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Appendix S1

Deriving the observation-level variance ¢? using log-normal approximation for

the negative binomial distribution with log link

Here, we only deal with the case of the negative binomial distribution, but this derivation process is directly
applicable to the quasi-Poisson and gamma distributions with log link. Given a random variable z is negative
binomially distributed, the mean and variance of x is respectively:

E[z] = A
/\2

var[z] = A+ v

where A and 6 as in Table 1. When the distribution of In(z) follows the natural logarithm of a log-normal
distribution. Then, the variance of In(z) is:

var[In(z)] = In (1 + V&T[CL’Q])
Therefore:

varfine)] = (14 “;/9)

By rearranging, we obtain:

var[ln(z)] = In (1 + % - ;)

which is the observation-level variance for the negative binomial distribution with the log link function, using
the log-normal approximation.



Appendix S2

Comparison of the three methods for obtaining the observation-level variance o,
for the Poisson distribution

We plot three different methods for obtaining the observation-level variance (formally we refered this as the
distribution-specific variance for Poisson; for details of this, see Appnedix S4). Before we start this, we load
packages, which we need for the calculations:

# install.packages('latex2exp’') # install it if you do not have this
library(latex2exp) # enable to use LaTez in R expression

# install.packages('extremevalues')

library(extremevalues) # this may be not needed

## Error: package or namespace load failed for 'extremevalues'

# install.packages ('numDeriv')
library(numDeriv) # we need a numerical method for getting derivatives of probit

Make sure you have installed and loaded all these packages to your current R session.

1nX <- seq(-20, 3, by = 0.001)

X <- exp(1nX)

plot(X, 1/X, type = "1", 1lty = "dotted", ylab = "Observation-level variance",
xlab = TeX("$\\lambda$"), ylim = c(0, 10))

lines(X, log(l + 1/X))

lines(X, trigamma(X), 1ty = "dashed")

legend (15, 10, c(TeX("$\\frac{1}{\\lambda}$"), TeX("$\\1n\\left (1+\\frac{1}{\\lambda}\\right)$"),
TeX("$\\psi_1(\\lambda)$")), 1ty = c(3, 1, 2), bty = "n")

As you see, these three functions seem to converge for values larger than about 2 (Figure 1). Now we zoom
into this figure.

plot(X, 1/X, type = "1", 1ty = "dotted", ylab = "Observation-level variance",
xlab = TeX("$\\lambda$"), ylim = c(0, 10), xlim = c(0, 3))

lines(X, log(l + 1/X))

lines(X, trigamma(X), lty = "dashed")

legend(2, 10, c(TeX("$\\frac{1}{\\lambda}$"), TeX("$\\1n\\left (1+\\frac{1}{\\lambda}\\right)$"),
TeX("$\\psi_1(\\lambda)$")), 1ty = c(3, 1, 2), bty = "n"

We see substantial divergence among the three functions at small values of A (Figure 2). Therefore, it is
important to report which method is used when calculating R \ny and ICCarmvm, especially with small
A. Also, it makes sense that the observation-level variance increases rather quickly with smaller means (A
values) because many groups (or individuals) have very similar outcomes (for example, with A = 0.1, around
90% of the outcome will be 0 and the rest will be either mostly 1 or 2).

Incidentally, we can obtain the delta method version of o4 using the R function D, without having to do
derivations by hand!

FunX <- expression(log(X)) # function of X
DXFunX <- D(FunX, "X") # getting o derivative with respect to X
DXFunX # this is 1/lambda and lambda*(1/lambda) 2 will be 1/lambda
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Figure 1: A comparsion of the three observation-level variance functions
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Figure 2: A comparsion of the three observation-level variance functions zoomed in



## 1/X

# the delta method for wariance approzimation (Delta 1)

Var0d <- X * eval(DXFunX)~2

plot(X, 1/X, type = "1", 1ty = "dotted", ylab = "Observation-level variance",
xlab = TeX("$\\lambda$"), lwd = 4, ylim = c(0, 10), xlim = c(0, 3))

points(X, VarOd, type = "1", 1ty = "dashed", col = "red", lwd = 2)

legend (1.5, 10, c(TeX("$\\frac{1}{\\lambda}$"), "", "D function in R"), 1ty = c(3,
0, 2), col = c("black", "black", "red"), bty = "n", )
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Figure 3: A comparsion of alternative approaches for applying the delta method

There is an exact match between the results from the delta method and the delta method outcome Var0d as
both are § (1/X).



It is also very important to note that when § (Poisson distributions), + + # (negative-binomial distributions)
or L (gamma distributions) are under 0.5, estimated the observation-level variance o, from the three methods
can be noticeable different. This can also be seen in the worked examples (Appendix S6). Our recommendation
is to use the traigamma function approach, which we did in our worked examples.

Appendix S3

Looking into the performance of the delta method for bias corrections

Below we compare the exact mean (Equation 32) and the approximated mean (Equation 35) under 3 different
variance values (02 = 0.25, 0.5 and 1) with Poisson (count) data.

Beta <- seq(-4, 4, by = 0.05)
VarQuarter <- 0.25

VarHalf <- 0.5

VarOne <- 1

FunB1 <- expression(exp(Beta)) # inverse of log or ezp
DBFunBl1 <- D(FunBl1, "Beta") # taking derivative of FunBl

1nExactQuarter <- exp(Beta + 0.5 * VarQuarter) # Equation 32

lnApproxQuarter <- exp(Beta) + 0.5 * VarQuarter * eval(DBFunBl) # Equation 35
1nExactHalf <- exp(Beta + 0.5 * VarHalf) # Equation 32

lnApproxHalf <- exp(Beta) + 0.5 * VarHalf * eval(DBFunBl) # Equation 35
1nExactOne <- exp(Beta + 0.5 * VarOne) # Equation 32

lnApproxOne <- exp(Beta) + 0.5 * VarOne * eval(DBFunBl1) # Equation 35

plot (lnExactQuarter, lnApproxQuarter, type = "1", ylab = "Approximated mean by the delta method",
xlab = "Exact mean", xlim = c(0, 20), ylim = c(0, 20))

lines(1lnExactHalf, lnApproxHalf, 1ty = 2)

lines(1lnExactOne, lnApproxOne, lty = 3)

abline(0, 1, col = "red")

legend (0, 20, c(TeX("$\\sigma~2_{\\tau} = 0.25"), TeX("$\\sigma~2_{\\tau} = 0.5"),
TeX("$\\sigma~2_{\\tau} = 1")), 1ty = c(1, 2, 3), bty = "n")

As one can see, the delta method approximation starts to perform worse with larger mean values and also
larger variance values.

Now we look at the performance of two approximations of mean values (Equations 40 & 41); we can
use Equation 40 as the delta approximation while Equation 41 as the normal approximation because this
approximation uses the similarity between the logistic distribution and the normal distribution (see Equation
42). Note that in this case (proportion data with the logit link), we have to use simulation to obtain correct
mean values.

Beta <- seq(-10, 10, by = 0.05)
FunB2 <- expression(exp(Beta)/(1 + exp(Beta)))
DBDBFunB2 <- D(D(FunB2, "Beta"), "Beta") # taking derivative of FunB2 twice

# getting unbiased means using simulations
logitSimQuarter <- logitSimHalf <- logitSimOne <- 1:length(Beta)
for (i in 1:length(Beta)) {
logitSimQuarter[i] <- mean(plogis(Beta[i] + rnorm(le+06, 0, sqrt(VarQuarter))))
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Figure 4: Performance of approximations (black) against unbiased line for Poission (count) data with the
log-link



logitSimHalf[i] <- mean(plogis(Betal[i] + rnorm(le+06, 0, sqrt(VarHalf))))
logitSimOne[i] <- mean(plogis(Beta[i] + rmnorm(le+06, 0, sqrt(VarOne))))
}

logitApproxlQuarter <- eval(FunB2) + 0.5 * VarQuarter * eval(DBDBFunB2) # equivalent to Equation 38
logitApprox2Quarter <- plogis(Beta/sqrt(l + ((16 * sqrt(3))/(15 * pi))~2 * VarQuarter))
logitApprox1Half <- eval(FunB2) + 0.5 * VarHalf * eval(DBDBFunB2) # quivalent toEquation 38
logitApprox2Half <- plogis(Beta/sqrt(l + ((16 * sqrt(3))/(15 * pi))~2 * VarHalf))

logitApprox10ne <- eval(FunB2) + 0.5 * VarOne * eval(DBDBFunB2) # quivalent toEquation 38
logitApprox20ne <- plogis(Beta/sqrt(l + ((16 * sqrt(3))/(15 * pi))~2 * VarOne))

plot(logitSimQuarter, logitApproxlQuarter, type = "1", ylab = "Approximated mean by the two methods",
xlab = "Simulated mean (unbiased)")

lines(logitSimHalf, logitApproxiHalf, 1ty = 2)

lines(logitSimOne, logitApprox10Ome, lty = 3)

lines(logitSimQuarter, logitApprox2Quarter, 1ty = 1, col = "blue")

lines(logitSimHalf, logitApprox2Half, 1ty = 2, col = "blue")

lines(logitSimOne, logitApprox20mne, 1ty = 3, col = "blue")

abline(0, 1, col = "red")

legend (0, 1, c(TeX("$\\sigma™2_{\\tau} = 0.25 (delta)"), TeX("$\\sigma~2_{\\tau} = 0.5 (delta)"),
TeX("$\\sigma~2_{\\tau} = 1 (delta)"), TeX("$\\sigma~2_{\\tau} = 0.25 (normal)"),
TeX("$\\sigma~2_{\\tau} = 0.5 (normal)"), TeX("$\\sigma~2_{\\tau} = 1 (normal)")),
1ty = c(1, 2, 3, 1, 2, 3), co = c(rep(c("black", "blue"), each = 3)), bty = "n"

The corresponding figure for this is hard to see differences between the two methods so we zoom in apart
from deviations occur most at around 0.3 an 0.7.

plot(logitSimQuarter, logitApproxlQuarter, type = "1", ylab = "Approximated mean by the two methods",

xlab = "Simulated mean (unbiased)", xlim = c(0.65, 0.75), ylim = c(0.65,
0.75))

lines(logitSimHalf, logitApproxlHalf, lty = 2)

lines(logitSimOne, logitApprox1One, 1ty = 3)

lines(logitSimQuarter, logitApprox2Quarter, 1ty = 1, col = "blue")

lines(logitSimHalf, logitApprox2Half, 1ty = 2, col = "blue")

lines(logitSimOne, logitApprox20mne, 1ty = 3, col = "blue")

abline(0, 1, col = "red")

legend(0.65, 0.75, c(TeX("$\\sigma~2_{\\tau} = 0.25 (delta)"), TeX("$\\sigma~2_{\\tau} = 0.5 (delta)"),
TeX("$\\sigma~2_{\\tau} = 1 (delta)"), TeX("$\\sigma~2_{\\tau} = 0.25 (normal)"),
TeX("$\\sigma™2_{\\tau} = 0.5 (normal)"), TeX("$\\sigma~2_{\\tau} = 1 (normal)")),
1ty = c(1, 2, 3, 1, 2, 3), co = c(rep(c("black", "blue"), each = 3)), bty = "n"

Now we can see interesting results. In the case of 02 = 0.25, the delta method is less biased, when o2 = 0.5,
the delta method is still slightly better but when 02 = 1, the normal approximation is much better.

Appendix S4

Why R% i and ICCqryy using variances on the latent scale are estiamted on
the data/original scale

Here, we use R%;\ and ICCgrym as calculated using the ‘delta-method-based’ observation-level variance.

Marginal R from a quasi-Poisson GLMM (model 2 in the main text) using the variance components
and the obervation-level variance (note both are on the latent scale) can be expressed as:
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Figure 5: Performance of approximations (black) against unbiased line for binomial data with the logit-link



— o = 0.25(delta)

g |  --- o-0.5(delta)

=1 - - 1{delta) /
0 — = 0.25(normal) ’
E --- o =0.5{normal)
o o aﬁ-‘l[nnrmalj
s © *
E
€
5
o=
2 e
E L=
=
=
=2
z o
E E
& o
=B
=1
-

w

{q —

=

' .| I I I |
0.66 068 Q.70 0.72 0.74

Simulated mean (unbiased)

Figure 6: Zooming in on the performance of approximations (black) against unbiased line for binomial data
with the logit-link
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By applying the delta method for variance approximation, we can approximate RéLMM on the data/orignal
scale can be written as:

2
2 ( dg(Bo)
N Uf( dfo )

‘R(Q)Pfln(m)>k ~ 2
d
(03 + 02 +02) (2452

where ¢ is the transformation function (inverse link function).

By simplifying this, we obtain:

2
9y

R2 P S— R2
OP—In(m) 0_]2( _'_O_g[ +0(2) OP—In(m)

This argument above is directly transferable to ICCgryvm and to other non-Gaussian distributions. Thus,
R%; vy and ICCgryw using variances on the latent scale approximates to Ripyn; and ICCgryvv on
data/orignal scale. Also, this implies that ICC on the data/orignal scale can be written by using the binomial
GLMM (model 6):

oZp?/(1+eb)?
(02 +02)p*/(1+ €)%+ p(1 —p)

ICCbinom—logit * R

where p is the mean on the data scale and b is the corresponding value on the latent scale and p = e®/(1 +¢€%);
this was first derived in Browne et al. (2005, J. R. Statstic. Soc. A., 168: 599-613) using the delta method.
An ICC can be approximated by using the delta method and then, the observation-level o2 for the binomial
distriubtion with the logit link (based on the delta method) is 1/p(1 — p) (see Table 2):

2
Ou

o2 +o2+1/p(1—p)

ICCbinom—logit ~

Given p = e?/(1 +€b), p(1 — p) = €®/(1 + €’)? and also e’ = p/(1 — p) and therefore, (1 + €®)? = 1/(1 — p)2.
By using this, ICC on the data scale can be re-written as:

o2p?(1 —p)?
(02 +02)p*(1 —p)2 +p(1 —p)

Iccbinom—logit *

2

By dividing both the numerator and denominator by p?(1 — p)?, we have:

2
Ou

02 +02+1/p(1—-p)

Ichinom—logit * R

This is the same as the ICC formula above.
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Appendix S5

Comparing the distribution-specific and observation-level variance for the three
common link functions of the binomial distribution

We plot how the ‘delta-method-based’ observation-level variance change as p (probability; Prob) changes
for the logit, probit and complementary log-log link function along with the corresponding ‘theortical’
distribution-specific variance.

Prob <- seq(le-04, 0.9999, by = 1e-04)
FunPlogit <- expression(log(Prob/(1 - Prob))) # logit
FunPcclog <- expression(log(-log(l - Prob))) # c-c log

DPFunPlogit <- D(FunPlogit, "Prob") # derivative of logit

DPFunPcclog <- D(FunPcclog, "Prob") # derivative of cclog

# the delta method for wvariance approxzimation

VarOlogit <- Prob * (1 - Prob) * eval(DPFunPlogit)~2

# VarDlogit<-1/(Prob*(1-Prob)) # as in Table 3 - equivalent as above the

# delta method (note some differences from the others)

VarOprobit <- Prob * (1 - Prob) * grad(qnorm, Prob) 2

# VarDprobit<-2*pi*Prob* (1-Prob)* (exp ((invErf (2*Prob-1)) 2)) 2 # as in Table
# 3 - equivalent as above the delta method

VarOcclog <- Prob * (1 - Prob) * eval(DPFunPcclog)~2

# VarDcclog<-Prob/((log(1-Prob)) 2*(1-Prob)) # as in Table 3 - equivalent as
# above

Above, the delta method for variance approximation was used in this part. Note that for the probit function,
we had to use the numerical approach (numDeriv package) rather than the default D function. However,
these functions listed in Table 3 can be directly used; they will produce the same results.

plot(Prob, VarOlogit, type = "1", ylab = "Variance", xlab = "Probability", ylim = c(0,
20))

lines(Prob, VarOprobit, col = "red")

lines(Prob, VarOcclog, col = "blue")

abline(pi~2/3, 0, 1ty = "dashed")

abline(l, 0, 1ty = "dashed", col = "red")

abline(pi~2/6, 0, 1ty = "dashed", col = "blue")

legend (0.5, 20, c("Logit (link)", "Logit (latent)", "Probit (link)", "Probit (latent)",
"CClog(link)", "CClog(latent)"), 1lty = c(1, 2, 1, 2, 1, 2), col = rep(c("black",
"red", "blue"), each = 2), bty = "n")

As becomes clear form the corresponding figure, observation-level variance is always larger than distribution-
specific variance apart from the case of complementary-complementary (c-c) log link. It may not be surprising
to see the observation-level variances increase at both extreme (0 and 1) because the total variance decreases
and uncertainty increases closer near 0 and 1.
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