
Simulation of a landscape of constructs with a capacity monitor
==

This file explains how to use the simulate_landscape.py file to
simulate a variety of circuits with an array of RBS strengths and
mRNA numbers.

REQUIREMENTS

In order to run this script, python must be installed with the
following packages:
- numpy
- scipy

SIMULATION PARAMETERS
=====================

The parameters for the simulation are defined in an XML file, e.g.
fast_codons_parameters.xml or slow_codons_parameters.xml. An example
is shown below:

<?xml version="1.0"?>
<simulation>

<simulation_name>fast_codons</simulation_name>
<cell>
 <total_ribosomes>10000</total_ribosomes>
</cell>
<monitor>

<mrna_number>20</mrna_number>
<rbs_strength>1</rbs_strength>

<betas>1,1</betas>
<alpha_plus_scale>0.0001</alpha_plus_scale>
<alpha_minus_scale>200</alpha_minus_scale>

</monitor>
<circuit>

<mrna_number_steps>50</mrna_number_steps>
<mrna_number_step>100</mrna_number_step>
<rbs_strength_steps>100</rbs_strength_steps>
<rbs_strength_step>0.1</rbs_strength_step>

<betas>1,1
,
1,
1,
1</betas>

<alpha_plus_scale>0.0001</alpha_plus_scale>
<alpha_minus_scale>200</alpha_minus_scale>

</circuit>
</simulation>

All parameters for the simulation are found within the <simulation>

element.

<simulation_name>
This is the name given to a simulation. This is also the

name of the directory within which the data directory that will
contain the output csv files will be placed. E.g. if simulation_name
is "fast_codons" the data will be placed into "data/fast_codons/".

cell attributes

These are found within the <cell> element inside <simulation>:

<total_ribosomes>
This is the total number of ribosomes within the cell

available to the circuits. This should be an integer number.

monitor attributes

These are found within the <monitor> element inside <simulation>:

<mrna_number>
This is the number of mRNA per cell for the monitor

circuit. This should be an integer number.

<rbs_strength>
This is the relative strength of the RBS for the monitor

circuit. This should be a number.

<betas>
This declares the elongation rates for the monitor. This is

defined as a series of numbers separated by commas. The length of
the circuit is defined by the number of values within the <betas>
element.

<alpha_plus_scale>
This is the scaling for ribosome-RBS affinity. This should

not be changed from 0.0001 without an understanding of how this
value is used. See models.py for details.

<alpha_minus_scale>
This is the scaling for ribosome-RBS affinity. This should

not be changed from 200 without an understanding of how this value
is used. See models.py for details.

circuit attributes

<mrna_number_steps>
This is the number of different values for the number of

mRNA per cell used in the simulation landscape.

<mrna_number_step>

This is the difference between the numbers of mRNA per cell
that are to be simulated, it is also the smallest mRNA per cell that
will be tested. E.g. if this is 50 and mrna_number_steps is 100,
then the number of mRNA per cell that will be used to simulate is
50, 100, 150, ..., 5000

<rbs_strength_steps>
This is the number of different values for the RBS strength

used in the simulation landscape.

<rbs_strength_step>
This is the difference between the RBS strengths that are

to be simulated, it is also the smallest RBS strength that will be
tested. E.g. if this is 0.5 and rbs_strength_steps is 20, then the
RBS strengths that will be used to simulate is 0.5, 1.0, 1.5, ...,
10.0

<betas>
This declares the elongation rates for the circuit. This is

defined as a series of numbers separated by commas. The length of
the circuit is defined by the number of values within the <betas>
element.

<alpha_plus_scale>
This is the scaling for ribosome-RBS affinity. This should

not be changed from 0.0001 without an understanding of how this
value is used. See models.py for details.

<alpha_minus_scale>
This is the scaling for ribosome-RBS affinity. This should

not be changed from 200 without an understanding of how this value
is used. See models.py for details.

RUNNING THE SIMULATION
======================

This package should be unzipped and using the command line, the user
should navigate into the unzipped directory. Once in the directory,
the user can run the simulation using the following command:

python simulate_landscape.py [xml_location]

where [xml_location] is to be replaced by the name of the xml file
(if in the same directory, e.g. fast_codons_parameters.xml), or the
location and name of the xml file (e.g. /Users/username/
synbio_simulations/parameter_files/fast_codon_paramters.xml). This
will then output the data into csv files. Each row represents a
single RBS strength and each column represents a single number of
mRNA. The top left cell represents the lowest RBS strength and
lowest number of mRNA with the number of RBS increasing by
rbs_strength_step in each subsequent row and the number of mRNA
increasing by mrna_number_step in each subsequent column.

CONSTITUENT FILES

=================

models.py

This python file includes two classes Cell and Circuit that can be
used to simulate the behaviour of gene circuits within a cell. In
order to simulate a cell containing a synthetic gene and a burden
monitor, two separate instances of Circuit must be created (one for
the synthetic gene and one for the monitor). These instances can be
passed as an argument into the initiation of a cell instance, along
with the number of ribosomes. The Cell class has a simulate function
which returns the number of free ribosomes and the distribution of
ribosomes along the transcripts of each circuit. These
distributions, along with the betas for the circuit can be used to
calculate the protein production rate for each circuit, the total
ribosomes sequestered on each circuit’s transcripts and the
efficiency of the circuit.

simulations.py

This file contains a SimulationResult class which parses the raw
simulation data from the Cell class from models.py. It parses the
raw data into key metrics such as circuit output, circuit ribosomal
usage etc. This file also contains a function simulate_landscape
that takes key parameters to simulate an array of cells containing a
single synthetic circuit and a single monitor circuit. These
landscapes are created across various mRNA numbers and RBS
strengths.

simulate_landscape.py

This is a command line executable file that takes the location of an
XML file, e.g. fast_codons_parameters.xml, as an argument. This then
takes parameters from the XML file, runs the simulations across the
defined landscape and outputs the files into a defined directory in
a series of csv files:

circuit_out.csv
This file contains the protein production rates per cell

for the synthetic circuit.

circuit_ribs.csv
This file contains the total numbers of ribosomes

sequestered on all of the transcripts for the synthetic circuit.

free_ribs.csv
This file contains the numbers of free ribosomes per cell.

monitor_out.csv
This file contains the protein production rates per cell

for the burden monitor.

monitor_ribs.csv
This file contains the total numbers of ribosomes

sequestered on all of the transcripts for the burden monitor.

mRNA_amount.csv
This file contains a vector of all the mRNA amounts used in

the simulations across the landscape.

RBS_str.csv
This file contains a vector of all the RBS strengths used

in the simulations across the landscape.

PLOTTING THE SIMULATION RESULTS
===============================

The data contained in the .csv files generated once the Python
simulations are complete can be visualised using the Matlab script
Plot_Matlab_3D_CSV.m. This will create a pdf file called
Heat_Map_Efficiency.pdf representing the Normalised Efficiency,
calculated as the product of circuit output and number of free
ribosomes, normalised to the maximum efficiency value.

