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A Additional Methods624

This section contains further description of the methods that were used, with a particular focus on625

details of the Bayesian Inference scheme in Section A2. These sections do not feature in the Online626

Methods purely due to space constraints.627

A1 Protocol schematics628

Figures A1–A3 show plots of the voltage clamps that are used in the repeated activation step and629

activation kinetics protocols (Pr0–Pr2). The voltages and times of the steps are given in the Online630

Methods 4.2.631
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Figure A1: Repeated Activa-
tion Step Protocol (Pr0).
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Figure A2: Activation Kinetics
1 Protocol (Pr1).
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Figure A3: Activation Kinetics
2 Protocol (Pr2).

A2 Bayesian Inference Scheme632

A2.1 Conductance estimation to inform the prior633

Preliminary work revealed that using sine wave protocols alone often allowed kinetic parameters in634

the hERG model to be recovered, but there was potential for identifiability problems (or at least635

we encountered difficulties in finding a global optimum due to a rugged likelihood surface) when636

simultaneously fitting the conductance parameter and transition rate parameters P1 to P8 (although637
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previous work suggests all parameters are theoretically identifiable42). To add extra information638

on conductance, we incorporated a voltage-step to +40 mV followed by a step down to −120 mV,639

as described in the definition of the sine wave protocol in Section 4.2. The aim being to provoke640

a large current. We then fitted a single exponential through the slow time constant of the tail641

current exhibited during the −120 mV step (fitting was performed in the Clampfit software, using642

the Levenberg-Marquardt algorithm with a tolerance of 10−6). We then extrapolated back to the643

point at which the voltage step to −120 mV was made, and used the extrapolated current value644

at this point to estimate a conductance at this time point (this extrapolation method is described645

in Vandenberg et al.2). The conductance we estimated was used as a lower bound for the prior646

distribution of the conductance, as we describe below.647

A2.2 Prior648

In this section we describe our prior assumptions on the values that each model parameter can take.649

The prior for the conductance GKr is assumed to be independent of the kinetic parameters, and to650

take a uniform distribution. As discussed above, the lower bound is formed by estimating a lower651

bound on the conductance value ‘directly’ from the experimental data; the upper bound is assumed652

to be 10 times the value of the lower bound.653

The other model parameters are within transition rates of the form654

k = A exp(BV ), (A.1)

where V is voltage and A and B are model parameters (P1 to P8 for k1 to k4, as shown in Figure 3).655

For parameters of the form A we assumed that the prior distribution is uniform between 10−7
656

and 1000 ms−1, again to cover (and extend beyond) the full physiological range expected with hERG657

channel gating.658

We assume that the prior distributions for B parameters are uniform between 10−7 and 0.4659

mV−1. The lower bound for this parameter was selected as the voltage-dependence becomes prac-660

tically redundant when B becomes small: when B = 10−7 the value of exp(BV ) will change by less661

than 0.0015% across the voltages we reach in this study. The upper value is beyond the physiolog-662

ically expected range.663

We also impose a prior on the maximum rate of transition k between any states (maximum664

across the full voltage range in the protocol (that is from −120 to 58.25 mV)). If the maximum665

rate k is greater than 1000 ms−1, or less than 1.67 × 10−5 ms−1, the pair of parameter values that666

give rise to this are assigned prior probability zero (strictly, this is equivalent to defining 2D prior667

on A and B, but is easier to describe here, and code, as an additional constraint): the lower bound668

is based on the assumption that a transition is not physiologically realistic if it occurs over a time669

scale slower than one minute; the upper bound was decided based on the prior for the individual670

parameters A and B in the transition rate expression and to prevent the transitions occurring over671

a time scale much faster than would be physiologically expected.672

Note that our analysis is relatively insensitive to the precise form of the prior that is used as673

there are around 80,000 data points (8 s of 10 kHz samples) in the likelihood product calculation674

of Equation (13), which is then also in a product with the prior in Equation (12). So, effectively,675

each of the 10,000 data points has the same impact as the prior does on the posterior. Given676

our likelihood is extremely peaked around its maximum (Figure 3C), we have observed no notable677

influence of the shape of the prior, as long as the maximum posterior density point is well away from678

the limits described above — which it has been in all cases. Note that the same concept means679

that, in our case, the “maximum likelihood estimate” (MLE — parameter set that maximizes680
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Equation (13)) would be practically indistinguishable from the “maximum a posteriori estimator”681

(MAP — parameter set that maximizes Equation (12)) even if we had a non-uniform prior.682

A2.3 Global minimization683

The Covariance Matrix Adaptation — Evolution Strategy (CMA-ES) algorithm was used to perform684

an initial exploration of the surface of the posterior density, and to identify parameter sets which685

allow the model to fit the experimental data well. The tolerance used is 10−4 and all other settings686

are the defaults in MatLab implementation of CMA-ES v3.61, downloaded from https://www.lri.687

fr/~hansen/cmaes.m. We imposed bounds based on the prior as we describe above in Section A2.2.688

We run the CMA-ES algorithm from different starting points and continue to do so until we689

identify the same region of parameter space for optimal parameter sets for each experimental data690

trace when starting from many different starting points. In this way, we can be confident that we691

identify the same region of high likelihood consistently (not simply the first local minimum that is692

found), and we have more confidence that this corresponds to the globally optimal likelihood.693

These initial starting points for the CMA-ES algorithm are sampled from within the prior694

defined for each parameter, described in section A2.2. To sample from the prior we simply select695

the voltage-dependent transition rate parameters (of the form B described above) uniformly from696

the defined range. The same approach is used to sample the conductance parameter.697

For the parameters of the form A above we sample starting points in a logarithmic fashion across698

the range of the uniform prior. This approach helps to restrict the initial guesses of parameters to699

the region of measurable time scales we imposed by defining the maximum and minimum ranges on700

the overall transition rate, as described above. We also run a small selection of starting points with701

both A and B parameter values sampled uniformly from [10−7, 0.1] (the range in which most existing702

model parameters lie), again to ensure we identify the global optimal solution to the optimization703

problem. We log-transform all parameters within CMA-ES to aid the optimization process by704

making all values similar orders of magnitude.705

A2.4 Markov Chain Monte Carlo parameter inference706

We use Markov Chain Monte Carlo (MCMC) methods to explore the posterior probability distri-707

bution. The approach we use is the Metropolis-Hastings algorithm. In this algorithm, candidate708

parameter sets are proposed from a proposal distribution q(θcand|θi) which depends only on the709

previously accepted parameter set θi. We use a multivariate normal distribution as our proposal710

distribution. Any candidate parameter set θcand is compared to the current parameter set θi by711

calculating the ratio of the likelihood of the two parameter sets. The value of the ratio determines712

whether or not the proposed parameter set is accepted as part of the MCMC chain. If the can-713

didate parameter set has a greater posterior density value than the existing parameter set then714

it will be added to the Markov chain, that is θi+1 = θcand. Otherwise, the parameter set may715

still be accepted with a probability equal to the ratio of likelihood/posterior density values. That716

is, a proposed parameter set generated from a multivariate normal distribution is accepted with717

probability718

α = min

{
L(θcand|y)

L(θi|y)
, 1

}
. (A.2)

Also note that if the proposed parameter set contains any parameters outside the range of the719

prior, or violates any of the conditions on the parameters that we have imposed, the parameter set720

is assigned an acceptance probability of 0 and immediately rejected and the previously accepted721

parameter set is again added to the Markov chain — that is, θi+1 = θi.722
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In practice, we use a covariance matrix adaptive version of the Metropolis-Hastings Algorithm723

which helps identify the directions in parameter space which have the highest likelihood values, the724

algorithm is described in Haario et al.43. At each iteration of the algorithm, the covariance matrix725

of the multivariate normal distribution is updated and a scalar value is also updated to define the726

width of the distribution. We run our MCMC chains for 250,000 samples and discard the first727

50,000 samples as ‘burn in’ (for an introduction to MCMC see Gilks et al.44).728

B Details of Published hERG Channel Models729

Figure 1A of the main text features simulations from 29 literature hERG or IKr models. In Table B1730

we list these models, give references, and show the seven different structures that they feature in731

Figure B4.732

There are two models in this table that are not in Figure 1A: the Kiehn et al.45 model as it733

is defined only at certain voltages; and the Piper et al.46 model as it does not easily fit into the734

Hodgkin-Huxley/Markov model framework we used in our simulation code.735
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Figure B4: Different mathematical model structures for the literature models listed in Table B1.
The model we use in the main text takes structure D as shown in Figure 3B.
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Table B1: Table summarizing details of each published IKr model formulation, in chronological
order. ‘# Params’ indicates the total number of free parameters (the number given includes a GKr

parameter for the conductance). The Model Type is ‘HH’ for Hodgkin–Huxley models and ‘MM’
for Markov Models, or a hybrid of the two (MM/HH, which generally means a MM with some
symmetry in transition rates).

Model Model # Experimental Cell Type Temperature Structure
Type Params in Figure B4

Zeng et al.30 HH 11 Guinea pig ventricular myocytes Physiological D
Lindblad et al.47 HH 11 Rabbit SA, AV, atrial myocytes and Physiological D

rabbit and guinea pig ventricular myocytes
Liu et al.48 MM 11 Ferret atrial myocytes Room C
Wang et al.25 MM 15 Xenopus oocytes Room B
Courtemanche et al.49 HH 10 Human atrial myocytes Physiological D
Nygren et al.50 HH 9 Human atrial/rabbit atrial myocytes Physiological D

and Xenopus oocytes
Priebe & Beuckelmann51 HH 9 Human ventricular myocytes Physiological D
Kiehn et al.45 MM 9∗ Xenopus oocytes Room A
Winslow et al.52 HH 7 Guinea pig ventricular myocytes Physiological D
Ramirez et al.53 HH 13 Canine atrial myocytes Physiological D
Zhang et al.54 HH 15 Rabbit sino-atrial node cells Physiological F
Clancy & Rudy55 MM 14 Guinea pig ventricular Physiological A
Lu et al.56 MM 17 Chinese Hamster Ovary (CHO) Physiological A
Mazhari et al.31 MM 17 Human Embryonic Kidney (HEK) 293 Physiological A
Fox et al.57 HH 10 Canine ventricular myocytes Physiological D
Kurata et al.58 HH 18 Rabbit sino-atrial node cells Physiological F
Oehmen et al.59 MM 11 Rabbit sino-atrial cells Physiological C
Matsuoka et al.60 HH 23 Rabbit pacemaker and guinea pig Physiological F

ventricular myocytes
Piper et al.46 MM/HH 43 Xenopus oocytes Room G
Seemann et al.61 HH 7 Human ventricular myocytes Physiological D
Hund & Rudy62 HH 11 Canine ventricular myocytes Physiological D
Shannon et al.63 HH 11 Rabbit ventricular myocytes Physiological D
Ten Tusscher et al.32 HH 13 HEK 293/CHO/Xenopus oocytes Physiological D
Fink et al.64 MM 15 Human Embryonic Kidney (HEK) 293 Physiological B
Aslanidi et al.65 HH 8 Canine Purkinje cells Physiological D
Inada et al.66 HH 20 Rabbit atrio-ventricular node cells Physiological F
Grandi et al.67 HH 12 Human ventricular myocytes Physiological D
O’Hara et al.68 HH 19 Human ventricular myocytes Physiological F
Severi et al.69 HH 17 Rabbit sino-atrial node cells Physiological F
Di Veroli et al.33 MM/HH 13 Chinese Hamster Ovary (CHO) Room E
Di Veroli et al.33 HH 17 Human Embryonic Kidney (HEK293) Physiological D

expressing canine ERG
∗ The transition rates of the Kiehn et al.45 model are defined at specific voltages, so for this model there are 8
parameters (and 1 conductance parameter) for each voltage at which the model is defined.
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C Synthetic Data Study to Assess Protocol Information Content736

In order to verify that there was sufficient information within the sinusoidal voltage protocol to737

parameterize our model we performed a synthetic data study. The aim in such a study is to738

ascertain whether we can recover the parameters used in the simulation from a simulated data trace739

(with added noise in this case).740

C1 Producing synthetic data741

In order to produce synthetic data we simulated the mathematical model with the parameter values742

obtained when fitting to the experimental data trace. We scale the simulated trace by multiplying743

by this factor, so it becomes approximately the same magnitude (in nA) as the experimental trace.744

We estimated the typical level of noise from the experimental trace by calculating the standard745

deviation σ of the experimental current during the first 200 ms (where the current is around zero at746

the initial holding potential of −80 mV). We then generate a synthetic data trace by adding normally747

distributed noise with a mean of zero and the standard deviation equal to the noise estimated from748

the experimental trace (∼ N(0, σ2)) to the conductance-scaled simulated trace.749

The example we present here uses the experimental reference trace from cell 5, featured in much750

of the manuscript.751

C2 Inferring parameters from synthetic data752

We then attempt to infer parameters from this ‘synthetic data’ trace, using the CMA-ES algorithm753

followed by MCMC as described in Section 4.7. In Figure C5 we present probability density distri-754

butions obtained when using both synthetic and experimental traces. We are able to recover the755

original parameters underlying the synthetic trace with high accuracy.756

Figure C5: Probability density distributions for each parameter estimates from fitting to both
experimental data (red) and simulated data (blue). Crosses indicate the parameter set with the
maximum posterior density.
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The synthetic data study provides us with confidence in the suitability of our protocol for757

accurately identifying parameters of the model presented in Figure 3B in the main text, and also758

that the parameter inference protocol(s) we are using are suitable for the task. We believe such an759

approach should always be used to test whether there is sufficient information in the experimental760

data being proposed for calibration of a mathematical model. The test should be performed twice:761

before conducting the experiment (with the pre-existing best guess at the parameters); and also after762

conducting the experiment (with the new maximum posterior density estimate of the parameters763

— as we illustrate in Figure C5).764
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D Cell-Specific versus Literature Model Predictions765

In Tables D2–D10 we compare the predictions given by each cell-specific model with a range of766

literature model predictions. We compare their ability to predict the full current traces for the767

validation protocols Pr3–6 discussed in the main text. Each table provides the mean (over each768

time point) square difference between an experimental current recording in one particular cell and769

its cell-specific model prediction under each of the validation protocols, and compares this with770

current predictions from a range of literature models. Equation (F.3) gives the formula that was771

used to calculate the error entries.772

Note that we have to choose a conductance value, GKr, for the literature models. GKr is selected773

differently for each cell by minimizing the error metric for the predicted current trace under the774

action potential protocol (Pr6) for each model (a best-case scenario for each literature model). Our775

new cell-specific models’ conductances were fitted to the sine wave protocol (Pr7), along with the776

rest of their parameters. N.B. the literature model predictions are worse if we scale them to fit the777

sine wave; we considered this perhaps unjustified since they were developed never having seen such778

a protocol.779

Despite literature models having their conductance scaled to minimize error in the Pr6 (action780

potential clamp) current prediction; only the Wang et al.25 model for Cells #1, #3 and #4, and781

the Di Veroli et al.33 model for Cell #9 perform better than our cell-specific models. The sine-wave782

fitted model outperforms all other literature models for all other cells.783

Additionally, the Wang et al.25 model gives better predictions for the deactivation protocol784

current for some cells; and for the inactivation protocol for Cell #9. The Di Veroli et al.33 model785

gives better predictions for the inactivation protocol for Cells #5 and #9; and the deactivation786

protocol for Cell #6.787

Table D2: Table quantifying square root of mean square difference (units nA) between experimental
current traces and simulation predictions for the validation protocols shown in Figures 4 and 5 for
Cell #1. Here the color scale is set so that T represents zero error and T represents the highest
error for each protocol/column.

Model Sine Wave (Pr7) AP (Pr6) Steady Act. (Pr3) Deact. (Pr4) Inact. (Pr5)

New model for Cell #1 0.0268 0.0757 0.0745 0.2115 0.1312
Wang et al.25 0.1196 0.0746 0.2079 0.2574 0.1543
Di Veroli et al.33 0.1406 0.0910 0.2097 0.3005 0.1706
Mazhari et al.31 0.1213 0.0885 0.1962 0.3171 0.1619
Ten Tusscher et al.32 0.1827 0.1079 0.2563 0.3335 0.2265
Zeng et al.30 0.1928 0.1381 0.2961 0.3617 0.2275
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Table D3: Table quantifying square root of mean square difference (units nA) between experimental
current traces and simulation predictions for the validation protocols shown in Figures 4 and 5 for
Cell #2. Here the color scale is set so that T represents zero error and T represents the highest
error for each protocol/column.

Model Sine Wave (Pr7) AP (Pr6) Steady Act. (Pr3) Deact. (Pr4) Inact. (Pr5)

New model for Cell #2 0.0262 0.0549 0.0481 0.1421 0.0478
Wang et al.25 0.0923 0.0732 0.1081 0.1075 0.0818
Di Veroli et al.33 0.0687 0.0564 0.0859 0.1427 0.0655
Mazhari et al.31 0.0618 0.0664 0.0882 0.1793 0.0629
Ten Tusscher et al.32 0.1280 0.1159 0.1460 0.1902 0.1518
Zeng et al.30 0.1356 0.1395 0.1835 0.2190 0.1497

Table D4: Table quantifying square root of mean square difference (units nA) between experimental
current traces and simulation predictions for the validation protocols shown in Figures 4 and 5 for
Cell #3. Here the color scale is set so that T represents zero error and T represents the highest
error for each protocol/column.

Model Sine Wave (Pr7) AP (Pr6) Steady Act. (Pr3) Deact. (Pr4) Inact. (Pr5)

New model for Cell #3 0.0348 0.0997 0.0917 0.1320 0.1106
Wang et al.25 0.1015 0.0900 0.1071 0.1030 0.1178
Di Veroli et al.33 0.1365 0.1298 0.1639 0.1660 0.1502
Mazhari et al.31 0.1167 0.1263 0.1404 0.1885 0.1599
Ten Tusscher et al.32 0.1833 0.1337 0.1603 0.1929 0.1953
Zeng et al.30 0.2024 0.1826 0.2123 0.2272 0.1971

Table D5: Table quantifying square root of mean square difference (units nA) between experimental
current traces and simulation predictions for the validation protocols shown in Figures 4 and 5 for
Cell #4. Here the color scale is set so that T represents zero error and T represents the highest
error for each protocol/column.

Model Sine Wave (Pr7) AP (Pr6) Steady Act. (Pr3) Deact. (Pr4) Inact. (Pr5)

New model for Cell #4 0.0346 0.0649 0.0931 0.1337 0.0864
Wang et al.25 0.0962 0.0624 0.0804 0.0736 0.0928
Di Veroli et al.33 0.0713 0.0871 0.1381 0.1462 0.1028
Mazhari et al.31 0.0744 0.0992 0.1098 0.1828 0.1249
Ten Tusscher et al.32 0.1374 0.1350 0.1268 0.1771 0.1663
Zeng et al.30 0.1545 0.1867 0.1939 0.2194 0.1713
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Table D6: Table quantifying square root of mean square difference (units nA) between experimental
current traces and simulation predictions for the validation protocols shown in Figures 4 and 5 for
Cell #5. Here the color scale is set so that T represents zero error and T represents the highest
error for each protocol/column.

Model Sine Wave (Pr7) AP (Pr6) Steady Act. (Pr3) Deact. (Pr4) Inact. (Pr5)

New model for Cell #5 0.0338 0.1003 0.0964 0.2788 0.5713
Wang et al.25 0.1409 0.1185 0.2236 0.2856 0.5715
Di Veroli et al.33 0.1498 0.1648 0.2086 0.3864 0.5659
Mazhari et al.31 0.1400 0.1760 0.1982 0.4443 0.5726
Ten Tusscher et al.32 0.2643 0.2453 0.3169 0.4653 0.6482
Zeng et al.30 0.2845 0.3116 0.4001 0.5245 0.6262

Table D7: Table quantifying square root of mean square difference (units nA) between experimental
current traces and simulation predictions for the validation protocols shown in Figures 4 and 5 for
Cell #6. Here the color scale is set so that T represents zero error and T represents the highest
error for each protocol/column.

Model Sine Wave (Pr7) AP (Pr6) Steady Act. (Pr3) Deact. (Pr4) Inact. (Pr5)

New model for Cell #6 0.0149 0.0419 0.0482 0.0883 0.0443
Wang et al.25 0.0396 0.0503 0.0537 0.0412 0.0528
Di Veroli et al.33 0.0362 0.0569 0.0596 0.0794 0.0458
Mazhari et al.31 0.0511 0.0621 0.0603 0.1048 0.0560
Ten Tusscher et al.32 0.0788 0.0844 0.0776 0.1041 0.1014
Zeng et al.30 0.0867 0.1101 0.1051 0.1255 0.0988

Table D8: Table quantifying square root of mean square difference (units nA) between experimental
current traces and simulation predictions for the validation protocols shown in Figures 4 and 5 for
Cell #7. Here the color scale is set so that T represents zero error and T represents the highest
error for each protocol/column.

Model Sine Wave (Pr7) AP (Pr6) Steady Act. (Pr3) Deact. (Pr4) Inact. (Pr5)

New model for Cell #7 0.0825 0.1343 0.2060 0.3167 0.1239
Wang et al.25 0.1914 0.2176 0.2506 0.2358 0.2726
Di Veroli et al.33 0.1994 0.2654 0.2827 0.4101 0.2605
Mazhari et al.31 0.2361 0.2987 0.2597 0.5102 0.2637
Ten Tusscher et al.32 0.3966 0.4124 0.4205 0.5287 0.5326
Zeng et al.30 0.4147 0.5013 0.5597 0.6246 0.5357
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Table D9: Table quantifying square root of mean square difference (units nA) between experimental
current traces and simulation predictions for the validation protocols shown in Figures 4 and 5 for
Cell #8. Here the color scale is set so that T represents zero error and T represents the highest
error for each protocol/column.

Model Sine Wave (Pr7) AP (Pr6) Steady Act. (Pr3) Deact. (Pr4) Inact. (Pr5)

New model for Cell #8 0.0426 0.1331 0.1302 0.1796 0.2222
Wang et al.25 0.1043 0.1367 0.2036 0.2100 0.2491
Di Veroli et al.33 0.1053 0.1545 0.1828 0.2656 0.2538
Mazhari et al.31 0.1071 0.1621 0.1860 0.3058 0.2528
Ten Tusscher et al.32 0.1839 0.1957 0.2624 0.3248 0.3334
Zeng et al.30 0.1902 0.2305 0.3122 0.3641 0.3347

Table D10: Table quantifying square root of mean square difference (units nA) between experimental
current traces and simulation predictions for the validation protocols shown in Figures 4 and 5 for
Cell #9. Here the color scale is set so that T represents zero error and T represents the highest
error for each protocol/column.

Model Sine Wave (Pr7) AP (Pr6) Steady Act. (Pr3) Deact. (Pr4) Inact. (Pr5)

New model for Cell #9 0.0243 0.1478 0.1109 0.1806 0.2183
Wang et al.25 0.0507 0.1493 0.1277 0.1755 0.2181
Di Veroli et al.33 0.0474 0.1474 0.1153 0.1830 0.2164
Mazhari et al.31 0.0408 0.1482 0.1176 0.1917 0.2163
Ten Tusscher et al.32 0.0773 0.1547 0.1443 0.1961 0.2246
Zeng et al.30 0.0820 0.1606 0.1589 0.2060 0.2253
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E Additional Peak Current-Voltage Relationship Predictions788

Here we show the remainder of the predictions of the current-voltage relationships for the validation789

data of cell 5 that were not included in the main text (the results of Pr1 and Pr2). Figure E6 shows790

the summary curves for Pr1 (voltage clamp shown in Figure A2) and Pr2 (voltage clamp shown in791

Figure A3).792

Traditionally these peak current curves would be plotted by normalizing to the peak current793

recorded in each activation kinetics protocol. However, as we have used a shorter version of the794

activation kinetics protocol, we do not expect that the channel would be fully open at the longest795

duration test step in Pr1 and Pr2. We have therefore instead normalized the curves using the peak796

current during the initial deactivation step in the sine wave protocol (around 1.6 seconds) where we797

expect the channel to be maximally open.798
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Figure E6: Predictions of peak current-voltage relationship derived from experiment and model
predictions in response to; A) Activation Kinetics Pr1, B) Activation Kinetics Pr2, with compari-
son of our model prediction with predictions from existing literature models. Currents have been
normalized to the peak current in the initial deactivation step in the sine wave protocol (around 1.6
seconds) as we do not expect the channel to be fully open at the longest Tstep in these activation
kinetics protocols.
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F Comparing Cell-Specific with Average Model799

In addition to creating cell specific models as described so far we also created an averaged model800

by first normalizing each experimental trace to one reference trace (so that each trace was given801

equal weight in the averaging regardless of the conductance of the channel) and then summing and802

averaging the current value at each time point along the protocol.803

The parameter values obtained when calibrating each cell-specific and averaged model are shown804

in Table F11. These values correspond to the parameter sets with maximum posterior density805

identified in the MCMC chain. The full posterior density distributions for each parameter for each806

of the 9 cells are shown in Figure F7.807

Table F11: Table of parameter values at the maximum posterior density for each cell-specific model,
and the model fitted to averaged data. Here the model parameter numberings correspond to those
detailed in Figure 3B, and GKr represents the conductance value fitted for each model. *Note that
the conductance fitted for the ‘Averaged’ model reflects mainly the conductance for the reference
experimental trace (used for scaling all other traces before averaging), and should not be considered
the ‘average’ conductance, hence its omission from Figure 6A.

P1 P2 P3 P4 P5 P6 P7 P8 GKr

Cell #1 1.9742× 10−4 0.0594 7.1664× 10−5 0.0493 0.1048 0.0139 0.0038 0.0360 0.1350
Cell #2 3.2387× 10−4 0.0653 7.8183× 10−5 0.0497 0.0805 0.0025 0.0049 0.0324 0.0902
Cell #3 4.7883× 10−4 0.0661 5.1621× 10−5 0.0523 0.1375 0.0094 0.0039 0.0375 0.1011
Cell #4 6.7417× 10−4 0.0563 5.8605× 10−5 0.0516 0.0893 0.0057 0.0059 0.0324 0.0743
Cell #5 2.2578× 10−4 0.0699 3.4477× 10−5 0.0546 0.0873 0.0089 0.0052 0.0316 0.1524
Cell #6 6.1015× 10−4 0.0662 1.2729× 10−4 0.0380 0.0810 0.0165 0.0092 0.0253 0.0218
Cell #7 5.5188× 10−4 0.0477 6.6263× 10−5 0.0457 0.0628 0.0087 0.0054 0.0317 0.1555
Cell #8 3.1062× 10−4 0.0485 5.0455× 10−5 0.0491 0.0722 0.0063 0.0060 0.0328 0.0983
Cell #9 5.5916× 10−4 0.0435 1.2377× 10−4 0.0444 0.0658 0.0028 0.0036 0.0343 0.0514

Averaged 4.0177× 10−4 0.0578 6.5137× 10−5 0.0487 0.0807 0.0068 0.0052 0.0334 0.0673*

To quantitatively compare the average model predictions and the cell-specific model predictions808

shown in Figure 6B of the main text we calculated the mean square difference at each point between809

the average model and the cell-specific models for each cell when predicting the full current trace810

in response to the steady-state activation protocol. We also repeated this for the deactivation and811

inactivation protocols and the action potential protocol shown in Figures 4 and 5. The differences812

for each cell are shown in Table F12 with a comparison between the experimental result and the813

average model predictions with the cell-specific predictions.814

We note that we have ordered the cells in this table (as in Figure 6) according to the percentage815

change in leak resistance between performing the vehicle and dofetilide repeats of the sine wave816

voltage protocol used to construct the model. This ordering acts as an estimated ranking for the817

quality of each recording. The benefit of a cell-specific approach occurs when using the highest818

quality data for both model construction and validation. We should note that even though in cells819

#4 and #6 the average model provides the better prediction of the steady-state activation peak820

current-voltage relationship than the cell-specific model, the cell-specific models are still providing821

very good predictions in these cases, it is just that the experimental behavior is more like the average822

model behavior for these cells. We also note that for six out of the nine cells, the cell-specific model823

provides a better prediction of the current response to the action potential protocol than the average824

model, however, in the cases where the cell-specific model is worse the difference is only a small825

amount.826
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Figure F7: Distributions for each parameter for each of the 9 cell-specific models and the averaged
data model. To aid comparison these are all histograms with 100 bars (plotting probability distri-
butions here leads to very different maxima, obscuring the spread information), and so the y-axis
is in arbitrary units related to the number of samples. We see that the parameter values tend to be
given distinct distributions and so we would consider most of them to be ‘significantly different’.
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We use a measure of827

error =

(
1

T

T∑
t=1

(simulated current at time step t− experimental current at time step t)2

) 1
2

,

(F.3)
to evaluate the error in model predictions for individual cells (using the whole current traces, apart828

from removing regions in the sine wave protocol with capacitive spikes as explained in Online829

Methods 4.7.1).830

Table F12: Table showing the error measure defined by equation F.3 between cell-specific or average
models and the experimental current recording for fit (sine wave Pr7) and predictions with validation
protocols (all other columns). Cells are ordered in ascending order according to the percentage
change in leak resistance Rleak. Here the color scale is set so that within each pair of columns T
represents lowest error and T represents the highest error for each protocol/pair of columns. Note
that the cells with larger currents will show larger errors, but the left column cell-specific predictions
tend to perform better than the average model, particularly for cells where the average model gives
a relatively large error.

Cell ∆Rleak Sine Wave (Pr 7) APs (Pr 6) Steady Act. (Pr 3) Deact. (Pr 4) Inact. (Pr 5)
# (%) Specific Average Spec. Aver. Spec. Aver. Spec. Aver. Spec. Aver.

1 0.0 0.0268 0.0650 0.0757 0.1195 0.0745 0.1369 0.2115 0.2334 0.1312 0.1250
2 7.7 0.0262 0.0401 0.0549 0.0516 0.0481 0.0490 0.1421 0.1249 0.0478 0.0489
3 12.5 0.0348 0.0609 0.0997 0.1403 0.0917 0.1489 0.1320 0.1317 0.1106 0.1600
4 16.7 0.0346 0.0497 0.0649 0.0690 0.0931 0.0797 0.1337 0.1301 0.0864 0.0959
5 20.0 0.0338 0.0374 0.1003 0.1149 0.0964 0.1274 0.2788 0.3358 0.5713 0.5668
6 28.6 0.0149 0.0335 0.0419 0.0401 0.0482 0.0372 0.0883 0.0739 0.0443 0.0419
7 32.5 0.0825 0.1073 0.1343 0.1635 0.2060 0.1772 0.3167 0.3595 0.1239 0.1398
8 42.9 0.0426 0.0514 0.1331 0.1356 0.1302 0.1494 0.1796 0.2345 0.2222 0.2233
9 58.3 0.0243 0.0266 0.1478 0.1472 0.1109 0.1068 0.1806 0.1766 0.2183 0.2174

For predictions of the action potential protocol currents, Table F12 demonstrates that the cell-831

specific modeling approach yields predictions that are very close to or better than the average model.832

Additionally, for the predictions of the steady-state activation protocol the cell-specific approach833

generally yields very good and more accurate (for 4/5) predictions of validation data when the834

highest quality data is used (cells #1–5). This benefit is absent when lower quality experimental835

data is used where the average model provides very similar, but slightly better, predictions (cells836

#6–9).837

We also compare cell-specific and average predictions for each of the 9 cells for the deactivation,838

recovery from inactivation and instantaneous inactivation time constants as were shown for one839

cell in Figure 4. We show this comparison for each cell in Figure F8 and F9 for 8/9 cells and in840

Figure F10 for all cells. Cell #6 was omitted in the first two plots because this cell had a particularly841

low current and it was difficult to accurately fit exponential curves to the experimental data for842

this cell. We also note that we have not plotted the time constant values for −90 mV in Figures F8843

& F9 for the same reason; we could not confidently fit an exponential decay curve to determine an844

accurate time constant value for this voltage step.845

We see in Figures F8–F10 that the same observations that were made for the results shown in846

Figure 6 generally hold: for lower cell numbers #1–5, we see enhanced predictions of the experi-847

mental time constants from the cell-specific model rather than the averaged model. i.e predictions848
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Figure F8: Cell-specific model predictions of time constant/voltage relationships for deactivation
(Pr5). Each plot represents a different cell, with cell-specific model prediction depicted by the bold
line, and the dashed line showing the cell’s experimental data. Black lines on each plot represents
the average model prediction. Cells are ordered as in Table F12.
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Figure F9: Cell-specific model predictions of time constant/voltage relationships for recovery from
inactivation in Pr5. Each plot represents a different cell, with cell-specific model prediction depicted
by the bold line, and the dashed line showing the cell’s experimental data. Black lines on each plot
represents the average model prediction. Cells are ordered as in Table F12.
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are better in the cells with lower percentage changes in leak current resistance, which correspond849

to better quality data.850
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