Supplementary Material of:
ARIBA: Rapid antimicrobial resistance genotyping directly from sequencing reads

Martin Hunt', Alison E. Mather'2, Leonor Sdnchez-Busé', Andrew J. Page', Julian Parkhill,
Jacqueline A. Keane', Simon R. Harris'

!Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, CB10 1SA,
UK

’Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge,
UK, CB3 OES

Contents

1 Analysis reproducibility
2 ARIBA pipeline

3 E. faecium

4 S. sonnei

5 N. gonorrhoeae

6 Run time and memory

15

21

24

1 Analysis reproducibility

Accession numbers for the raw reads are listed in Supplementary Tables S1, S3, and S6.
All other files and scripts used for this publication are included in the GitHub repository
https://github.com/martinghunt/ariba-publication. This includes the reference files
used as input to ARIBA, KmerResistance, and SRST2, and how to generate them. It also
includes the output files from each tool (except for the BAM and pileup files made by SRST2,
in order to reduce space), and scripts used to generate figures 2-5, supplementary figures
S5, S6, S8, S9, S13-S15, tables, and this PDF file. We note that Figure 4 was automatically
generated by ARIBA, then the lower left labels were tidied manually for publication. Further,
a Docker file is included so that the analysis can be easily reproduced. Each script referred to
below in this text can be found in the Scripts/ directory of the GitHub repository.

2 ARIBA pipeline

The first stage of the ARIBA pipeline is to map all read pairs to all reference sequences, in order
to produce a set of reads for each cluster of reference sequences. Reads that map with their
entire length, or overhang the end of a reference sequence, are counted as mapped providing
the match is “good enough”, using the following criteria. Minimap mapping coordinates are
approximate because each read is placed but is not aligned. Therefore some tolerance is
allowed at the end of each reported mapping. We allow 1.1k unaligned nucleotides at each
end of a read, where £ is the k-mer length used by minimap (by default £ = 15).

(a) (b) (c)
a, q, q, a, q, a,
| - [| |
rs re rs re rs re
(C © g q, ® q, 9,
H I I . %+ 1 |
] |
rS re rS re rS re

Figure S1: Visualisation of criteria used to determine whether or not a read was considered
to be mapped by minimap. See text for details.

Let g, and ry be the length of the read and reference sequences respectively, let ¢ = 1.1k,
and assume that ¢; < ¢. and r4 < r., where we use the labels in Supplementary Figure S1.
The first requirement is that enough of the read matches, specifically that

de — (4s = mln(507 QZ/2)~

If the read is mapped in the same orientation as the reference (cases (a),(b),(c) in Supple-
mentary Figure S1), then we require

gs <e or rg<e

https://github.com/martinghunt/ariba-publication

and

gr — Qe < € or 71yp—Te<E€

to count the read as mapped. On the other hand, if the read is mapped onto the reverse strand
of the reference (cases (d),(e),(f) in Supplementary Figure S1), then we require

and

gs <e Or r1yp—Tre<E€

qr — Qe <€ OF rg<ce

to count the read as mapped.

If either read of a pair is counted mapped to a given reference sequence, then that read
pair is allocated to the cluster to which that reference sequence belongs. Since for each read
all mappings reported by minimap are considered, a read pair can be allocated to more than
one cluster.

Each cluster is handled using the methods described in the main text, and outlined in
Supplementary Figure S2. A variety of situations can arise for each sample. The possibilities
are encoded in a bitwise flag, where each possibility is set to ‘true’ or ‘false’, with the following
meanings.

assembled: the assembly is compared to the reference sequence using nucmer. If
at least 95% of the reference sequence has nucmer matches to the assembly, then
assembled is true. The 95% is a default value that can be changed with the command
line option --assembled_threshold. Note that this says nothing about how many con-
tigs represent the gene (see the next option

assembled_into_one_contig).

assembled into_one contig: this is set to true if assembled is true, and also there
is a single contig with a nucmer match that covers at least 95% of the reference se-
quence. Note that there could still be other contigs that match the reference (see
region_assembled_twice).

region_assembled _twice: this is set to true if more than 3% of the reference sequence
has more than one match to the assembly. The 3% cutoff can be changed with the
command line option --unique_threshold.

complete_gene: if there is a match to the full length of the reference sequence, or if the
match is not quite complete, then ARIBA will try to extend it to the nearest start and
stop codons. If this is successful, and the only stop codon is at the end of the inferred
gene sequence, then complete_gene is set to true. This will never be set if the reference
is a non-coding sequence.

unique_contig: this is set to true if there is exactly one contig in the assembly that has
nucmer matches to the reference sequence.

scaffold_graph_bad: the reads are mapped back to the assembly and links between the
contigs from read pair information is used to construct a scaffolding graph. If there is
any ambiguity in this graph, for example the end of contig A could join to the start of
contig B or contig C, then scaffold graph bad is set to true.

assembly fail: this is set when the assembler produces no output. The most likely cause
is a few reads spuriously mapped to the reference sequence, whose depth is too low to
assemble.

e variants_suggest collapsed repeat: after mapping the reads back to the assembly, vari-
ants are called using samtools. If samtools calls any variants in any position that matches
to the reference gene, then this is set to true. It suggests that the assembly has collapsed
more than one sequence down into one sequence, hence the reads suggesting variants.
Alternatively, this could be caused by a mixed input sample.

¢ hit both_strands: this means there is a contig that has two (or more) matches to the
reference, but the matches are in opposite orientations.

e has_variant: this is set to true if there is any variant between the assembly and the
reference. For a noncoding sequence, this means any nucleotide change. For a gene,
this means any non-synonymous change. Except that a known variant is only counted
when the assembly has the variant type, as opposed to the wild type (bear in mind that
the reference could have the wild type or the variant type).

e ref seq_choose fail: this is set to true if something went wrong when trying to find the
closest reference sequence within a cluster.

ARIBA includes a utility to explain the meaning of a flag. For example, running
ariba flag 27
results in the following output

Meaning of flag 27

[X] assembled

[X] assembled_into_one_contig
[] region_assembled_twice
[X] complete_gene

[X] unique_contig
scaffold_graph_bad
assembly_fail
variants_suggest_collapsed_repeat
hit_both_strands
has_variant
ref_seq_choose_fail

L B s I e I e B e B |
—_

where an X means that part of the flag is true. In this case, the assembly consisted of one
unique contig that included the complete gene sequence.

Runs across multiple samples can be summarised using the summary function of ARIBA,
as outlined in Supplementary Figure S3. A key column of the output from summary is the
‘assembled’ column, which reports, for each sample and each gene, the status of the ARIBA
assembly. The method used to calculate this column is shown in Supplementary Figure S4.

Reference

seqguences

Find closest
reference
(nucmer)

Reference
sequence

Mapped reads

and mates

Assemble
(fermi-lite)

N—

y

Contigs

I

Compare
contigs to
reference

(MUMmer)

Output files (report,

Map reads
and call SNPs
(Bowtie2,
samtools)

assemblies)

Figure S2: Cluster processing methods (performed on each cluster during ariba run)

-,

Reference Optional
sequences (FASTA) metadata (TSV)

Paired reads

-_-memememmmomeom

ariba
prepareref

Reference data

ariba run output directory 1 '
x
I\as&bﬁes_ Lloﬁ_ report.tsv E E report_3.tsv | report_N.tsv
L— g L—/' i

--- -————

summary

CSV and
Phandango files

Figure S3: Overview of ARIBA methods, when run on multiple samples

ﬁag from report.tsv/

Assembly fail,
ref seq choose
fail, or no contig
match to
reference?

Yes

No

All of reference No

represented in
assembly?

Yes

Assembled No

into one
contig?

Yes

Is noncoding,
or is coding

and has
complete
gene?

No

Yes

No

Yes

[T

fragmented

interrupted

yes_nonunique

i *Is unique means that it is assembled into one :
: contig, and none of the following are true:
scaffold_graph_bad,
variants_suggest_collapsed_repeat,
hit_both_strands,
region_assembled_twice

Figure S4: Method used for calculating the ‘assembled’ column output by ariba summary

3 E. faecium

The SRST2 version of the ARG-ANNOT sequences were downloaded and formatted for ARIBA
with the following command.

ariba getref srst2_argannot ariba_db.download

The vanS-B gene, called “47_VanS-B_Gly__VanS-B__1672 no;yes;VanS-B;Gly;AY655721;
731-2073;1343” by SRST2, originally from ARG-ANNOT, was missing its final nucleotide A.
This was confirmed by comparing with the GenBank record AY655721. It would cause ARIBA
to exclude this sequence because the translation into amino acids results in a sequence that
does not end with a stop codon. Therefore an A was added to the end of the sequence (called
“VanS-B_Gly.47_VanS-B_Gly__VanS-B__1672") in the FASTA file ariba db.download.fa. The
data were then prepared for running the ARIBA pipeline with the command

ariba prepareref -f ariba_db.download.fa \
-m ariba_db.download.tsv ariba_db

and the ARIBA pipeline was run on each sample with
ariba run ariba_db reads_1.fq.gz reads_2.fq.gz ariba.out

For KmerResistance, we used the original file ARGannot.r1.fasta from the SRST2 github
repository. The template database was made by running

maketemplatedb.py -i ARGannot.rl.fasta -o ARGannot.rl.fasta.kres_db
and KmerResistance was run on each sample with the command

zcat reads_1.fq.gz reads_2.fz.gz | KmerResistance.py \
-t_db ARGannot.rl.fasta.kres_db -o outl -02 out2 -w \
-s_db kmerresistance/database/complete_genomes.ATGAC

where complete_genomes.ATGAC is the prefix of files that are included with KmerResistance.
SRST2 was run using the defaults options using the same reference file as KmerResistance.
The command run on each sample was:

srst2 --input_pe reads_1.fq.gz reads_2.fq.gz --output out \
--log --gene_db ARGannot.rl.fasta

3.1 MLST calling

For MLST calling, the ARIBA reference data was downloaded from PubMLST and formatted
for use with ARIBA using the command

ariba pubmlstget ’Enterococcus faecium’ ariba_db.mlst
and ARIBA was run on each sample with

ariba run ariba_db.mlst/ref_db reads_1.fq.gz reads_2.fq.gz ariba.out
The reference data was downloaded for SRST2 using the command

getmlst.py -—species "Enterococcus faecium"

where getmlst.py is the script included with SRST2, and then SRST2 was run on each sample
with the command

srst2 --input_pe reads_1.fq.gz reads_2.fq.gz --output out \
--log --mlst_db Enterococcus_faecium.fasta \
--mlst_definitions srst2_pubmlst/efaecium.txt \
--mlst_delimiter ’_°

3.2 Investigation of 7 genes in VanB operon

Only the VanB cluster had more than one gene. All tools gave the same reference sequence
(where the gene was present), except for SRR980582, where ARIBA and SRST2 chose VanB_1058
and KmerResistance chose VanB_1060.

All other differences were in the presence/absence of genes. Several of the differences
were in samples genotyped to be VSE (see Supplemetary Table S1), where the differences
appear to be due to marginal calls from low level contamination. The remaining differences,
discussed below, were all in VRE samples.

All tools agreed for vanB, vanH, vanR, vanS, and vanX, the differences were all in vanW
and vanY.

vanW. Samples SRR980557, SRR980566, SRR980567, SRR980576, SRR980580, SRR980581,
and SRR9805803 were called by ARIBA as having nonsense mutations, and SRR980574 with

a frameshift. SRST2 called all these samples as “VanW-B_487*?”, except for SRR980557 which
was called as “VanW-B_487*” suggesting that it is present in the sample. KmerResistance re-
ported all these samples as having the vanW gene. Further, ARIBA reported that the seven
nonsense mutations were identical, changing the amino acid W to a stop codon at nucleotide
position 571 in the reference gene. This was confirmed by running the following command
on each BAM file output by SRST2:

samtools mpileup -L 100000 -t INFO/AD -A -f ARGannot.rl.fasta \
-u -v -r 239__VanW-B_Gly__VanW-B__487:571-573 in.bam

where it was clear from the output that the codon TGG in the reference gene was changed to
TGA in each sample. For example, the following lines are output from sample SRR980583

239__VanW-B_Gly__VanW-B__487 571 . T <x> 0 . DP=612;AD=591,0;
239__VanW-B_Gly__VanW-B__487 572 . G <x*> 0 . DP=611;AD=585,0;
239__VanW-B_Gly__VanW-B__487 573 . G A,<*> 0 . DP=589;AD=0,564,0;

where each line has been truncated to fit on the page, with just the relevant information
shown.

vanY in sample SRR980559. This was called by ARIBA and SRST2, but not by Kmer-
Resistance. ARIBA reported 17 nonsynonymous amino acid changes, and SRST2 reported
“44snplindel”. Given that ARIBA reported 94.42% identity between its assembly and the ref-
erence gene, we assume that the sample was too distant to be identified by KmerResistance.

vanY in sample SRR980565. This was called by KmerResistance, with 95% coverage, but
not by ARIBA or SRST2. ARIBA produced an assembly of 670 of the 807bp gene at 100%
identity, therefore reporting the gene as not present. This was confirmed upon viewing the
BAM file produced by SRST2, as shown in Supplementary Figure S7.

vanY in sample SRR980581. ARIBA called this as “interrupted” because of a frameshift.
SRST2 reported “VanY-B_1502*”, with “lindel”, and KmerResistance reported it as present,
with 100% coverage of the gene.

The frameshift was verified by running the folloing command on the BAM file made by
SRST2

10

samtools mpileup -L 100000 -t INFQO/AD -A \

-f ARGannot.rl.fasta -u -v \

-r 262__VanY-B_Gly__VanY-B__1502 out__reads.ARGannot.rl.sorted.bam \
| bcftools call -c -v -

which reported this:

262__VanY-B_Gly__VanY-B__1502 122 . TGGGG TGGGGG 214.458 .
INDEL; IDV=974;IMF=0.879855;DP=1107;AD=1,795;VDB=0.0048673;3GB=-0.693147;
MQSB=1;MQOF=0;AF1=1;AC1=2;DP4=0,1,434,361;MQ=20;FQ=-289.528;
Pv4=0.454774,1,1,0.240182 GT:PL 1/1:255,255,0

ie a one base insertion in the reads, supported at high quality by 795 of the 796 reads mapped
to that location.

11

(a) vanB (b) vanH
215 L5
]]
[&] [&]
B 10 B 10
g g
g S g S
> =)
b4 pa
0 0
0 25 50 75 100 0 25 50 75 100
Mean read depth Mean read depth
(¢) vanR (d) vans
215 215
]]
[&] [&]
B 10 B 10
g g
g ° g °
> >
pd pa
0 0
0 25 50 75 100 0 25 50 75 100
Mean read depth Mean read depth
(e) vanX
215
] ARIBA
(&)
B 10
b} KmerResistance
o]
[5
>
<, SRST2
0 25 50 75 100

Mean read depth

Figure S5: Effect of read depth on calling genes on E. faecium dataset.

12

(a) vanB

Number of calls
= =
(63] o (63}

o

(c) vanR

Number of calls
= =
(6)] o o

o

25 50 75 100
Mean read depth

(e) vanX

Number of calls
[[
(6] o (6]

o

25 50 75 100
Mean read depth

25 50 75 100
Mean read depth

ARIBA

KmerResistance

SRST2

(b) vanH

Number of calls
B B
o (@] (6]

o

(d) vans

= =
o a1

Number of calls
o

25 50 75
Mean read depth

100

() All genes

(0]
o

(o]
o

Number of calls
N N
o o

o

25 50 75
Mean read depth

100

25 50 75
Mean read depth

Figure S6: Effect of read depth on calling genes on E. faecium dataset, with more permissive
criteria than those used in the main manuscript and in Supplementary Figure S5. Here, we
additionally include calls made by SRST2 with a “?”, and calls made by ARIBA where the
assembly is identified as partial, fragmented, or interrupted.

13

100

ece | Artemis Entry Edit: ARGannot.r1.fasta
Eile Entries Select View Cgto Edit Create Run Graph Display

Entry: [v] ARGannot.rl.fasta [262_ Vanv-B_Gly_ vany-g_ 1502

Mothing selected

|so0

[|700

|sen

|1a0 200 |308 £

Figure S7: Artemis screenshot showing reads from sample SRR980565 mapped to the vanY

gene.

14

4 S. sonnei

4.1 Reference data

The extra reference sequences, the details of which are in Supplementary Table S4, were
downloaded using the script s_sonnei_get_extra_ref_seqs.py. The CARD data was down-
loaded with the command

ariba getref --version 1.1.2 card card.getref
and prepared to run with ARIBA by running

ariba prepareref -f card.getref.fa -m card.getref.tsv \
-f ref_data.sequences.fa -m ref_data.metadata.tsv ariba_db

The reference sequences were written to a FASTA file, srst2.fa, compatible for use with
SRST2 by running

make_srst2_fa.py ariba_db srst2.fa
Finally, the data were prepared for use with KmerResistance using the two commands

sed ’s/_/-/g’ ariba_db/02.cdhit.all.fa > kres_db.input.fa

maketemplatedb.py -i kres_db.input.fa -o kres_db

A comparison of read depth of genes called by ARIBA and KmerResistance shown in Sup-
plementary Figure S8.

A comparison of ARIBA local assembly and reference strA gene for sample ERR024606
shown in Supplementary Figure S10, and for strB and ERR024606 in Supplementary Figure
S11.

4.2 Verify gyrA SNPs

The following command was used on the SRST2 BAM file for samples ERR028676 and
ERR028677 to verify the presence or absence of one of the SNPs S83L, D87G, or D87Y:

samtools mpileup -L 100000 -t INFO/AD -A -f srst2.fa -uv \
-r 569__gyrA-7__gyrA.3003294.U00096.2336792-2339420.2052__1821:$start-$end \
in.bam

where $start-$end took the values 247-249 and 259-261. The output for sample ERR028676
was

569__gyrA-7__gyrA.3003294.U00096.2336792-2339420.2052__1821 247 . T <x> 0
. DP=170;AD=168,0;

569__gyrA-7__gyrA.3003294.U00096.2336792-2339420.2052__1821 248 . C <x> 0
. DP=170;AD=169,0;

569__gyrA-7__gyrA.3003294.U00096.2336792-2339420.2052__1821 249 . G <x> 0
. DP=171;AD=171,0;

569__gyrA-7__gyrA.3003294.U00096.2336792-2339420.2052__1821 269 . G <*> 0
. DP=172;AD=167,0;

569__gyrA-7__gyrA.3003294.U00096.2336792-2339420.2052__1821 260 . A <x> 0
. DP=173;AD=173,0;

569__gyrA-7__gyrA.3003294.U00096.2336792-2339420.2052__1821 261 . C <¥> 0
. DP=173;AD=173,0;

15

confirming that none of the SNPs of interest were present. The output for sample ERR028677
was

569__gyrA-7__gyrA.3003294.U00096.2336792-2339420.2052__1821 247 . T <*> 0
. DP=31;AD=31,0;

569__gyrA-7__gyrA.3003294.U00096.2336792-2339420.2052__1821 248 . C T,<*> 0
. DP=30;AD=0,30,0;

569__gyrA-7__gyrA.3003294.U00096.2336792-2339420.2052__1821 249 . G <*> 0
. DP=30;AD=30,0;

569__gyrA-7__gyrA.3003294.U00096.2336792-2339420.2052__1821 259 . G <*> 0
. DP=30;AD=29,0;

569__gyrA-7__gyrA.3003294.U00096.2336792-2339420.2052__1821 260 . A <x> 0
. DP=30;AD=29,0;

569__gyrA-7__gyrA.3003294.U00096.2336792-2339420.2052__1821 261 . C <*x> 0
. DP=31;AD=30,0;

confirming the SNP S83L (a codon change from TCG to TTG).

16

(a)

1% 40 -
E;
o 30-
5 ARIBA
g 20 - KmerResistance
E - SRST2
zZ
O L 1 1 1 1
0 250 500 750
Read depth
(b)

1% 40 -
E

30-
45 ARIBA
g 20 - KmerResistance
E o- SRST2
zZ

O L 1 1 1 1
0 50 100 150
Read depth

Figure S8: Comparison of read depth of genes called by ARIBA, KmerResistance and SRST2
on the S. sonnei data set. (a) shows all values of reported read depths, whereas (b) shows
only the range 0-150, so that the details are visible at low depth.

17

s00] 590
400 -
S
©
g 300 1
9
S
5 238
N
0 200
100 -
65
43
= 14 1 6 5 1
04 [= ——
wer - QOO0OO0O0O0 OO0
KmerResistance O O O O
SRST2 O O O O

Holt 2012 O O O O O

Figure S9: Concordance between AMR calling methods on the S. sonnei data. A coloured dot
indicates which methods were in agreement. The first column illustrates where no resistance
mechanisms were predicted. This is generated using more permissive rules than in Figure
2. Here, we additionally include calls made by SRST2 with a “?”, and calls made by ARIBA
where the assembly is identified as partial, fragmented, or interrupted.

18

| NON | [%| ACT: assemblies.fa vs ref.fa
File Entries Select Wiew Goto Edit Create Bun Graph Display

250
L] D
[fFH 3 Th+ . 16.c30.cto.l BPHa_
[z00 [s00 L) [1200 [1500 =
|300 |soa =
4 I O
250
”

Figure S10: Sample ERR024606 strA gene. ACT screenshot showing a comparison between
the ARIBA assembly (top) of strA and the reference sequence (bottom). Nucmer matches
between the sequences are shown in red. The mapped reads are shown in “inferred size”
view, where reads are shown in blue, with each pair connected with a grey line. The height
of each read pair is determined by the inferred insert size from the mapping. The BAM file
made by SRST2 was used for the reference sequence, and the reads were mapped to the
ARIBA contigs using Bowtie2 with the default settings. The position of the insertion is clear
in the reads mapped to the reference sequence, whereas there is consistent coverage across
the ARIBA assembly.

19

[NoN | % ACT: assemblies.fa vs ref.fa
File Entries Select Wiew Goto Edit Create Bun Graph Display

[»

- (4

-

PH 6 Id+.115.co0.ct
|ooa 1200 1500 1500 2100 2400 2700 [z000 3300

—

mpe

LOCKED

[r 4]

|za0 [soo

4

[fl= [« TT01

Figure S11: Sample ERR028673 strB gene, showing a comparison of the ARIBA assembly
(top) and the reference sequence (bottom) together with the mapped reads. Reads were
mapped in the same way as explained for Supplementary Figure S10.

20

5 N. gonorrhoeae

The reference data were prepared for ARIBA using the methods described in the main text.
The workflow is automated in the script n_gonorrhoeae make ariba db.sh, which contains
all the commands that were used.

Substitution Gene % of mapped
presence presence reads
0.0

235.235.2597T .%

23S.235.2045G
23S.238.2597T
mtrR.mtrR.45D

yes

25.0
no

interrupted
50.0

partial 75.0

no 100.0

het

fragmented

Figure S12: Phandango visualisation of ARIBA results for N. gonorrhoeae aligned against a
phylogentic tree of the isolates to illustrate that resistance determinants have emerged multi-
ple times in the population. Colours in columns showing the presence (yes) or absence (no)
of a particular substitution are indicated in the substitution presence key. For the 23S C2597T
substitution the percentage of mapped reads containing the substitution are shown in the
2597T.% column, for which the key is labelled % of mapped reads. The meaning of colours
in the metR.assembled column are shown in the gene presence key, and indicate isolates for
which the assembly for the mtrR gene is complete (yes), interrupted, partial, fragmented or
absent (no).

21

Azithromycin

1024 A Counts
512 4 e 5
256 A ® 50
128 - @® 100

log>(MIC) ug/mL

23S.23S5.2045G
23S.23S.2597T
mtrR.mtrR.45D
mtrR.interrupted
without_mutation

Figure S13: Distribution of MICs (represented on a logarithmic scale) for azithromycin for
all relevant AMR determinants in our custom database. Dotted horizontal lines mark clinical
breakpoints as described in Figure 4.

22

Azithromycin

1024 A Counts
512 4 e 5
256 A ® 50
128 - @® 100

log>(MIC) ug/mL

23S.23S5.2045G
23S.23S.2597T
mtrR.mtrR.45D
mtrR.interrupted
without_mutation

Figure S14: Distribution of MICs (represented on a logarithmic scale) for azithromycin for
all observed combinations of relevant AMR determinants in our custom database excluding
heterozygous hits. Dotted horizontal lines mark clinical breakpoints as described in Figure 4.

23

6 Run time and memory

Box plots of the run time and memory are shown in Supplementary Figure S15 for the E.
faecium and S. sonnei data sets. The values used for wall clock time and peak memory usage
were those reported from using the UNIX command time -v. Specifically, wall clock time
is taken from the value of “Elapsed (wall clock) time” and peak memory from the value of
“Maximum resident set size”. The raw data are given in Supplementary Table S2, and original

output from time -v is included in the GitHub repository.

(a) 125 -
‘E 100-
)

E 75-
¢
3
T) 50-
I
= 25-

O-

E. faecium E. faecium MLST S. sonnei
Data set
(b)
) 1000 -
e
=
<
(nd
< 500-
o))
o
0 -

E. faecium E. faecium MLST S. sonnei
Data set

Tool
ARIBA
KmerResistance

SRST2

Tool
ARIBA
KmerResistance

SRST2

Figure S15: (a) Run time and (b) memory usage on the E. faecium and S. sonnei datsets.

24

	Analysis reproducibility
	ARIBA pipeline
	E. faecium
	S. sonnei
	N. gonorrhoeae
	Run time and memory

