Supporting text

B.

C.

Figure S1

DHB-DXX-DHA domain containing CRN effectors and their conservation.
A) Diagram showing domain structure for the CRN effectors used in this study. CRNs contain a non-canonical putative signal peptide (black diamond), two highly conserved N-terminal domains and three separate C-terminal domains. B) Phylogenetic reconstruction of DHB-DXX-DHA domain containing CRNs, based on maximum likelihood clustering of only the Cterminal domains using 100 bootstraps. C) Conservation motif for DHB-DXX-DHA domain containing Hpa and PcCRNs. Bright yellow bars show highly conserved parts (80\% similarity 100% identical), darker bars are more divergent. LFLAK and HVLVVVP domain are indicated with L and H respectively.

AtTCP 14/1-489
tTCP 14-1/1-416 tTCP 14-2/1-410

AtTCP14/1-489 tTCP14-1/1-416 tTCP14-2/1-410

AtTCP14/1-489 tTCP 14-1/1-416 tTCP14-2/1-410

AtTCP 14/1-489 tTCP 14-1/1-416 tTCP 14-2/1-410

AtTCP 14/1-489 tTCP14-1/1-416 tTCP 14-2/1-410

AtTCP 14/1-489 tTCP 14-1/1-416 tTCP 14-2/1-410

AtTCP 14/1-489 tTCP 14-1/1-416 tTCP 14-2/1-410

AtTCP14/1-489 tTCP 14-1/1-416 tTCP14-2/1-410

AtTCP 14/1-489 tTCP14-1/1-416 tTCP 14-2/1-410

 1..

0 DDNHQQQPSPSSSSSLFSLHQHQQLSQSQPQSQSQKSQPQTTQKELLQTQEESAVVAAKK 109 $41 \cdots$...... DEPCSSSSAANNINYPSLAISPSDTNTNINPNS……NDLQITVAST-ETAKK 88 … - DEACSSSSNAAAAYTTSLAISNTD-NTHTNPNNTPRSTISTLQISASGA-DTSKK 85
PPLKRASTKDRHTKVDGRGRRIRMPALCAARVFQLTRELGHKSDGETIEWLLQQAEPSVI 169 PAPKRTSTKDRHTKVDGRGRRIRMPALCAARVFQLTRELGHKSDGETIEWLLQQAEPAV I 148 6 PPPKRTSTKDRHTKVDGRGRRIRMPALCAARVFQLTRELGHKSDGETIEWLLQQAEPAV I 145

AATGTGTIPANFTSLNISLRSSGSSMSLPSHFRSAASTFSPNNIFSPAMLQQQQQQQRGG 229 AATGTGTIPANFTSLNISLRSSGSSMSVPSQLRSS…........YFNPNFSLSQRRSLF-Q 199 AATGTGTIPANFTSLNISLRSSGSSMSVPSQLRSS…...........FNPNFSLSQRRGLFPP 197

GVGFHHPHLQGRAPTSSLFPGIDNFTPTTSFLNFHNPTKQEGDQDSEELNSEK……K 283 200 GIGLS…SDRSATTTLL… NFQTGNSNLH-QFQAKQEMRDNSLDLTETS-IEESLS 249 198 GIGLS… TDTSATTLL… NFQSANLSSNIQLQTKPELRDNSIDLTESSPAEDNLS 248

RRIQTTSDLHQQQQQHQH… DQI GGYTLQSSNSGSTATAAAAQQIPGNFWMVAAAAAA 339 RKRRQDLDLQQEQQQNQQQQNEQQMGSYLLQSSSSGTMPTSHSS.-IPANFWMLTN..... 303 9 RKRRSDLDLEQQQHQQQQ.... QQMGSYLLQS S-TGTMPTSHSS.-IPANFWMVTNPI-. 299 GGGGGNNNQTGGLMTASIGTGGGGGEPVWTFPSINTAA…AALYRSGVSGVPSGAVSSG 396

LHFMNFAAPMAFLTGQQQLATTSNHEINEDSNNNEGGRSDGGGDHHNTQRHHHHQQQHHH456
 LQFMNFPTSVALLPSQQ….. 367

NILSGLNQYGRQVSG- - DSQASGSLG-.. GGDEEDQQD. 489
GMVTGLNPY-RPCSGVSESQASGSHSHHGGGGGGDDRHDSTSHHNS 416
368 GMFAGLNPY-RGGGGVSESQASGSHSHH--GGGTDDRHDTTSHHS -

Figure S2
TCP transcription factors conservation and expression patterns.
A) MUSCLE alignment of AtTCP14 and two tomato homologues. Levels of similarity are shown in purple (dark = high similarity). Underlined are conserved basic regions, boxed the helices of the Helix Loop Helix motif. Conserved functional Cysteine is marked with * B)

Microarray expression data for tomato TCP14 candidates.

Figure S3
Stable expression of fusion proteins used in this study.
A) Fusion proteins for BiFC microscopy. B) Proteins used for phenotyping assays. C) for Co-IP

Figure S04
Reversed Co-IP of CRN12_997 and TCP14-2
FLAG-IP of FLAG tagged TCP14-2 co-immunoprecipitates CRN12_997.

