
Supplementary Information

OME Files - An open source reference library for the OME-XML
metadata model and the OME-TIFF file format

Leigh et al

This Supplementary information describes the set of benchmarks used to test the
performance of the C++-based OME Files library. The scripts used for the benchmark tests
are available at https://github.com/openmicroscopy/ome-files-performance.

Benchmark datasets
Three public reference OME-TIFF datasets were used for performance tests. For each
dataset, we computed the metadata size-- the size in bytes of the raw OME-XML string
stored in the ImageDescription TIFF tag-- and the pixeldata size-- the size in bytes of the
binary pixel data stored as TIFF. The test datasets are:

● “5D”, a multi-dimensional fluorescence image with 10 Z-sections, 2 channels, 43
timepoints available at https://downloads.openmicroscopy.org/images/OME-
TIFF/2016-06/tubhiswt-4D/. The metadata size is 176KiB and the size of the
pixeldata is 216MiB.

● “Plate”, a plate containing 384 wells and 6 fields, derived from the Broad Bioimage
Benchmark Collection resource [1] and available at
https://downloads.openmicroscopy.org/images/OME-TIFF/2016-06/BBBC/. The
metadata size is 2.3MiB and the size of the pixeldata is 3.4GiB.

● “ROI”, a time-lapse sequence with ~13K regions of interest, derived from the
MitoCheck study [2] and available at
https://downloads.openmicroscopy.org/images/OME-TIFF/2016-06/MitoCheck/. The
metadata size is 3.2MiB and the size of the pixeldata is 130MiB.

The datasets were chosen to test different aspects of library performance. The Plate and
ROI datasets are both single OME-TIFF derived from real-world examples where the file
content is either dominated by the pixeldata or the metadata. 5D represents file layouts
where the pixeldata is distributed over multiple files. For more information, see
https://www.openmicroscopy.org/site/support/ome-model/ome-tiff/data.html.

[1] Ljosa V, Sokolnicki KL, Carpenter AE (2012). Annotated high-throughput microscopy
image sets for validation. Nature Methods 9(7):637.

[2] Neumann B et al. (2010). Phenotypic profiling of the human genome by time-lapse
microscopy reveals cell division genes. Nature 464(7289):721.

Benchmark hardware and software

The benchmark scripts have been executed using two identical sleds in a single server
provisioned with the same hardware (Dell PowerEdge™ C6220, 2x E5-2640/96 GB).
Windows 2008 Server was installed on one sled, Ubuntu 16.04 running in a Docker
virtualized environment was installed on the other.

Our benchmark tests measured the performance of the current versions of our two reference
libraries: OME Files C++ 0.3.1 and Bio-Formats version 5.3.4. The Bio-Formats library was
executed directly using the Java Virtual Machine but also over C++ using the Bio-Formats
JNI/JACE C++ bindings. All benchmark tests have been executed under both Windows and
Linux environments with the exception of the JNI/JACE C++ bindings which were only
successfully built under Ubuntu 16.04. We used Java Development Kit (1.7.0_80 on
Windows and 1.7.0_95 on Linux) to build and run the benchmark scripts as JDK7 is
currently required to build the Bio-Formats JACE C++ bindings.

Benchmark tests
For each of the benchmark datasets above, four tests were executed:

● metadata.read: the metadata is extracted from the OME-TIFF ImageDescription tag
and converted into OME Data Model objects using the createOMEXMLMetadata API
(Java [3] / C++ [4])

● metadata.write: the metadata is serialized using the getOMEXML API (Java [5] / C++
[6]) and written to disk as an OME-XML file

● pixeldata.read: the pixeldata is read from the OME-TIFF using the openBytes API
(Java [7] / C++ [8]) and stored in memory

● pixeldata.write: the pixeldata is written to disk as another OME-TIFF using the
saveBytes API (Java [9] / C++ [10])

Each benchmark test records the real time in milliseconds before and after each test, and
computes the elapsed time from the difference.

[3] https://downloads.openmicroscopy.org/bio-
formats/5.3.4/api/loci/formats/services/OMEXMLService.html#createOMEXMLMetadata-
java.lang.String
[4] https://downloads.openmicroscopy.org/ome-files-cpp/0.3.1/21/docs/ome-files-bundle-
docs-0.3.1-b21/ome-
files/api/html/namespaceome_1_1files.html#a469d4ec5c1bddd7b3afc0daa11ba1989
[5] https://downloads.openmicroscopy.org/bio-
formats/5.3.4/api/loci/formats/services/OMEXMLService.html#getOMEXML-
loci.formats.meta.MetadataRetrieve-
[6] https://downloads.openmicroscopy.org/ome-files-cpp/0.3.1/21/docs/ome-files-bundle-
docs-0.3.1-b21/ome-
files/api/html/namespaceome_1_1files.html#ad2898e87098e67fdda2154d7883692e0
[7] https://downloads.openmicroscopy.org/bio-
formats/5.3.4/api/loci/formats/IFormatReader.html#openBytes-int-byte:A-
[8] https://downloads.openmicroscopy.org/ome-files-cpp/0.3.1/21/docs/ome-files-bundle-
docs-0.3.1-b21/ome-
files/api/html/classome_1_1files_1_1detail_1_1FormatReader.html#a2106d1dd7b4f4fe6597f
de5cdbdb0f37

[9] https://downloads.openmicroscopy.org/bio-
formats/5.3.4/api/loci/formats/IFormatWriter.html#saveBytes-int-byte:A-

[10] https://downloads.openmicroscopy.org/ome-files-cpp/0.3.1/21/docs/ome-files-bundle-
docs-0.3.1-b21/ome-
files/api/html/classome_1_1files_1_1detail_1_1FormatWriter.html#a51115641c238f5830f79
6c1839d75872

Building and executing the benchmark scripts

Windows
The Windows build requirements are Cmake (https://cmake.org/), Maven
(http://maven.apache.org/), Visual Studio (https://www.visualstudio.com/) and a local version
of the standalone OME Files bundle matching the Visual Studio version. For running our
builds, we used the Continuous Integration software Jenkins (https://jenkins.io/index.html) to
trigger the Windows benchmark builds. A single script executing the building and execution
steps is available under jenkins_build.bat (https://github.com/openmicroscopy/ome-files-
performance/blob/v0.1.0/scripts/jenkins_build.bat).

To build the OME Files performance scripts manually, within a build directory, execute the
following cmake command:

$ cmake -G "Ninja" -DCMAKE_VERBOSE_MAKEFILE:BOOL=%verbose%
 -DCMAKE_INSTALL_PREFIX:PATH=%installdir% -
DCMAKE_BUILD_TYPE=%build_type%
 -DCMAKE_PREFIX_PATH=%OME_FILES_BUNDLE%
 -DCMAKE_PROGRAM_PATH=%OME_FILES_BUNDLE%\bin
 -DCMAKE_LIBRARY_PATH=%OME_FILES_BUNDLE%\lib
 -DBOOST_ROOT=%OME_FILES_BUNDLE% %sourcedir%
$ cmake --build .
$ cmake --build . --target install

The Bio-Formats performance script can be built within the source directory using Maven:

$ cd source
$ call mvn clean install

Linux
The Linux benchmark was performed on Ubuntu 16.04. To ease the distribution and
reproducibility of the suite, the benchmark environment is built using Docker
(https://www.docker.com/) via a Dockerfile (https://github.com/openmicroscopy/ome-files-
performance/blob/v0.1.0/Dockerfile). To build the benchmark Docker image, run:

$ docker build -t ome-files-performance .

In order to execute the benchmark scripts, download the benchmark datasets under a local
folder, e.g. /tmp/benchmark_data, then mount this local folder as a /data volume and run the
Docker image:

$ docker run --rm -it -v /data:/data ome-files-performance

This will execute the run_benchmarking (https://github.com/openmicroscopy/ome-files-
performance/blob/v0.1.0/scripts/run_benchmarking) script and store the output of the
benchmark under /data/out and the tabular results under /data/results.

Benchmark results
Each of the benchmark tests outputs a tabular-separated values file with the following
columns:

● test.lang: name of the benchmark environment (Java, C++, Jace)
● test.name: name of the benchmark test
● test.file: name of the benchmark dataset
● proc.real/real: execution time measured by the benchmark script

The results folder of the GitHub source code repository contains the final benchmarking run
used to generate Fig. 2 and Supp. Table 1.

From these tab-separated value files, the following metrics have been defined for the
assessment of each benchmark test:

● performance is defined as the inverse of the execution time for each test,
● relative performance of a test is defined as the ratio of the performance over the

performance of the same test for the same dataset executed using Bio-Formats
under Linux or Windows, as appropriate,

● metadata rate i.e. the rate of XML transfer per unit of time expressed in MiB/s is
defined as the ratio of the metadata size of the test dataset over the execution time
of the metadata test,

● pixeldata rate i.e. the rate of binary pixeldata transfer per unit of time expressed in
MiB/s is defined as the ratio of the the pixeldata size of the test dataset over the
execution time of the pixeldata test.

The benchmark metrics have been derived from twenty independent iterations of each
benchmark tests. The only exception is the Plate dataset pixeldata performance test which
has only been reproduced 6 times as a result of its long execution time (~1.5hr per test).

Additionally, we have reproduced the benchmark by repeating the same number of iterations
of each test in a loop within the same environment. For most tests, the results were found to
be identical and independent of whether the tests were run separately or repeated.
Interestingly, in the case of the metadata tests using Bio-Formats and the Java Virtual
Machine (JVM), there is a gain due to the optimiser in the JVM. We include these results for
completeness and to indicate the performance achieved if the same operation is invoked
within a process multiple times.

Supplementary Table 1: Benchmarking results. Each row of the table contains the
processed metadata and pixeldata performance results for a given test dataset under a
given environment. Execution times, relative performance, metadata rate and pixeldata rate
are calculated as defined in the Supplementary Information. The mean and standard
deviation of each value has been computed from twenty independent iterations of the same
benchmark execution, except for the Plate pixeldata test (see Supplementary Information).

