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S1. Introduction 
Here we describe in detail the mathematics underpinning SLAPenrich, its implementation, a case study, as 

well as a comparison with PathScore and PathScan, two related tools. 

 

SLAPEnrich is implemented as an R package (available at https://github.com/saezlab/SLAPenrich). 

It includes different collections of pathway gene sets from multiple public available sources [1], together 

with all the data objects needed to run the analysis described in our manuscript. However, it can be also 

used with any user-defined collection of gene-sets. An overview of the exposed functions of the R package 

is provided in Additional File 8. 

The statistical framework implemented by SLAPenrich is detailed in the Methods section of our 

manuscript. 

To visualize enriched pathways SLAPenrich makes use of presence/absence matrices visualised as binary 

heatmaps where columns indicate samples, rows indicate genes harboring at least one somatic mutation in 

at least one sample of the analyzed dataset, and colors indicate the absence or the presence of somatic 

mutations (respectively) in a given gene/sample combination. To emphasize mutual exclusivity trends 

among the row-wise mutation patterns, rows and columns of these heatmaps are sorted with a heuristic 

method (detailed below) that minimizes the superposition of mutated samples column-wisely, thus the 

overlaps of the mutation patterns across the rows (an example is provided in Supplementary Figure S1A). 

To finally summarize the results, an analysis of the enriched-pathway core-component genes can be 

performed. The aim of this final analysis is to visualize in the same heatmap enriched pathways that share a 

frequently mutated sub-set of genes (the core-component) that is supposed to lead the pathway 
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enrichments, together with a membership matrix specifying to which enriched pathway each core-

component gene belongs to (an example is provided in Supplementary Figure S1B, introduced in the next 

section). This allows filtering out from the results those pathways that are not directly relevant to the 

disease under consideration, in a supervised way. A final feature of the package is the identification of 

pathways that are differentially enriched (thus frequently altered) across two sub-populations of samples of 

the same input dataset, as detailed in the following sections. 

 

 

S2. Heuristic mutual exclusivity sorting and pathway visualization 
The set of somatic mutations of a cancer genomic dataset can be easily modeled as a binary (or Boolean) 

matrix, whose entries can assume only two possible values, i.e. 0 or 1. In this case, the columns indicate 

samples, its rows indicate genes (or vice-versa) and a non-zero entry the presence of a somatic mutations in 

a given gene/sample combination. In a binary matrix, a run is a sequence of consecutive non-zero entries. 

Reordering rows and columns in a way that the number of runs on the rows and the column-wise marginal 

totals are minimized is an effective way to highlight patterns of mutual exclusivity among the runs of 

different rows, i.e. the genes of the considered sub-set. This is an NP-hard problem [2] here referred as 

mutual-exclusivity sorting. In SLAPenrich a heuristic implementation of the mutual-exclusivity sorting is 

provided in a dedicated R function used by the internal visualization routines, although this function is also 

available and usable on any user defined binary matrix. Here, for simplicity we will describe an execution 

of this heuristic applied to a binary matrix summarizing a genomic dataset (with genes on the rows, 

samples on the columns, and binary entries specifying the status of a gene in a given sample). 

 

In the initial step of the algorithm all the samples and all the genes in the input matrix are declared as 

uncovered and an empty vector is initialized: this is the set of covered genes G. Then the algorithm 

proceeds through a series of iterations until the sets of uncovered genes and uncovered samples are both 

empty. In each of these iterations a best in class gene is identified. This is the uncovered gene with the 

maximal exclusive coverage, which is defined as the number of uncovered samples in which this gene is 

mutated minus the number of samples in which at least another uncovered gene is mutated. Finally, the 

identified best in class gene is removed from the set of the uncovered genes, it is attached to G, and the set 

of samples in which it is mutated are removed from the set of the uncovered samples. 

After these iterations have been executed, an empty vector of samples L is initialized and all the samples of 

the dataset are labeled again as uncovered. Then for each of the best in class gene g (in the same order as 

they appear in G) and until there are uncovered samples, the uncovered samples in which g is mutated are 

sorted according to the exclusive coverage of g across them (in decreasing ordered), they are labeled as 

covered samples and attached in the resulting order to L. 
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To obtain the final mutual-exclusivity sorting of the initial dataset, the corresponding inputted binary 

matrix is rearranged by permuting the genes/rows in the same order as they appear in G and the 

samples/columns in the same order as they appear in L. 

 

 

S3. Identification and visualization of enriched pathway core-components 
To identify shared core-components across significantly enriched pathways, the set of enriched pathways 

and their composing genes are modeled as a bipartite network, in which nodes in the first set correspond to 

enriched pathways and nodes in the second set to genes belonging to at least one of the enriched pathways. 

Finally a pathway node is connected with an edge to each of its composing gene nodes. The resulting 

bipartite network is then mined for communities, i.e. groups of densely interconnected nodes, by using a 

fast community detection algorithm based on a greedy strategy [3]. The resulting communities are finally 

visualized as independent heatmaps where nodes in the first set (pathways) are on the columns, nodes in the 

second set (genes) are on the rows and a not-empty cell in position i,j indicates that the i-th gene belongs to 

the j-th pathway (an example is provided in Supplementary Figure S1B). 

 

 

S.4 Differential pathway enrichment analysis 
Similarly to differential gene expression analysis, the two sub-populations to be contrasted are defined 

through a contrast matrix. Then individual SLAPenrichment analyses are performed on these two 

populations, yielding two sets of results. The pathways that are significantly enriched in at least one of the 

two analyses (according to a user defined false discovery rate (FDR) threshold) are then selected and, for 

each of them, a differential enrichment score is computed as: 

 

∆",$ 𝑃 = − log+, 𝐹𝐷𝑅"(1) + log+, 𝐹𝐷𝑅$(1) 

 

where 𝐴 and 𝐵 are the two contrasted sub-populations (respectively, positive and negative) and 𝐹𝐷𝑅"(1) 

and 𝐹𝐷𝑅$(1) are the two SLAPenrichment FDRs obtained in the two corresponding individual analyses, 

and 𝑃 is the pathway under consideration. Graphic routines included in our package allow a pathway level 

visualization of the inputted alterations across the two contrasted population, on the domain of the 

differentially enriched pathways as well as heatmaps and barplots of the differential enrichment scores (see 

an example in Supplementary Figure S1C). 
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S.5 LUAD case study analysis, detailed results and comparison with other 

methods 
We have re-analysed, using different reference pathway collections, a published dataset encompassing 

somatic mutations found in 188 lung adenocarcinoma (LUAD) patients, studied in [4], downloading 

annotations of somatic variants and associated clinical information from 

http://genome.wustl.edu/pub/supplemental/tsp_nature_2008/ (files: supplementary_table_2.tsv and 

supplementary_table_15.tsv, respectively). 

The variants annotations were converted into a genomic event matrix (EM) with altered genes on the rows, 

patient sample identifiers on the columns, and generic i,j entries specifying the number of observed point 

mutations hosted by the i-th gene in the j-th patient. 

 

A first SLAPenrich analysis on the resulting dataset was performed using the SLAPE.analyse function with 

default values for all the parameters (including a Bernoulli model [5] for the individual pathway alteration 

probabilities across all the samples, and the choice of the set of all the altered genes in the dataset as 

background population), and a pathway gene sets collection from KEGG [6] (embedded in the package as 

R data object: SLAPE.MSigDB_KEGG_hugoUpdated). 

 

This analysis yielded 48 significantly enriched pathways, at a FDR < 5%  and a mutual exclusive coverage 

(EC) > 50\% (Supplementary Table S1). In addition the LUAD relevant enrichments mentioned in the main 

these include several pathways previously found with other computational methods in LUAD (such as 

PathScan [7], among others [4]). 

Examples include Focal Adhesion (AS = 0.06, EC = 84\%), ERBB signaling pathway (AS = 0.27, EC = 

69\%), and Dorsoventral Axis Formation (AS = 0.42, EC = 55\%). Additionally, we found a number of 

pathways recently proposed as potential targets for lung cancer therapy such as GNRH signaling pathway 

(AS = 0.45, EC = 87\%) [8], WNT signaling pathway (AS = 0.29, EC = 74\%) [9], and VEGF signaling 

pathway (AS = 0.33, EC = 80\%) [10]. 

 

After applying the same result curation described in [7], i.e. removal of known cancer pathways whose 

mutation lists are invariably collectively dominated by mutations in TP53, KRAS and EGFR, we found 26 

enriched pathways (FDR < 5\% for both SLAPenrich and PathScan), out of 36 pathways enriched for 

SLAPenrich and 31 enriched for PathScan (at the same FDR threshold) - Fisher's exact test (FET) p-value 

= 2.10 x 10-14   (Supplementary Tables S1 and S2). 

 

A similar, comparison was performed between the output obtained with SLAPenrich and PathScore [11] on 

the same LUAD dataset. For this analysis a collection of 1,392 canonical pathway signatures from the 

Molecular Signature Database (MsigDB) [12] was used, as this is the reference collection used by 

PathScore. We observed a significant overlap (181 pathways, FET p-value = 2.76 x 10-70) between the 
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enriched pathways outputted by SLAPenrich (at an FDR < 5\%) and those outputted by PathScore (adjusted 

p-value < 0.05) (Supplementary Table S3). 

As most of the significantly enriched pathways outputted by PathScore have a null p-value it was not 

possible to check the correlation between the patterns of enrichment significance across the two methods. 

However when looking at the top enriched pathways across the two analyses (SLAPenrich FDR = 1.76 x 

10^-12 and PathScore adjusted p-value = 0) the results' concordance was even more pronounced (100 

overlapping pathways out of the 117 outputted by SLAPenrich and the 176 outputted by PathScore, FET p-

value 8.63 x 10-83), Supplementary Table S3. 

 

To further validate the ability of SLAPenrich in identifying disease relevant pathways and highlight the 

possible analytical venues allowed by our tool, we considered the clinical information of the samples in the 

analyzed LUAD dataset. Using this data, we stratified the considered patients based on their smoking status 

(never-smoker and current-smokers) and their bronchioalveolar carcinoma type (mucinous and non-

mucinous), and performed a differential SLAPenrich analysis contrasting the variant profiles of the 

obtained sub-populations, using the far larger publicly available collection of pathway gene sets from 

Pathway Commons [1], post-processed for redundancy removal as described in the Methods. 

Outcomes from the first analysis, comparing never-smoker vs. current-smokers, are reported in 

Supplementary Table S4 and summarized in Supplementary Figure S1C. In total we found 147 

differentially enriched pathways (enriched at FDR < 5\% in at least one of the two sub-populations). 

Ranking these pathways according to their differential pathway enrichments, in decreasing order 

(Supplementary Figure S1C) highlighted, consistently with previously reported findings, in the current-

smokers population a prominent enrichment of alterations in the RAS/RAF/MEK signaling cascade [13], 

telomerase activity [14], NOXA and PUMA signaling [15]. On the other hand, in the never-smoker 

population we observed prominent enrichments in EGFR signaling and EGFR-dependent endothelin 

signaling pathways [16].\\ 

When contrasting mucinous versus non-mucinous BAC types (Supplementary Figure S2 and 

Supplementary Table S5), we observed again correct associations between the mucinous BAC type and 

pathway alteration enrichments in the RAS/RAF/MEK signaling cascade [17], signaling by leptin [18], 

PI3K and MTOR signaling pathways [19], and inflammation related pathways such as CXCR3 and GM-

CSF mediated signaling. For the non-mucinous BAC type population prominent enrichments were 

observed in pathways involving EGFR signaling consistently with what reported in [20]. 
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