
T2 0.74 0.69 0.54 0.32 0.35 0.18
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Table 3: Power of methods to detect ancient balancing selection under model
of population expansion

Older Selection Newer Selection
Method 0.25 0.5 0.75 0.25 0.5 0.75

Beta unfolded 0.50 0.56 0.42 0.19 0.51 0.14
Beta folded 0.52 0.54 0.43 0.19 0.49 0.15
HKA 0.28 0.16 0.20 0.05 0.13 0.05
Tajima’s D 0.09 0.26 0.15 0.04 0.25 0.06
T1 0.05 0.04 0.07 0.01 0.05 0.01
T2 0.58 0.57 0.52 0.21 0.54 0.17

Table 4: Power of methods to detect selection based on value of parameter p.
Older Selection Newer Selection

p .25 .5 .75 .25 .5 .75

1 .55 .68 .46 .27 .32 .18
10 .66 .68 .53 .34 .37 .19
20 .64 .66 .51 .31 .35 .19
50 .63 ..64 .50 .31 .33 .17
100 .63 .61 .47 .31 .31 .16

Table 5: Power of methods to detect ancient balancing selection for various
window sizes

Older Selection Newer Selection
Window Size (bp) .25 .5 .75 .25 .5 .75

200 .55 .55 .34 .22 .22 .1
500 .67 .63 .48 .30 .28 .15
1000 .64 .66 .51 .31 .35 .19
2000 .57 .54 .43 .30 .26 .18
5000 .47 .35 .32 .25 .15 .13

Table 6: Power of methods to detect ancient balancing selection for elevated
recombination rate 2.5e− 7, Rescaled Simulations

Older Selection Newer Selection
Method .25 .5 .75 .25 .5 .75

Beta Unfolded .13 .11 .14 .07 .06 .07
Beta Folded .17 ..11 ..11 ..08 .07 .06
HKA .06 .00 .05 .05 .004 .03
Tajima’s D .03 .06 .02 .03 .05 .02
T1 .14 .01 .09 .07 .03 .03
T2 .22 .14 .15 .11 .05 .1305
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Table 7: Power of methods to detect ancient balancing selection for elevated
mutation rate 2.5e-7, Rescaled Simulations

Older Selection Newer Selection
Method .25 .5 .75 .25 .5 .75

Beta .81 .73 .79 .45 .39 .43
HKA .78 .19 .73 .23 .01 .17
Tajima’s D .22 .83 .31 .05 .61 .1
T1 .89 .66 .88 .19 .06 .2
T2 .95 .94 .95 .31 .47 .31

Table 8: Power of methods to detect ancient balancing selection for lowered
recombination rate 2.5e-7, Rescaled Simulations

Older Selection Newer Selection
Method .25 .5 .75 .25 .5 .75

Beta .93 .97 .90 .35 .63 .35
HKA .81 .62 .83 .19 .09 .15
Tajima’s D .20 .89 .35 .05 .46 .09
T1 .94 .77 .90 .29 .12 .20
T2 .98 .94 .96 .43 .44 .39

Table 9: Power of methods to detect ancient balancing selection for lowered
mutation rate 2.5e-7, Rescaled Simulations

Older Selection Newer Selection
Method .25 .5 .75 .25 .5 .75

Beta Unfolded .17 .16 .12 .07 .08 .06
Beta Folded .2 .14 .13 .07 .07 .07
HKA .10 .03 .08 .04 .01 .03
Tajima’s D .04 .11 .06 .02 .05 .03

T1 or T2 could not be calculated with -w 20 due to there not being 20 mutations in the

simulated windows.

Table 10: Power of Beta to detect ancient balancing selection with s=1e-4 and
h = 100 (equilibrium frequency of 0.5)

Method Older Selection Newer Selection

Beta Unfolded .74 .42
Beta Folded .74 .41
HKA .41 .12
Tajima’s D .37 .13
T1 .54 .16
T2 .84 .48
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Table 11: Power of Beta to detect Frequency Dependent Selection with equilib-
rium frequency 0.5 and h = .01, Rescaled Simulations

Selection start time Power

100,000 .71
250,000 .40
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Power with different sample sizes

Figure 4: Power of β at a 1 percent false discovery rate to detect selection
100,000 generations old.

Figure 5: Power of β at a 1 percent false discovery rate to detect selection
250,000 generations old.
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