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1 Supplementary methods 

1.1 Development of property predictors 

1.1.1 Data collection and preprocessing 

Training data sets for various property predictors developed in this work were obtained 

from public databases and the literature. In order to construct a predictor of relative sol-

vent accessibility (RSA), we used the data set constructed by Naderi-Manesh et al.1 For 

the simultaneous prediction of signal peptide and transmembrane topology, we download-

ed the data set that was used to train the Phobius predictor.2 MARCOIL’s training data 

was used to develop a predictor of coiled-coil regions.3 The catalytic residue, DNA-

binding, metal-binding and protein-protein interaction (PPI) data sets were obtained from 

the study by Xin.4 For RNA-binding sites, the RB199 data set was downloaded from the 

Protein-RNA Interface Database.5 The data set collected by Agius et al. served as the 

source for PPI hotspot information.6 The Molecular Recognition Feature (MoRF) data set 

constructed by Disfani et al. was utilized for the development of a MoRF predictor.7 Final-

ly, allosteric sites were obtained from the AlloSteric Database (January 2014).8 

In cases of properties where the data were obtained from three-dimensional structures 

(macromolecular binding, metal binding, among others), we mapped the positions of resi-

dues of interest in the crystal structures’ records back to the full-length sequences in the 

SEQRES field and used these sequences for training. In other cases, mapping to sequences 

were either readily available, or were mapped to the sequences from UniProt.9 In the fol-

lowing sections, we refer to structural or functional sites of interest as positive sites (class 

label ‘1’), and other residues (either a remainder or a subset thereof) as negative sites 

(class label ‘0’). In the case of functional properties, we removed redundant examples 

based on the sequence identity in the local neighborhood to achieve better generalization. 

Each positive and negative site was associated with a 25-residue fragment centered at the 

residue of interest (for the sites near termini, the fragments were asymmetric). We re-

moved all residues associated with fragments that were more than 40% identical to other 

fragments in the data set. In cases where a fragment containing a negative site was 40% 

identical to a fragment containing a positive site, the one with the negative class label was 

removed because its class designation was less reliable. No such neighborhood-based re-

dundancy removal was performed for the structural property prediction tasks. This was 

because these data sets were already non-redundant at the level of entire sequence and 

large enough for us not to be concerned with overfitting. Other property-specific modifica-

tions to the protocol (if any) are discussed in Section 1.1.4. The final data set sizes are 

shown in Supplementary Tables 2-3. 

1.1.2 Common feature set 

For all property predictors developed for MutPred2, we extracted and encoded a common 

set of features. These can be broadly divided into three groups: (1) sequence-based fea-

tures; (2) features based on physicochemical and other predicted properties; and (3) con-

servation-based features. 
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Sequence-based features included relative amino acid frequencies, beta entropies10 (  

{1, 1.25, 1.50, 1.75}), proportions of aromatic residues (F, Y and W), charge-hydrophobi-

city ratios11 and net and total charges calculated using concentric windows centered at the 

residues of interest. Net and total charges were calculated by taking the difference and 

sum of the counts of positively charged (K and R) and negatively charged residues (D and 

E) residues within these windows. For this set of features, we used windows of sizes w  

{3, 7, 11, 21}. This resulted in a set of 112 features for each training example. We then 

encoded the presence or absence of the 20 possible amino acids within three positions N-

terminal and C-terminal to the residue of interest using a binary representation (presence 

= 1; absence = 0). This added another 120 features to the feature set. 

The second set of features included physicochemical properties such as flexibility,12 hy-

drophobic moment (at rotation angles 100, 120 and 160 degrees),13 amino acid volume,14 

hydrophobicity15 and predicted structural properties such as intrinsic disorder (VL216 and 

VSL2B17), B-factor18 and secondary structure (in-house predictor). In the case of the func-

tional property predictors, relative solvent accessibility predictions from the classifier de-

veloped in this work were also included (Section 1.1.4). These features were calculated or 

predicted for each residue within windows of sizes w  {1, 7, 11, 21} and then encoded by 

taking the mean, the standard deviation, and maximum values over each window. These 

accounted for 180 and 192 features in the common feature set for the structural and func-

tional property predictors, respectively. 

The third set of features was intended to represent evolutionary constraints around 

sites of interest. To obtain these, position-specific scoring matrices (PSSMs) were first 

constructed for full-length protein sequences by running PSI-BLAST (v.2.2.18; E-value 

threshold: 0.0001; number of passes: 3) against the NCBI non-redundant database (June 

2013).19 Then, features were extracted by averaging values within every column of the 

PSSM, around the residue of interest using window sizes w  {1, 3, 11, 21}. Thus, 168 

features were added to the common feature set.  

1.1.3 Model selection 

For the majority of property predictors, we used 10-fold cross-validation to evaluate the 

performance of different learning algorithms and parameters (see Section 1.1.4 for excep-

tions). The folds were defined such that all examples from a protein were either entirely in 

the training set or the test set. To measure performance, areas under the ROC curve 

(AUCs) were used as the primary performance measure. 

For each property, we compared the performance of three different learning algo-

rithms: a bagged ensemble of logistic regression models, a bagged ensemble of neural net-

works and a random forest; i.e., ensembles of linear classifiers, ensembles of universal ap-

proximators, and a learning algorithm shown to be robust in practice for ranking purpos-

es. First, we started with fixed parameter sets for all algorithms and selected the best-per-

forming algorithm based on the above cross-validation procedure. Then, we further opti-

mized this algorithm by using an ad hoc approach where the effect of changing specific 

training parameters was measured while keeping the others constant. While more sophisti-

cated optimization approaches exist, given our common feature set and varying sizes of 

training data sets, such approaches are likely to lead to overly complex models with a 

poor tendency to generalize. Furthermore, we note that the performances of the different 
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learning algorithms were similar, suggestive of stable solutions that were unlikely to 

change through additional parameter optimization. 

During the model selection process, certain settings were used as default for each algo-

rithm. Logistic regression models were trained in an iterative manner using maximum 

conditional likelihood approach. All neural networks were feed-forward networks with a 

single hidden layer and the hyperbolic tangent sigmoid (tansig) function was used as the 

transfer function in the hidden and output layers. Neural networks were trained using re-

silient propagation20 and stoppage criteria were obtained based on a validation subset ex-

tracted from the training set in each fold. In the case of random forests, regression trees 

were trained in order to obtain a smoother prediction score distribution. While all trees 

were allowed to grow fully without any pruning, the minimum number of examples per 

leaf node was allowed to be three to alleviate overfitting. The number of features random-

ly selected for each split (the ‘m’ parameter) was set to be the square root of the number 

of features. Furthermore, categorical features were treated as such. In the case of logistic 

regression and neural networks, an ensemble of size 30 was chosen and for the random 

forests, 100 trees were trained. 

We also considered other important issues related to the practical aspects of training. 

These were adhered to during both evaluation and final training. First, to address class 

imbalance in all of the above data sets, we trained each member of an ensemble with a 

balanced set, such that the same number of positives and negatives were presented to any 

learner; i.e., the majority class was down-sampled after the original data set was randomly 

sampled with replacement. Second, to avoid numerical stability issues, such as near-singu-

lar Hessian matrix, and to prepare the data for logistic regression and neural networks, we 

z-score normalized original data sets and performed principal component analysis (PCA) 

on these data to eliminate co-linear and nearly co-linear features. Additionally, we perfor-

med feature selection using a two-sample t-test to remove constant and irrelevant featu-

res. Finally, to avoid information leak during evaluation, all of these procedures were run 

on the training partition only and the resulting outputs (e.g., normalization and transform 

matrices for PCA) were then applied to the test data. 

1.1.4 Training 

In this section, we discuss the details of the final model for each property predictor. We 

further discuss any deviations from the feature extraction, model selection, model optimi-

zation and evaluation protocols. A general summary of the different property predictors 

developed as part of this work is shown in the Supplementary Tables 2-3. 

Coiled-coil regions. The training protocol for the coiled-coil region predictor was dif-

ferent from the protocols mentioned in the previous sections, as we aimed to simply re-

implement MARCOIL inside MutPred2. To this end, we followed the data preprocessing, 

training and evaluation procedures described by Delorenzi and Speed.3 Briefly, we first re-

moved homologous sequences from the training set by filtering out sequences at 70% iden-

tity (note: this cutoff was more stringent than that in the original protocol; however, a 

comparable number of sequences were retained). Next, we obtained background and emis-

sion probabilities from the files provided with the COILS program.21 Then, we implement-

ed the hidden Markov model (HMM) designed by Delorenzi and Speed and evaluated it in 

a leave-one-out cross-validation procedure. As emphasized in the original protocol, train-

ing in each fold started with the same set of transition probabilities. Then, the Baum-
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Welch algorithm was utilized to derive updated transition and emission probabilities, 

which were then used to make predictions on the test set.22 After evaluation, a single 

HMM was trained to predict both coiled-coil regions and their internal heptad structures 

from protein sequence. However, for MutPred2, a simple binary classification mode 

(coiled-coil or not) was chosen. This was achieved by taking the complement of the prob-

ability of the background (non-coiled coil) state for every residue; i.e., the sum of the 

probabilities of all the possible heptad states. 

Relative solvent accessibility. Although RSAs of individual residues are typically 

represented as real-valued quantities, we found that performance was poor when using re-

gression or multiclass classification. Therefore, we adopted the commonly chosen binary 

classification approach; i.e., predicting whether a residue is buried or exposed. To assign 

residues in our training data to one of these classes, we first obtained absolute solvent ac-

cessibility values from the structures in our data set using the DSSP program.23 Then, for 

every residue, we derived its RSA by dividing its absolute accessibility with its maximal 

accessibility, obtained from previous works.24, 25 Finally, as outlined by Rost and Sander, 

we used an RSA cutoff value of 0.16 to define whether a residue was buried or exposed. 

We note that secondary structure features were not included in the final feature set for 

this predictor. As mentioned above, our initial attempts to build models were aimed at 

predicting either the actual RSA value or one of multiple class labels. Bagged neural net-

works were ideally suited for these tasks. For reasons of convenience, we retained this ap-

proach even for the binary classification problem and did not use the model selection pro-

tocol discussed in Section 1.1.3. However, in a post hoc analysis, we compared this ap-

proach to that of using random forests and found that the results were similar. Before 

training the final model, feature selection at a significance threshold of 1  10
8 was per-

formed, followed by normalization and PCA (retained variance: 99%). The final model 

was an ensemble of 30 bagged neural networks with 16 hidden neurons in each of them. 

Training was stopped either after 1000 iterations or if the maximum number of validation 

checks was 100. 

Signal peptide/transmembrane segment topology. The prediction of transmem-

brane (TM) helical segments is often confounded by the presence of helical regions in sig-

nal peptides in many such proteins. Therefore, a common approach is to train models that 

not only predict TM segment topology but also distinguish between TM and signal re-

gions. Since this was a special case, we treated it as a multiclass classification problem 

where a residue could be assigned to one of eight classes: N-terminal region of the signal 

peptide, signal helix, C-terminal region of the signal peptide, signal peptide cleavage site, 

cytoplasmic loop, TM helix, non-cytoplasmic loop or none of these; i.e., when the given 

protein is not a TM protein. 

While the features used in training were the same as those discussed in Section 1.1.2, 

to model conservation over larger distances, window sizes w  {1, 7, 11, 21} were used for 

PSSM-based features. Before training, normalization and PCA (retained variance: 99%) 

were performed to remove highly correlated features. We note that no feature selection 

was done before this and all features were included. The final model was an ensemble of 

30 bagged neural networks, each with 64 hidden neurons. Unlike the standard protocol 

(Section 1.1.3), networks were trained on stratified samples of the training data set; i.e., 

for a given class, the same fraction of examples, as that in the original training data set 
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was presented to each network. Training was stopped either after 1000 iterations or if the 

maximum number of validation checks was 200. 

Allosteric site. For this task, no feature selection or normalization was performed. 

The final model chosen was a random forest with 100 trees with the ‘m’ parameter set to 

three times the square root of the size of the feature set. In contrast to the default model 

(Section 1.1.3), categorical features were treated here as continuous numerical features 

that were automatically thresholded by the learning algorithm during training.  

Catalytic residue. The best model in this case was an ensemble of 30 logistic regres-

sion models. No feature selection was carried out before training but the feature matrix 

was normalized and PCA was applied (retained variance: 99%). Training was stopped ei-

ther after 1000 iterations or if there was very little difference in weights (1  10
10) be-

tween iterations. 

DNA-binding residue. Before training, feature selection at a significance threshold 

of 0.01 was performed, followed by normalization and PCA (retained variance: 99%). Alt-

hough we started with a bagged logistic regression ensemble consisting of 30 models, we 

eventually trained a single logistic regression model, as its performance was similar to that 

of the ensemble. Training was stopped either after 1000 iterations or if there was very lit-

tle difference in weights (1  10
10) between iterations. 

Metal-binding residue. Training data sets for 11 different types of metal-binding 

sites were obtained and the aforementioned protocols in Sections 1.1.1, 1.1.2 and 1.1.3 

were applied. Depending on the metal, either neural network ensembles or random forests 

emerged as the best-performing models. For each model type, a general set of parameters 

was derived over all metals and was used to train the final models. Although this simplifi-

cation could potentially result in sub-optimal parameters for specific metal types, we note 

that metal-specific tuning of parameters yielded only very small improvements in perfor-

mance. 

The metals for which neural network ensembles were trained were cadmium, copper, 

iron and manganese. Before training, feature selection at a significance threshold of 

1  10
4 was performed, followed by normalization and PCA (retained variance: 99%). The 

ensemble size in these cases was 30 and each network had four hidden neurons. Training 

was stopped either after 1000 iterations or if the maximum number of validation checks 

was 100. The metals for which random forest models were trained were calcium, cobalt, 

magnesium, nickel, potassium, sodium and zinc. In this case, no feature selection or nor-

malization was performed. The final model contained 100 trees with the ‘m’ parameter set 

to the square root of the size of the feature set. We note that, although metal ion coordi-

nation occurs at specific residues, metal-binding sites in the training data were defined in 

terms of their proximity to metal ions in three-dimensional space. Therefore, training and, 

subsequently, prediction were performed on every residue of a sequence without regard to 

amino acid type. 

MoRF. For this task, the best model was a random forest with the default parame-

ters (Section 1.1.3) with no feature selection or normalization; i.e., 100 trees with the ‘m’ 
parameter set to the square root of the size of the feature set. 

PPI residue. PPI residues in the training data were defined in terms of their proxim-

ity to atoms from the partner protein in three-dimensional space and that this may not 

necessarily be indicative of their roles in binding. Owing to this fact, there remained a 

possibility that residues adjacent to PPI residues were incorrectly labeled as belonging to 
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the negative class. To address this, all negative sites within three residues or less of a pos-

itive site were excluded from training. Before training the final model, feature selection at 

a significance threshold of 1  10
12 was performed, followed by normalization and PCA 

(retained variance: 99%). The final model was an ensemble of 30 bagged neural networks, 

each with 16 hidden neurons. Training was stopped either after 1000 iterations or if the 

maximum number of validation checks was 100. 

PPI hotspot. The original training data set contained hotspot information in terms 

of G values obtained from alanine scanning experiments. As proposed by the authors of 

the original data set, we defined hotspots as those residues that resulted in G values of 

at least 2 kcal/mol and the rest as non-hotspot residues.6 The particularly difficult nature 

of this prediction problem necessitated the inclusion of two additional features. First, since 

residues that are hotspots for PPIs are by default involved in PPIs, we included scores 

from the aforementioned PPI predictor. Second, since the data were obtained from ther-

modynamic studies on single-residue alanine mutations, we artificially mutated each resi-

due in the training data set to alanine and obtained scores from a re-implemented version 

of the MUpro stability predictor.26  

We note that the use of larger window sizes negatively impacted prediction perfor-

mance. This may have been because hotspots in the training data were identified through 

single-residue mutation studies and the inclusion of neighborhood features were confound-

ers for the learner. Therefore, only features encoding the actual site; i.e., window size of 1, 

were included. Before training, feature selection at a significance threshold of 0.01 was 

performed, followed by normalization and PCA (retained variance: 99%). The final model 

was a bagged logistic regression ensemble consisting of 50 models. Training was stopped 

either after 100 iterations or if there was very little difference in weights (1  10
10) be-

tween iterations. 

RNA-binding residue. Before training the final model, feature selection at a signifi-

cance threshold of 0.01 was performed, followed by normalization and PCA (retained var-

iance: 99%). The final model was an ensemble of 30 bagged neural networks with four 

hidden neurons in each of them. Training was stopped either after 1000 iterations or if the 

maximum number of validation checks was 500. 

1.2 MutPred2 predictor development 

1.2.1 Data collection and preprocessing 

We created a data set of disease and unlabeled (putatively non-disease) variants by inte-

grating data from different sources: HGMD (June 2013), Swiss-Prot (Release 2012_09 

through SwissVar) and dbSNP (build 137). While disease substitutions came from all 

three sources, non-disease variants were compiled from Swiss-Prot and dbSNP only. We 

supplemented the non-disease set with additional variants by including residues at posi-

tions in human proteins that differed from those in highly similar proteins in other spe-

cies. Specifically, for every human protein, we first extracted pairwise alignments to other 

mammalian proteins from a 46-species multiple sequence alignment, obtained from the 

UCSC Genome Browser.27 Then, we only considered those alignments where the two se-

quences were at least 99% identical to each other and identified positions where a residue 

in the non-human sequence is replaced by a different one in the human sequence. We rea-
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soned that such changes in highly conserved sequences are less likely to be disease-causing 

because they have been tolerated over a long period of time since the speciation event. 

1.2.2 Feature extraction 

The MutPred2 feature set consists of the set of features from the original MutPred model 

with differences in representation and several new additions. In general, the MutPred2 

feature set can be divided into six groups: (1) sequence-based features, (2) substitution-

based features, (3) PSSM-based features, (4) conservation-based features, (5) homolog 

counts and (6) changes in predicted structural and functional properties. 

The sequence-based features correspond to a combination of the first group of features 

and the physicochemical properties from the second group described in Section 1.1.2. 

Similarly, the PSSM-based features are the same as the conservation-based features de-

scribed in Section 1.1.2, with differences only in the window-sizes used; w  {1, 5, 11, 21}. 
We represented the variants in three different ways. First, we extracted the score cor-

responding to the wild-type and substituted amino acid from different BLOSUM28 and 

PAM29 substitution matrices. The matrices used were BLOSUM30 to BLOSUM90 (in in-

creasing intervals of 5), BLOSUM62, BLOSUM100 and PAM10 to PAM500 (in increasing 

intervals of 10). Each score represents the likelihood of an amino acid being substituted by 

another, independent of its position in the protein. Additionally, to capture position-

independent physicochemical effects of a variant, we carried out the same steps for the 

Grantham matrix.30 Second, we created a sparse binary vector encoding all 20  19 possi-

ble combinations of wildtype and substituted residue pairs and set the element corre-

sponding to the substitution as one. Finally, to approximate the likelihood of observing a 

substitution, we computed transition frequencies for both wild-type and substituted resi-

dues, as in SNAP31 and MutPred.32 

In order to encode local conservation around a substituted position, we used the 

AL2CO program to calculate nine different conservation indices for every position in the 

46-species alignments obtained from the UCSC Genome Browser.33 Both, the normalized 

and unnormalized versions of these nine scores were calculated. Then, features were ex-

tracted by averaging index values over windows of sizes w  {1, 5, 11, 21} around the po-

sition of the variant. Additionally, the frequencies of the original and substituted residue 

in the alignment column were included as features (with and without gaps separately). All 

conservation-based features were extracted from the full alignment and also from sub-

alignments consisting of sequences from only primates and only mammals, as in previous 

work.34  

It has previously been shown that genes with highly similar paralogs are less likely to 

harbor disease mutations.35 To capture this information for a given variant, we first 

aligned its parent sequence to all remaining human proteins (canonical isoforms only) us-

ing the Needleman-Wunsch algorithm36 and then included the number of homologs at dif-

ferent sequence identity thresholds (50% to 95% in intervals of five). This procedure was 

extended to mouse proteins as well, resulting in two vectors of counts, each of length 10. 

We modeled the local effects of the variant on predicted structural and functional 

properties as follows. We first input the wild-type sequence to the various predictors in-

cluded in MutPred2 and obtained scores at the substitution site and all residues within 5 

positions of it. We then introduced the variant into the sequence in silico and input the 
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new sequence to all the property predictors. From these scores, the probabilities of chang-

es in properties, given the substitution were calculated as follows: 
 

Pr(loss of p | s) = Pr(presence of p | s)  Pr(absence of p | sXiY) 

 = Pr(P = 1| s)  (1  Pr(P = 1| sXiY)) 
 
and 
 

Pr(gain of p | s) = Pr(absence of p | s)  Pr(presence of p | sXiY) 

  = (1  Pr(P = 1 | s))  Pr(P = 1 | sXiY). 
 
 

In the above equations, when the wild-type residue at the i-th position of the protein is X 

and the replacement amino acid is Y, the score from the predictor for property p when run 

on the wild-type sequence can be interpreted as Pr(P = 1  s), where P is the random vari-

able indicating the presence or absence of property p. Similarly, the score on the substi-

tuted sequence can be treated as Pr(P = 1  sXiY). In the final feature set, for every proper-

ty, we chose the position within the 11-residue window that corresponded to the highest 

impact (loss or gain) and included the wild-type score, score after substitution, the proba-

bility of loss and the probability of gain. 

In addition to the structural properties derived from predictors developed in this work 

(Section 1.1), we used or re-implemented existing predictors for intrinsic disorder,17 sec-

ondary structure (in-house), B-factor18 and stability (model derived from MUpro26). We 

did the same for the functional property predictors and used existing sequence-based pre-

dictors for calmodulin-binding37 and 22 types of post-translational modification (PTM) 

sites.38 In the case of stability, no losses or gains were computed and the classification 

score from the predictor was directly used. We also encoded the impact of substitutions 

on sequence motifs obtained from the PROSITE39 and ELM40 databases. Regular expres-

sion matching was used to check if a substitution occurred within a motif and the number 

of such motifs was counted. A logistic transformation was applied to assign scores between 

zero and one and, subsequently, losses and gains were calculated as before. In total, 53 

properties were considered (Supplementary Table 1). 

1.2.3 Model-specific features 

We refer to the model trained on the above feature set as the ‘main’ MutPred2 model. It 

is important to note that homolog counts described in the previous section are protein-

level features and are not informative when attempting to distinguish between disease-

causing and neutral variants in the same protein. Furthermore, in practical settings, the 

computation of global sequence alignments for new sequences is expensive. Nevertheless, 

these features approximately account for the prior probability of a variant to be involved 

in disease and can, thus, rescale prediction scores for individual variants. Therefore, the 

need for the inclusion or exclusion of homolog counts as features may largely depend on 

the use case. To allow for such flexibility, we trained an additional model without these 

features and refer to it as the ‘without homolog counts’ model. 

It is well-established that positional (evolutionary) conservation is highly discrimina-

tive in the task of classifying amino acid variants. However, in some cases, owing to the 
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lack of homologs or the unavailability of pre-computed alignments for some proteins (e.g., 

alternate isoforms), these features simply cannot be calculated. To ensure that every input 

variant has a prediction, we trained a regression model for the prediction of conservation 

features from PSI-BLAST PSSMs. Specifically, two multi-output neural network ensem-

bles were trained: one for unnormalized conservation scores and another for residue col-

umn frequencies. The features for these predictors were obtained as follows. First, for each 

human protein with a UCSC alignment, 15 positions were randomly chosen. Then, for 

each position, its corresponding vector in the PSSM was extracted. In addition, the posi-

tion itself was encoded as absolute and relative (to the length of the protein) values, along 

with the amino acid at the position (encoded as a 20-element binary vector). The final 

training data set consisted of 444,660 such 64-element feature vectors. Two prediction tar-

get matrices were constructed for this training set. First, for each position, six types of 

frequencies were obtained from the UCSC alignments, with and without gaps from three 

types of alignments (as discussed in Section 1.2.2). Second, as discussed previously, nine 

conservation scores (unnormalized only) at the corresponding positions were obtained us-

ing AL2CO on the three types of alignments. 

The prediction of these 120 frequency values and 27 conservation scores was treated as 

two separate multi-target regression tasks and two corresponding neural network ensem-

bles were trained. Except for the number of outputs, the training protocols for both en-

sembles were the same. We note that this protocol was optimized in a manner similar to 

that outlined in Section 1.1.3. Each ensemble consisted of 30 feed-forward neural networks 

trained on different bootstrap samples of the training data set. Each network had a single 

hidden layer (64 neurons) with the tansig transfer function and an output layer with a 

linear transfer function. The networks were trained using resilient propagation with the 

stoppage criteria set to 1000 iterations or 500 validation checks. Although no PCA or fea-

ture selection was performed before training, both the feature and target matrices were z-

score normalized. 

We note that a separate model was not trained for the normalized versions of the 

above conservation scores. Instead, the predicted scores were simply z-score normalized to 

complete the conservation-based feature set. In this manner, prediction models could be 

used to compensate for the lack of the aforementioned conservation-based features, albeit 

with some error. Therefore, in addition to the ‘main’ and ‘with homolog counts’ models, 

two more models were trained: ‘predicted conservation, with homolog counts’ and ‘pre-

dicted conservation, without homolog counts’. Again, depending on the use case, any of 

these models can be invoked in MutPred2. 

1.2.4 Evaluation 

To ensure unbiased performance estimates, all models were evaluated using a special 10-

fold cross-validation procedure similar to that in previous work.41 Briefly, all sequences in 

the training set were first clustered together using CD-HIT such that no two proteins 

from different clusters were more than 50% identical to each other.42 Then, during cross-

validation, it was ensured that all variants from a cluster either belonged entirely to the 

training set or the test set. ROC curves and related performance measures were derived in 

the same manner as described in Section 1.1.3. 
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1.3 Positive-unlabeled predictors for ranking mechanisms 

1.3.1 Data sets 

For those properties that relied on predictors developed as a part of MutPred2, an unla-

beled data set was first created by randomly sampling 20 residues from each protein in 

MutPred2’s training set and extracting the respective feature sets for each property (the 

same as those described in Section 1.1). Then, for each property, a final unlabeled set was 

created by further sampling 10,000 data points from the master set. This number ensured 

that a very low class prior probability (1  10
4) could be estimated; i.e., if there was only 

one positive prediction for a given property in the unlabeled set. In the case of PTMs, on-

ly the specific modifiable residues were sampled for each PTM type. Next, 10,000 positive 

data points were randomly sampled for each property from their respective training data 

sets to ensure a balanced training set. In cases where the original training sets had fewer 

than 10,000 examples, all positives were included. 

For predictors where the training data and/or code were not amenable to re-training 

in the positive-unlabeled setting, alternate approaches were utilized to estimate class pri-

ors and specific data sets were collected for this purpose. In the case of intrinsically disor-

dered, coiled-coil and calmodulin-binding regions, an unlabeled set of prediction scores was 

created by running the original predictors on all proteins in the MutPred2 training set 

(wild-type only) and randomly sampling 10 scores from each protein. The positive sets for 

intrinsic disorder and calmodulin-binding were created by including the original predic-

tors’ scores for positive data points from their original training sets. Since the training and 

evaluation code for coiled-coil region prediction was implemented for this study, these 

scores could be obtained through cross-validation. In the case of stability prediction, the 

unlabeled set consisted of at most 10 missense mutations each from 1,500 randomly cho-

sen proteins in the MutPred2 training set. The sequence-based prediction of stability is 

prone to overfitting, and therefore, a new positive set was constructed by merging the da-

ta sets from Potapov et al.43 and Khan et al.44 (downloaded from VariBench45) and filtering 

them against the original predictor’s training set. Additionally, only those mutations with 

G  1 kcal/mol were retained. Thus, the positive set consisted only of mutations 

known to significantly impact stability, irrespective of their directionality. 

1.3.2 Training and evaluation 

It is important to note that, although positive data points were trained against unlabeled 

data points in Section 1.1, the unlabeled sets came from the same proteins as the positives 

and were carefully constructed to account for biases in the positive sets; e.g., removal of 

highly similar data points. Therefore, these predictors needed to be recast in a strictly 

positive-unlabeled framework, by retraining them using their positive sets against unbi-

ased random sets of unlabeled data points (as described above). 

To this end, positive-unlabeled predictors for each property were trained and evaluat-

ed using the same protocol. The AlphaMax algorithms proposed by Jain et al. assume that 

the underlying predictor outputs scores comparable to the underlying posterior distribu-

tion.46, 47 Therefore, for each property, an ensemble of 30 feed-forward neural networks was 

trained with bagging. Each network consisted of a single hidden layer with four neurons 

with the tansig function chosen as the activation function (for the output layer as well). 

As before, each network was trained on a balanced sample of positives and unlabeled data 
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points. Feature selection was performed using a t-test at a P-value threshold of 1  10
4, 

followed by z-score normalization and PCA to remove co-linear and nearly co-linear fea-

tures (retained variance: 99%). The resilient propagation algorithm was used for training 

and it was stopped either after 1000 iterations or if the maximum number of validation 

checks was 500. In the case of stability, apart from the classification and regression pre-

dictions from the original predictor, eight additional features were included to account for 

possible biases and overfitting - prediction scores for the three secondary structure catego-

ries and VSL2B intrinsic disorder at the mutated position (for both the wild-type and mu-

tated residue). All predictors were evaluated through a cross-validation procedure with 

the AUC measure, as described in Section 1.1.3. 

1.3.3 Estimation of class prior probabilities 

Because of the inherent noise in biological data sets, the noisy AlphaMax46 algorithm was 

chosen to estimate class priors for the properties in MutPred2, with some exceptions (see 

below). This algorithm uses a two-step procedure, where AlphaMax47 is first run to esti-

mate an intermediate class prior value and then run on a ‘flipped’ data set where the un-

labeled data points are treated as positives and the labeled data points are treated as neg-

atives. This allows for the intermediate estimation of the proportion of noise in the posi-

tive set. Finally, these values are adjusted to obtain the final estimates of class priors and 

noise proportions. It is important to note that although the algorithm automatically de-

tects the inflection point in the log-likelihood curve and returns the corresponding class 

prior and noise estimates, this can be unreliable. Therefore, all pairs of log-likelihood 

curves for all properties were manually inspected and the estimated values were corrected 

wherever applicable. Furthermore, the estimated class prior is limited by the size of the 

unlabeled set; i.e., for properties with priors lower than 1  10
4, the log-likelihood curves 

were characterized by unusual spikes and/or the lack of an initial flat region. In such cas-

es, parameters determining the points at which log-likelihood values were calculated were 

changed; e.g., initial point and interval size. If these did not yield improvements in the 

nature of the curve, both estimates were set to 1  10
4. 

In the case of intrinsic disorder, calmodulin binding and coiled-coil regions, we used 

the same approach due to practical constraints; however, it is important to note that 

these models were not trained in a strictly positive-unlabeled setting. In the case of sec-

ondary structure and B-factor, it was assumed that current fractions in PDB provide rea-

sonably accurate estimates of true prior probabilities and sophisticated approaches (such 

as those above) were not needed. Therefore, these fractions were recorded in 1,000 ran-

domly selected monomers from PDB. This was repeated 10 times and the final class prior 

was taken to be the mean value obtained from these 10 iterations. In the case of sequence 

motifs, no prior probabilities were estimated because this property did not utilize super-

vised learning methods. 

1.3.4 Transformation to posterior distribution 

The estimated class priors were combined with raw prediction scores from the positive-

unlabeled predictors using the transformation described by Jain et al.46 to obtain posterior 

probabilities, as follows: 
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where  is the estimated class prior (the fraction of positives in the unlabeled set),  is 

the fraction of positives in the set labeled as positive, p(S = 0) and p(S = 1) are the frac-

tions of unlabeled and labeled (positive) data points in the training set, respectively, and 

 (x) is the raw prediction score. Here, in almost all cases, the ratio p(S = 0)/p(S = 1) is 

set to one because each member of the neural network ensemble was trained on a bal-

anced set of positive and unlabeled data. This transformation assumes that the raw pre-

diction scores approximate the underlying posterior distribution as closely as possible. 

This assumption may not hold in practice and, as a result, can lead to posteriors outside 

the allowed interval between zero and one. In such cases, all values below zero were 

changed to zero and all values above one were changed to one. 

As before, even when the problems were not strictly positive-unlabeled, this same ap-

proach was adopted for the sake of convenience; i.e., if the set of negative examples is bi-

ased, it might be beneficial to ignore them and exploit an unbiased unlabeled set. In cases 

where the class priors were estimated directly from real data sets (secondary structure and 

B-factors), posterior probabilities were obtained using a transformation for positive-

negative learning48, 49 as more appropriate: 
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where the notation is the same as above. 

2 Supplementary results 

2.1.1 Comparison with MutPred 

When evaluating the MutPred2 model on MutPred’s training set in cross-validation exper-

iments using, we found that MutPred2 outperformed the original MutPred approach 

(Supplementary Fig. 2). This serves to confirm the utility of including molecular data 

through an updated feature set and algorithms for feature representation and learning. To 

further understand which aspects of MutPred2 have improved over MutPred, we tested 

two hypotheses through cross-validation on the MutPred2 training set. First, we surmised 

that the difference in performances of MutPred2 and MutPred could be due to differing 

encoding schemes and features that capture conservation in these tools (specifically, the 

consideration of conservation over the neighborhood of the substitution and the inclusion 

of unnormalized conservation scores; Supplementary Table 7). To test this hypothesis, we 

trained a model that only contained features derived from PSI-BLAST and conservation 

scores that best represented those included in the original MutPred model. This baseline 

model resulted in an AUC of 80.5%. We found that when neighborhood conservation was 

included, the AUC increased to 82.5% and that it further increased to 84.5% when un-
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normalized conservation scores were added. Second, we investigated whether MutPred2 

benefited from an expanded set of structural and functional properties. Since these fea-

tures tend to be highly correlated with conservation, we trained two models that solely 

utilized features derived from these properties, a model with all properties included in 

MutPred2 and a model with the 14 original properties from MutPred. We found that the 

expanded property set resulted in an improvement in performance (76.3% vs. 73.3%). Alt-

hough this represents a modest improvement, we note that it is achieved despite the fact 

that, unlike MutPred, each built-in property predictor in MutPred2 is minimally custom-

ized and optimized for its prediction task. 

2.1.2 Clustering of disease categories based on affected properties 

We further broke down the mutations from HGMD based on the diseases that they were 

involved in. As in previous work, we mapped general UMLS concepts to disease names 

and created disease subsets corresponding to 17 broad disease categories.50 We then re-

peated the same enrichment analysis as that on the full data set (Methods; Fig. 3). As ex-

pected, ‘Metabolic’ disorders and the ‘Full’ data clustered together with respect to the 

pattern of enriched properties (Supplementary Fig. 5). Two broad clusters were observed 

when considering the diseases: a cluster with ‘Psychiatric’, ‘Reproductive’ and ‘Respirato-

ry’ diseases and a cluster with all other diseases. It is unclear why these three groups of 

diseases were clustered together, but it appears to be largely due to a depletion of muta-

tions impacting metal-binding. In terms of properties, hydroxylation was singled out as an 

outlier, largely due to its enrichment in musculoskeletal and skin disorders. This can be 

explained by the propensity for collagen (frequently occurring in these organs/systems) to 

undergo hydroxylation at multiple positions.51 Furthermore, there were two large sub-

clusters similar to the trend observed in Fig. 3 of the main manuscript; one dominated by 

ordered and structural properties and the other dominated by properties related to flexi-

bility and disorder. This second category is largely present as depletions, as in the case of 

the full data set. 
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3 Supplementary tables 
 
Supplementary Table 1: Residue-level properties included in MutPred2. 
 

Structural property Functional property 
Intrinsic disorder Catalytic 
B-factor Calmodulin binding 
Relative solvent accessibility DNA binding 
Helix RNA binding 
Strand Protein-protein interaction (PPI) 
Loop PPI hotspot 
Signal peptide and topology (N-terminus, 
helix, C-terminus, cleavage site) 

Molecular Recognition Feature (MoRF) 

Transmembrane and topology (Non-
cytoplasmic loop, transmembrane helix, 
cytoplasmic loop) 

Allosteric 

Coiled-coil region 
Metal binding (11: cadmium, calcium, co-
balt, copper, iron, magnesium, manganese, 
nickel, potassium, sodium, zinc) 

Disulfide linkage 

Post-translational modification (22: acety-
lation, ADP-ribosylation, amidation, C-
linked glycosylation, carboxylation, farne-
sylation, geranylgeranylation, GPI-anchor 
amidation, hydroxylation, methylation, 
myristoylation, N-linked glycosylation, N-
terminal acetylation, O-linked glycosyla-
tion, palmitoylation, phosphorylation, pro-
teolytic cleavage, pyrrolidone carboxylic 
acid, sulfation, SUMOylation, ubiquityla-
tion) 

Stability Sequence motif 
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Supplementary Table 2: Summary of different structural property predictors. 
 

Structural prop-
erties 

Data source 
(Reference) 

Classes 
Data set size after redun-

dancy removal Final model 
Positives Negatives 

Relative solvent 
accessibility 

1 Exposed/buried 28,050 22,799 
Neural net-

work ensemble

Signal / trans-
membrane (TM) 

topology 
2 

Signal peptide 
(N-terminus) 

9,069 

765,589 
8-output neu-
ral network 
ensemble 

Signal helix 14,294 

Signal peptide 
(C-terminus) 

8,408 

Signal cleavage 1,320 

TM (inside) 40,221 

TM helix 29,241 

TM (outside) 48,821 

Coiled-coil re-
gion 

3 
Coiled coil / 
not coiled coil 

64,431 179,593 
Hidden Mar-
kov model 
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Supplementary Table 3: Summary of different functional property predictors.  
 

Functional proper-
ties 

Data source 
(Reference) 

Classes 

Data set size after redun-
dancy removal Final model 

Positives Negatives 

Catalytic 4 
Catalytic/not 

catalytic 
2,162 13,194 

Logistic regression 
ensemble 

DNA-binding 4 
Binding/non-

binding 
3,668 2,890 Logistic regression 

RNA-binding 5 
Binding/non-

binding 
7,776 4,900 

Neural network 
ensemble 

Protein-protein 
interaction (PPI) 

4 
Binding/non-

binding 
4,283 8,706 

Neural network 
ensemble 

PPI hotspot 6 
Hotspot/non-

hotspot 
109 350 

Logistic regression 
ensemble 

MoRF 7 
MoRF/non-

MoRF 
5,689 271,202 Random forest 

Allosteric 8 
Allosteric/not 

allosteric 
1,446 107,593 Random forest 

Metal-binding 4 

Cadmium 981 984 
Neural network 

ensemble 

Calcium 4,406 4,724 Random forest 

Cobalt 510 526 Random forest 

Copper 361 427 
Neural network 

ensemble 

Iron 726 774 
Neural network 

ensemble 

Magnesium 2,960 3,235 Random forest 

Manganese 1,267 1,322 
Neural network 

ensemble 

Nickel 647 657 Random forest 

Potassium 940 975 Random forest 

Sodium 2,695 2,737 Random forest 

Zinc 5,237 5,650 Random forest
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Supplementary Table 4: Performance values for property predictors. 
 

Predictor AUC sn at sp ≈ 90% sn at sp ≈ 95% sn at sp ≈ 99% 

Relative solvent accessibil-
ity 

87.51 64.68 49.19 20.09 

Signal peptide (N-terminus) 97.35 95.21 93.40 89.49 

Signal helix 98.89 98.25 97.49 93.20 

Signal peptide (C-terminus) 97.69 96.69 94.75 83.33 

Signal cleavage 83.84 80.83 68.71 53.41 

Cytoplasmic loop 78.27 49.68 40.53 22.33 

Transmembrane region 98.16 96.70 95.04 83.40 

Non-cytoplasmic loop 71.83 34.47 24.31 12.91 

Non-transmembrane 83.18 32.18 20.72 1.23 

Coiled coil 95.37 90.85 81.47 76.51 

Catalytic residue 90.07 67.81 48.24 14.29 

DNA-binding 80.82 44.55 28.52 6.24 

RNA-binding 79.33 43.69 29.63 11.86 

PPI residue 70.10 26.99 14.52 3.95 

PPI hotspot 66.65 27.52 7.34 2.75 

MoRF 73.15 35.77 24.03 8.07 

Allosteric site 73.41 29.94 18.12 3.73 

Cadmium-binding 62.25 21.41 15.60 4.38 

Calcium-binding 73.30 39.70 26.74 8.49 

Cobalt-binding 77.34 47.84 34.90 10.98 

Copper-binding 81.87 50.42 36.84 20.22 

Iron-binding 89.15 73.55 49.45 11.98 

Magnesium-binding 77.18 45.41 32.94 14.86 

Manganese-binding 83.71 54.22 34.81 16.73 

Nickel-binding 70.77 39.88 27.05 7.57 

Potassium-binding 65.51 21.28 12.66 2.77 

Sodium-binding 64.03 22.12 12.88 4.04 

Zinc-binding 83.01 60.24 47.87 24.21 
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Supplementary Table 5: Summary of the results for the positive-unlabeled property predictors 

used to infer molecular mechanisms of disease. Sizes of the training sets are shown along with performance 

values estimated through cross-validation. The last two columns show the parameters estimated for each 

property using these predictors ( is the estimated class prior and  is the estimated fraction of positives 

in the positive set). For PTMs, prior probabilities were calculated only on the modifiable residues for each 

PTM. Prior probabilities for helix, strand, loop and B-factor were calculated directly from PDB and were 

found to be 0.2767, 0.1804, 0.3102 and 0.1546, respectively. 
 

Property 
Number of sites 

AUC  
Positive Unlabeled 

Intrinsic disorder 51,954 298,210 NA 0.2327 0.9309 

Relative solvent accessibility 10,000 10,000 87.12 0.0491 0.9809 

N-terminal signal 9,069 10,000 99.26 0.0001 0.9999 

Signal helix 10,000 10,000 99.26 0.0001 0.9999 

C-terminal signal 8,408 10,000 99.07 0.0001 0.9999 

Signal cleavage 1,320 10,000 98.87 0.0001 0.9999 

Non-cytoplasmic loop 10,000 10,000 86.40 0.1081 0.9821 

Transmembrane region 10,000 10,000 97.51 0.0001 0.9999 

Cytoplasmic loop 10,000 10,000 76.40 0.0294 0.9806 

Coiled coil 64,431 298,210 NA 0.0291 0.9709 

Catalytic site 2,162 10,000 97.22 0.0103 0.9999 

Calmodulin binding 924 298,210 NA 0.0778 0.9723 

DNA binding 1,446 10,000 90.55 0.0198 0.9705 

RNA binding 3,668 10,000 92.04 0.0001 0.9999 

PPI residue 7,776 10,000 84.02 0.1180 0.9823 

PPI hotspot 4,283 10,000 80.51 0.0688 0.9813 

MoRF 109 10,000 80.04 0.1232 0.9473 

Allosteric site 5,689 10,000 85.66 0.0393 0.9807 

Cadmium binding 981 10,000 94.25 0.0001 0.9999 

Calcium binding 4,406 10,000 93.76 0.0001 0.9999 

Cobalt binding 510 10,000 96.14 0.0001 0.9799 

Copper binding 361 10,000 97.46 0.0099 0.9801 

Iron binding 726 10,000 98.43 0.0001 0.9999 

Magnesium binding 2,960 10,000 93.19 0.0001 0.9999 

Manganese binding 1,267 10,000 96.77 0.0197 0.9803 

Nickel binding 647 10,000 96.04 0.0193 0.9607 

Potassium binding 940 10,000 89.31 0.0197 0.9803 

Sodium binding 2,695 10,000 87.09 0.0295 0.9805 

Zinc binding 5,237 10,000 96.70 0.0201 0.9999 

Acetylation 6,848 10,000 72.08 0.1371 0.9137 

ADP-ribosylation 108 10,000 76.29 0.1090 0.9911 

Amidation (motif) 210 609 94.02 0.0197 0.9803 

Amidation (non-motif) 247 10,000 98.30 0.0001 0.9999 
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C-linked glycosylation 32 7,651 99.43 0.0001 0.9999 

Carboxylation 112 10,000 96.50 0.0001 0.9399 

Disulfide linkage 9,736 10,000 85.40 0.0974 0.9728 

Farnesylation 41 10,000 97.38 0.0001 0.9399 

Geranylgeranylation 30 10,000 98.59 0.0001 0.9999 

GPI anchor amidation 84 10,000 98.10 0.0197 0.9803 

Hydroxylation 214 10,000 94.77 0.0001 0.9599 

Methylation (K) 303 10,000 72.77 0.0650 0.8130 

Methylation (R) 325 10,000 80.49 0.0142 0.7041 

Myristoylation 99 10,000 99.40 0.0001 0.9799 

N-linked glycosylation (motif) 10,000 2,757 80.18 0.0681 0.9720 

N-linked glycosylation (non-motif) 719 10,000 86.77 0.0001 0.8599 

N-terminal acetylation (A) 527 10,000 100.00 0.0001 0.9999 

N-terminal acetylation (G) 21 10,000 99.22 0.0001 0.9999 

N-terminal acetylation (M) 334 10,000 98.04 0.0197 0.9803 

N-terminal acetylation (S) 345 10,000 99.96 0.0001 0.9999 

N-terminal acetylation (T) 83 10,000 99.90 0.0001 0.9999 

O-linked glycosylation (S) 755 10,000 85.03 0.0283 0.9416 

O-linked glycosylation (T) 672 10,000 87.36 0.0544 0.9053 

Palmitoylation 245 10,000 91.30 0.0001 0.9699 

Phosphorylation (S) 10,000 10,000 82.09 0.0876 0.9725 

Phosphorylation (T) 10,000 10,000 80.42 0.0584 0.9717 

Phosphorylation (Y) 10,000 10,000 75.77 0.1462 0.9744 

Proteolytic cleavage 997 10,000 79.91 0.0172 0.8624 

Pyrrolidone carboxylic acid 275 10,000 90.38 0.0389 0.9711 

Sulfation 121 10,000 95.68 0.0393 0.9807 

SUMOylation (motif) 523 1,342 79.61 0.1031 0.9372 

SUMOylation (non-motif) 221 10,000 68.06 0.1291 0.8606 

Ubiquitylation 1,092 10,000 63.54 0.0947 0.7284 

Stability 817 10,045 84.87 0.0291 0.9709 
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Supplementary Table 6: Performance values for different combinations of training and test sets. 

AUC values from 10-fold cross-validation are shown. Colored cells correspond to the best performing 

model (training set) for a given test set. 
 

TRAINING TEST
Disease Non-disease AD 

vs. 
AN 

AD 

vs. 
CN 

AD 

vs. 
RN 

AD 

vs. 
dbS 

AD 

vs. 
SP 

AD 

vs. 
Ho 

HG 

vs. 
SP 

DWF 

vs. 
NWF 

DWF 

vs. 
CN 

DWF 

vs. 
RN 

Data set Size Data set Size 

All (AD) 53,180 

All (AN) 206,946 87.7 92.9 87.4 87.8 88.2 95.6 88.6 80.2 87.1 78.8
Common 

(CN) 
17,634 86.5 92.8 86.5 86.5 87.7 95.9 88.1 79.6 87.2 78.2 

Rare only 
(RN) 

90,214 86.7 92.7 88.2 86.9 87.0 95.0 87.3 79.5 85.9 78.3 

dbSNP 
(dbS) 

190,509 87.7 92.8 87.5 87.8 88.1 94.8 88.5 80.1 86.9 78.8 

Swiss-Prot 
(SP) 

33,042 86.6 92.4 85.8 86.5 88.3 95.4 88.8 79.4 87.0 77.9 

Homology 
(Ho) 

6,193 75.2 82.8 73.0 74.5 78.9 99.4 79.2 71.5 79.9 69.8 

HGMD 
(HG) 

50,949 SP 33,042 86.5 92.2 85.6 86.4 88.3 95.3 88.7 79.3 86.9 77.9 

With allele 
frequency 
(DWF) 

7,856 

With allele 
frequency 
(NWF) 

107,848 85.1 91.4 84.0 85.0 86.5 95.3 86.9 80.1 87.6 78.7 

CN 17,634 83.5 90.9 81.5 83.2 85.9 95.1 86.3 79.4 88.0 77.8
RN 90,214 85.1 91.1 84.1 85.1 86.3 94.8 86.6 80.2 87.0 78.8
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Supplementary Table 7: Top 50 features (5% of all significant features) in MutPred2 as deter-

mined by the Wilcoxon rank sum tests. Since P-values were extremely small (and identical), the features 

are ranked by the absolute value of the z-statistic. As shown, these features correspond to one of the nine 

conservation scores in AL2CO or the column frequency of the reference or alternate residue in alignments 

(at or in the neighborhood of the substitution position). 
  

Feature 
Window 
length |z-statistic| 

Mean normalized unweighted entropy (Vertebrates) 1 180.60 

Mean normalized independent count entropy (Vertebrates) 1 179.38 

Mean unnormalized unweighted entropy (Vertebrates) 1 178.79 

Mean normalized unweighted sum-of-pairs (Vertebrates) 1 178.33 

Mean normalized independent count variance (Vertebrates) 1 176.05 

Mean normalized independent count sum-of-pairs (Vertebrates) 1 175.64 

Mean unnormalized unweighted sum-of-pairs (Vertebrates) 1 175.56 

Mean unnormalized independent count entropy (Vertebrates) 1 175.35 

Mean normalized Henikoff entropy (Vertebrates) 1 175.12 

Mean unnormalized Henikoff entropy (Vertebrates) 1 173.84 

Mean unnormalized independent count sum-of-pairs (Vertebrates) 1 173.14 

Mean unnormalized independent count variance (Vertebrates) 1 172.55 

Mean normalized Henikoff sum-of-pairs (Vertebrates) 1 172.15 

Mean unnormalized unweighted entropy (Mammals) 1 171.97 

Gapped column frequency of alternate residue (Vertebrates) 1 171.88 

Mean unnormalized Henikoff sum-of-pairs (Vertebrates) 1 169.66 

Mean unnormalized independent count entropy (Mammals) 1 168.29 

Mean unnormalized Henikoff entropy (Mammals) 1 167.26 

Mean normalized unweighted variance (Vertebrates) 1 166.42 

Mean unnormalized unweighted variance (Vertebrates) 1 166.29 

Mean unnormalized unweighted sum-of-pairs (Mammals) 1 163.18 

Mean unnormalized Henikoff variance (Vertebrates) 1 162.32 

Mean normalized Henikoff variance (Vertebrates) 1 162.27 

Mean normalized independent count entropy (Mammals) 1 162.02 

Mean PSI-BLAST information per position (Mean) 1 161.93 

Mean normalized unweighted entropy (Mammals) 1 160.91 

Mean normalized independent count sum-of-pairs (Mammals) 1 160.89 

Mean unnormalized independent count sum-of-pairs (Mammals) 1 160.00 

Mean unnormalized independent count variance (Mammals) 1 159.63 

Mean normalized unweighted sum-of-pairs (Mammals) 1 159.46 

Mean normalized independent count variance (Mammals) 1 158.82 

Gapped column frequency of alternate residue (Mammals) 1 158.39 

Mean unnormalized Henikoff sum-of-pairs (Mammals) 1 157.55 

Gapped column frequency of reference residue (Vertebrates) 1 157.23 

Mean normalized Henikoff entropy (Mammals) 1 155.25 
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Mean unnormalized independent count variance (Vertebrates) 5 154.31 

Mean unnormalized independent count sum-of-pairs (Vertebrates) 5 154.05 

Mean unnormalized independent count sum-of-pairs (Vertebrates) 11 153.95 

Mean unnormalized independent count variance (Vertebrates) 11 153.40 

Mean normalized Henikoff sum-of-pairs (Mammals) 1 153.06 

Mean unnormalized unweighted variance (Mammals) 1 152.30 

Ungapped column frequency of alternate residue (Vertebrates) 1 151.91 

Ungapped column frequency of reference residue (Vertebrates) 1 150.92 

Mean unnormalized unweighted sum-of-pairs (Vertebrates) 5 150.17 

Mean unnormalized independent count variance (Mammals) 5 149.45 

Mean unnormalized independent count sum-of-pairs (Vertebrates) 21 148.75 

Mean unnormalized unweighted variance (Vertebrates) 5 148.56 

Mean unnormalized independent count sum-of-pairs (Mammals) 5 148.46 

Mean unnormalized independent count variance (Mammals) 11 147.96 

Mean unnormalized independent count sum-of-pairs (Mammals) 11 147.75 
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Supplementary Table 8: Detailed performance values for MutPred2 and other methods on the 

independent test set, filtered against these methods at 50% sequence identity. Sensitivity (Sens.), preci-

sion (Prec.) and balanced accuracy (Bal. acc.) were recorded at specificity (Spec.) value of 95%. ‘NA’ de-

notes cases where specificity values were not available at this threshold. 
 

Full set (343 pathogenic and 137 benign) 

Predictor 
Coverage 

AUC Spec. Sens. Prec. Bal. acc. 
Pathogenic Benign 

MutPred2 100.0 100.0 84.9 95.6 42.3 96.0 69.0 

MutPred 100.0 100.0 80.1 95.6 30.6 94.6 63.1 

PolyPhen2 
(HumVar) 

100.0 100.0 77.6 96.4 12.2 89.4 54.3 

FATHMM 87.5 91.2 53.7 95.0 8.0 40.0 51.5 

SNPs&GO 100.0 100.0 80.8 95.6 35.9 95.4 65.7 

SIFT 94.5 84.7 82.9 95.1 38.8 73.8 66.9 

MutationTaster2 97.7 98.5 69.7 NA NA NA NA 

CADD 99.4 100.0 83.8 95.6 28.2 94.1 61.9 

GERP++ 99.4 100.0 71.4 96.4 5.3 78.3 50.8 

PhyloP 99.4 100.0 67.1 NA NA NA NA 

Fully covered subset (285 pathogenic and 107 benign) 

Predictor 
Coverage 

AUC Spec. Sens. Prec. Bal. acc. 
Pathogenic Benign 

MutPred2 100.0 100.0 87.1 95.3 43.5 96.1 69.4 

MutPred 100.0 100.0 82.3 95.3 39.3 95.7 67.3 

PolyPhen2 
(HumVar) 

100.0 100.0 79.6 95.3 12.3 87.5 53.8 

FATHMM 100.0 100.0 53.3 95.1 9.4 41.7 52.2 

SNPs&GO 100.0 100.0 81.7 95.3 34.7 95.2 65.0 

SIFT 100.0 100.0 82.6 95.1 36.5 73.6 65.8 

MutationTaster2 100.0 100.0 72.4 NA NA NA NA 

CADD 100.0 100.0 83.9 95.3 27.4 94.0 61.4 

GERP++ 100.0 100.0 76.8 95.3 9.1 83.9 52.2 

PhyloP 100.0 100.0 69.1 NA NA NA NA 
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Supplementary Table 9: Detailed performance values for MutPred2 and other methods on the 

independent test set, filtered against these methods at 80% sequence identity. Sensitivity (Sens.), preci-

sion (Prec.) and balanced accuracy (Bal. acc.) were recorded at specificity (Spec.) value of 95%. ‘NA’ de-

notes cases where specificity values were not available at this threshold. 
 

Full set (700 pathogenic and 282 benign) 

Predictor 
Coverage 

AUC Spec. Sens. Prec. Bal. acc. 
Pathogenic Benign 

MutPred2 100.0 100.0 84.8 95.0 44.4 95.7 69.7 

MutPred 100.0 100.0 79.7 95.0 37.3 94.9 66.2 

PolyPhen2 
(HumVar) 

100.0 99.7 79.4 95.0 26.6 93.0 60.8 

FATHMM 91.0 93.3 56.6 95.1 9.1 43.6 52.1 

SNPs&GO 100.0 100.0 80.3 95.0 39.4 95.2 67.2 

SIFT 94.1 81.9 79.2 95.1 29.9 68.3 62.5 

MutationTaster2 98.6 98.6 70.4 NA NA NA NA 

CADD 99.4 99.7 83.4 95.0 28.7 93.5 61.9 

GERP++ 99.4 99.3 70.0 95.0 6.6 76.7 50.8 

PhyloP 99.4 99.7 66.3 95.0 9.2 82.1 52.1 

Fully covered subset (602 pathogenic and 215 benign) 

Predictor 
Coverage 

AUC Spec. Sens. Prec. Bal. acc. 
Pathogenic Benign 

MutPred2 100.0 100.0 86.7 95.4 46.8 96.6 71.1 

MutPred 100.0 100.0 81.9 95.4 41.2 96.1 68.3 

PolyPhen2 
(HumVar) 

100.0 100.0 81.0 97.2 17.4 94.6 57.3 

FATHMM 100.0 100.0 56.6 95.0 11.6 45.5 53.3 

SNPs&GO 100.0 100.0 81.8 95.4 38.0 95.8 66.7 

SIFT 100.0 100.0 79.5 95.0 31.6 69.4 63.3 

MutationTaster2 100.0 100.0 73.0 NA NA NA NA 

CADD 100.0 100.0 84.1 95.4 30.2 94.8 62.8 

GERP++ 100.0 100.0 75.2 95.4 12.0 87.8 53.7 

PhyloP 100.0 100.0 69.4 95.4 9.1 84.6 52.2 
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Supplementary Table 10: A list of high-scoring amino acid variants with MutPred2 scores and 

predicted molecular mechanisms in neurodevelopmental cases vs. controls. Only those variants with gen-

eral MutPred2 scores ≥0.67 (threshold corresponding to a 10% FPR) are shown. For each variant, the top 

3 properties predicted to be affected are shown (ranked by posterior probability). 
 
 
 

See separate Excel file.  
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Supplementary Figure 4: Estimation of proportions. Log-likelihood curves (blue) produced by 

the AlphaMax algorithm.
46, 47

 The vertical red lines give estimates of the proportion of variants labeled as 

pathogenic in unlabeled data (left) and the proportion of unlabeled variants in the data set labeled as 

pathogenic (right). The proportions of pathogenic variants in the unlabeled set and the proportion of neu-

tral variants in the pathogenic set were then derived as proposed by Jain et al.
46, 47 
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