

$\cdots G \stackrel{\rightharpoonup}{\pi}$

宸

凹

| D |
| :---: | :---: |
| + |

$\begin{array}{llll}\omega & \omega & \omega \\ N & 0 & \omega \\ N\end{array}$

$\stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{\bullet}} \stackrel{\rightharpoonup}{\circ}$

ع

| N | N | N |
| :---: | :---: | :---: | :---: |
| \bullet | \bullet | |
| \bullet | \circ | ∞ |

जのजル

 SvELF3b Sevir．3G123200． SvELF3a Sevir．5G206400． BdELF3 Bradi2g14290．1 AtELF3 AT2G25930．1

Supplemental Figure S1. Multiple sequence alignments of ELF3 orthologs (A) and percentage of identical amino acid sequences (B). Protein sequences of AtELF3 (AT2G25930.1), BdELF3 (Bradi2g14290.1), SvELF3a (Sevir.5G206400.1) and SvELF3b (Sevir.3G123200.1) were used for multiple sequence alignments and for generating percentage of identical amino acids by Clustal Omega alignment with default parameters.

Supplemental Figure S2. Diel and circadian expression of BdELF3 from the DIURNAL database. GCRMA (GeneChip Robust Multiarray Averaging) values from the DIURNAL database (Mockler et al., 2007) were plotted to show time-course expression profiles of Bradi2g14290 (BdELF3) under either diel (A) or circadian conditions (B). Diel expression of AtELF3 from DIURNAL database was used for comparison in (A). Shade boxes indicate dark periods. In (B), Circadian expression data was obtained by entraining plants with either photo- (LDHH) or thermo- (LLHC) conditions followed by sampling under the Free-Running condition (F) with constant light and temperature.

ع ә.n6!ן ן

Supplemental Figure S3. Example of the Diel Explorer interface. The search interface (left) and plotting interface of Diel Explorer are shown (right). Users can search by gene or ortholog id, or by gene ontology term. Alternately, users can filter data by period, phase (lag) or significance cut offs. Data can be plotted in a line graph or heatmap.

Supplemental Figure S4. Summary of circadian regulated genes in S. viridis.
Distribution of circadian regulated genes in S. viridis was plotted by their phases, with the y axis showing the number of genes considered significantly (Bonferroni Adjusted PValue <0.001) cycling under photo- (LDHH) or thermo- (LLHC) entrainment in S. viridis followed by free-running condition (F).

Supplemental Figure S5. Circadian expression of selected A. thaliana clock genes from the DIURNAL database. GCRMA (GeneChip Robust Multiarray Averaging) values were plotted to show time-course expression profiles of selected A. thaliana clock genes under either photo- (LL23_LDHH) or thermo-entrainment (LL_LLHC) from the DIURNAL database (Mockler et al., 2007). Each gene cycles with a correlation of >0.9 when compared to a best fit model (24-hour rhythm).

Supplemental Figure S6. Anti-FLAG western of ELF3 transgenic lines used for complementation analysis. Representative blot of protein extracts from day 12 seedlings taken at Zeitgeber time 12 grown under 12-hour light :12-hour dark growth conditions at $22^{\circ} \mathrm{C}$ that were probed with FLAG antibody to detect the 3xFLAG epitope. RPT5 is used as a loading control.

Supplemental Figure S7. Relative Amplitude Error vs period plots. The periods and relative amplitude error (RAE) of 8 AtELF3 elf3-2 (A), BdELF3 elf3-2 (B), and SvELF3 elf3-2 (C) seedlings were plotted along with wild type and elf3-2 mutants (Note, only 3 of 8 elf3 seedlings has measurable rhythms). RAE=0.5 was used as a cutoff (dotted line), above which a seedling is not considered rhythmic (Plautz et al., 1997). Note that wild type and elf3 mutant data were reproduced on all plots for comparison purposes.

