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Table S1. The first- and second-order approximations to the power of variance component tests. Power of the variance component test depends on the first four cumulants  (see formula 1). The first-order approximation rewrites cumulants ck as function of two key parameters: J -number of rare variants in a locus, EV – proportion of phenotypic variation explained by a locus and  –  weighting based on sample size N and MAF . The second-order approximation additionally incorporates - number of causal variants in a locus. For more details see Appendix A, B and C.

	Underlying Genetic Architecture[footnoteRef:1] [1:  Three common assumptions about relationship between genetic effect of a SNP and MAF ] 

	Mathematical Representation[footnoteRef:2] [2:  Mathematical representation of the relationship between genetic effect of a SNP and MAF] 

	First-order Approximation[footnoteRef:3] [3:  First-order approximations of cumulants of a variance component test ] 

	Second-order Approximation[footnoteRef:4] [4:  Second-order approximations of cumulants of a variance component test 
] 


	Proportion of variation explained by a variant  is independent of its MAF 
	
	
	

	Genetic effect  is independent of MAF 
	
	
	

	Genetic effect  is function of MAF 
	
	 where  is an average change in  due to one-unit change in .
	 where  is an average change in  due to one-unit change in .



1. 


Table S2. Simulation scenarios and parameter values for assessing accuracy of the first-order approximations. Scenario S1 ('MAF-independent EV') assumes MAFs and EVs are mutually independent. Scenario S2 ("MAF-independent ") assumes MAFs and effect sizes defined in the unit of per copy of an allele ()  are mutually independent. Scenario S3 ("MAF-log-dependent ") assumes MAFs and effect sizes are dependent through log10 function. For the exact calculations for the Scenario S1, we directly generate EVjs from specific value EV and for Scenarios S2 and S3, we first generate  then calculate corresponding EVjs
	
	Parameters
	Parameter Values
	Parameters used in

	
	
	
	First-order Approximation
	Second-order Approximation
	Exact-Calculations

	N
	Effective sample size
	10,000
	Yes
	Yes
	Yes

	J
	Total number of SNPs
	50, 100, 200, 400
	Yes
	Yes
	Yes

	EV
	Coefficient of explained phenotypic variation by a locus
	Ranges between 0.001 and 0.01
	Yes
	Yes
	Yes

	pj
	MAF of SNP j
	Gamma (1,300) with minimum and maximum values at 0.0002 and 0.01
	Yes
	Yes
	Yes

	JC
	Number of causal SNPs
	10, 20, 30, 50
	No
	Yes
	Yes

	Scenario S1 ("MAF-independent EV")

	EVj
	Coefficient of explained variation by SNP j
	Randomly selected for each causal SNP under the constrain:  
	No
	No
	Yes

	Scenario S2 ("MAF-independent ")

	
	MAF adjusted average effect of SNP j
	MAF adjusted average effect of rare variant
	No
	No
	Yes

	
	Genetic effect of jth variant
	, then coefficients of explained variations are scaled by the constant so that 
	No
	No
	Yes

	Scenario S3 ("MAF-log-dependent ")

	C
	Adjustment
	

	No
	No
	Yes

	
	Genetic effect of jth variant
	
then coefficients of explained variations are scaled by the constant so that   
	No
	No
	Yes
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Table S3. Summary of recently published association studies of rare variants.  
	Study
	Genetic Platform,
Sample Size
	Trait
	Association analysis with rare variants[footnoteRef:5] [5:  Variants with MAF<1%.] 


	
	
	
	Gene based
tests
	# of significant findings with gene based test
	# of significant rare variant findings with single variant test 

	A polygenic burden of rare disruptive mutations in schizophrenia1
	WES: 5000
	Case/Control ~ 1/1
	SKAT and Burden Tests with a gene as a unit
	No findings
	NA

	Whole-genome sequencing identifies EN1 as determinant of bone density and fracture2
	WGS: ~2,900
WES: ~3,500
Imputation[footnoteRef:6]: ~26,500 [6:  Variants with MAF>0.1%] 

	Multiple QTs
	SKAT with sliding window with 30 SNP
	0-1 gene[footnoteRef:7] [7:  Identified by single SNP analysis] 

	0-1 rare variant

	The UK10K project identifies rare variants in health and disease3
	WGS: ~3,500
Imputation: ~9,200
	Multiple QTs
	SKAT with sliding window with 50 SNP
	0-1 genes
	0-1 rare variants

	The genetic architecture of type 2 diabetes4
	WGS: ~2,600
WES: ~13,000
Exome Array: 80,000
	Case/Control ~ 1/1
Case/Control ~ 1/1
Case/Control ~ 1/2
	SKAT with a gene as a unit
	No findings
	6 rare variants[footnoteRef:8] [8:  Variants with MAF<5%] 


	Ultra-rare disruptive and damaging mutations influence educational attainment in general population5
	WGS: ~2,700
WES: ~11,300
	QT
	Burden Tests with a gene as a unit
	No findings
	NA

	Inherited coding variants at the CDKN2A locus influence susceptibility to acute lymphoblastic leukemia in children6
	Exome Chip: ~12,000
	Case/Control ~ 1/5
	SKAT with a gene as a unit
	No findings
	1 rare variant

	Meta-analysis of rare and common exome chip variants identifies S1PR4 and other loci influencing blood cell traits7
	Exome Chip: ~52,000
	Multiple QTs
	SKAT and Burden Tests with a gene as a unit
	1-2 genes
	1-3 rare variants

	Low-frequency and rare exome chip variants associate with fasting glucose and type 2 diabetes susceptibility8
	Exome Chip: ~61,000
	QT
	SKAT with a gene as a unit
	1 gene
	No findings

	Meta-analysis identifies common and rare variants influencing blood pressure and overlapping with metabolic trait loci9
	Exome Chip: ~145,000
	Multiple QT
	SKAT and Burden Tests with a gene as a unit
	1-2 genes
	1-2 rare variants



Figure S1. Evaluation of the accuracy of the first order approximations at various values of key parameters J=50, 100 and JC=30, 50 under simulation scenario S1 (MAF-independent EV).  J-number of rare variants in a locus and JC -number of causal variants in a locus. Exact Formula represents estimated average power using exact theoretical formulas for the SKAT test statistic. The First Order Approximation represents estimated average power using the first order approximation for the SKAT test statistic. 
[image: ]


Figure S2. Evaluation of the accuracy of the first order approximations at various values of key parameters J=200, 400 and JC=10, 20, 30, 50 under simulation scenario S1 (MAF-independent EV).  J-number of rare variants in a locus and JC -number of causal variants in a locus. Exact Formula represents estimated average power using exact theoretical formulas for the SKAT test statistic. The First Order Approximation represents estimated average power using the first order approximation for the SKAT test statistic.
[image: ]


Figure S3. Evaluation of the accuracy of the first order approximations at various values of key parameters J=50, 100 and JC=10, 20, 30, 50 under simulation scenario S2 (MAF-independent ).  J-number of rare variants in a locus and JC -number of causal variants in a locus.  Exact Formula represents estimated average power using exact theoretical formulas for the SKAT test statistic. The First Order Approximation represents estimated average power using the first order approximation for the SKAT test statistic.  
[image: ]


Figure S4. Evaluation of the accuracy of the first order approximations at various values of key parameters J=50, 100 and JC=10, 20, 30, 50 under simulation scenario S3 (MAF-log-dependent ). J-number of rare variants in a locus and JC -number of causal variants in a locus. Exact Formula represents estimated average power using exact theoretical formulas for the SKAT test statistic. The First Order Approximation represents estimated average power using the first order approximation for the SKAT test statistic.
[image: ]

Figure S5. Evaluation of the accuracy of the second order approximation at various values of key parameters J=200, 400 and JC=10, 20, 30, 50 under simulation scenario S1 (MAF-independent EV).  J-number of rare variants in a locus and JC -number of causal variants in a locus. Exact Formula represents estimated average power using exact theoretical formulas for the SKAT test statistic. The Second Order Approximation represents estimated average power using the first order approximation for the SKAT test statistic.
[image: ]

Figure S6. Evaluation of the accuracy of the second order approximations at various values of key parameters J=50, 100 and JC=10, 20, 30, 50 under simulation scenario S2 (MAF-independent ). J-number of rare variants in a locus and JC -number of causal variants in a locus. Exact Formula represents estimated average power using exact theoretical formulas for the SKAT test statistic. The Second Order Approximation represents estimated average power using the second order approximation for the SKAT test statistic.
[image: ]


Figure S7. Evaluation of the accuracy of the second order approximations under simulation at various values of key parameters J=50, 100 and JC=10, 20, 30, 50 under simulation scenario S3 (MAF-log-dependent ). Exact Formula represents estimated average power using exact theoretical formulas for the SKAT test statistic. The Second Order Approximation represents estimated average power using the second order approximation for the SKAT test statistic.
[image: ]


Figure S8. Evaluation of the accuracy of the first order approximations for the burden test statistic at various values of key parameters J=50, 100 and JC=10, 20 under simulation scenario S1 (MAF-independent EV).  Exact Formula represents estimated average power using exact theoretical formulas for the burden test statistic. The Approximation represents estimated average power using the first order approximation for the burden test statistic.
[image: ]


Figure S9. Empirical distribution of MAF and the number of rare variants per locus estimated in Exome Aggregation Consortium (ExAC)10  that model one observed in the study of educational attainment that used exome sequencing5.  We observe 743,094 variants with MAFs ranging between 0.0001 and 0.01 and 20,895 genes with at least two rare variants. Average number of variants in a locus is 35.5.
[image: ]



[bookmark: _GoBack]Figure S10.  Empirical distribution of MAF and the number of rare variants per locus estimated from ExAC that model one observed in the study of blood pressure that used Exome Chip platform9. We observe 215,674 variants with MAFs<0.01 and 16,000 genes with at least two rare variants.; Average number of variants in a locus is 13.
[image: ]



Figure S11. Bounds for genetic architecture based on results reported in studies of education attainment (EA) and blood pressure(BP) under assumption of independence between MAF and genetic effects . Panel (A) shows maximum probability of observing no discoveries in the EA study, which used whole exome sequencing platform, as a function of the number of underlying causal loci K and the total variation explained by them with a sample size of 14,000. Panel (B) shows the maximum probability of observing three statistical significant discoveries in the BP study, which used exome chip, as a function of the number of underlying causal loci K and the total variation explained by them with a sample size of 140,000. In both cases, it’s assumed gene-based tests have been performed using the SKAT test statistics at the level of  2.5·10-6. Probabilities are estimated by (2) and assumption of independence between MAF and genetic effects . The black line shows approximate contours (bounds) corresponding to probability of 5%.
[image: ]
Figure S12. Effects of sensitivity and specificity for apriori variant screening on the power of variance component and burden tests under simulation scenario S1 (MAF-independent EV). Number of variants in a locus is set to J=100 and number of causal variants to JC=10. The setting corresponds to a baseline power (i.e. if all variants were included in the study) of 40%, and 11% for variance component and sum-based tests, respectively. 
[image: ][image: ]


Figure S13. Effects of sensitivity and specificity for apriori variant screening on the power of variance component and burden tests under simulation scenario S2 (MAF-independent ). Number of variants in a locus is set to J=50, 100 and number of causal variants to JC=10. The setting (A) J=50 and JC=10 corresponds to a baseline power (i.e. if all variants were included in the study) of 40%, and 5.6% for variance component and sum-based tests, respectively. The setting (B) J=100 and JC=10 corresponds to a baseline power (i.e. if all variants were included in the study) of 40%, and 5.6% for variance component and sum-based tests, respectively
A)[image: ][image: ]

B)[image: ][image: ]




Figure S14. Bounds for genetic architecture based on results from single SNP analysis reported in studies of education attainment (EA) and blood pressure(BP). Panel (A) shows maximum probability of observing no discoveries in the EA study, which used whole exome sequencing platform, as a function of the number of underlying causal SNPs K and the total variation explained by them with a sample size of 14,000. Panel (B) shows the maximum probability of observing three statistical significant discoveries in the BP study, which used exome chip, as a function of the number of underlying causal SNPs K and the total variation explained by them with a sample size of 140,000. In both cases, it’s assumed single SNP analysis was performed at the level of 5·10-8. Probabilities are estimated by (2). The black line shows approximate contours (bounds) corresponding to probability of 5%.
[image: ]
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