
Theory Supplement

1 Dispersion Estimation

Let Ycg be the observed count of gene g in cell c. We can model Ycg as a function of a cell-specific
normalization constant sc and a true expression λcg. We place a Gamma prior on λcg.

Ycg ∼ Poisson(scλcg)

λcg ∼ Gamma(αcg, βcg)

Let µ be the mean and v be the variance of a Gamma-distributed random variable X ∼ Gamma(α, β).
Under the shape-rate parameterization,

f(x) =
βα

Γ(α)
xα−1e−βx

µ = α/β

v = α/β2

Instead of parameterizing by α and β, we can reparameterize in terms of the moments µ and v:

λcg ∼ Gamma(αcg, βcg)⇔ λcg ∼ Gamma

(
µ2cg
vcg

,
µcg
vcg

)
µcg is obtained by fitting a LASSO Poisson regression as described in the Methods. Next, we want
to estimate vcg. We assume that for a given gene g, there is an underlying mean-variance or dis-
persion relationship common to that gene. The following are three scenarios which we consider:

1. Constant variance: vcg = vg

2. Constant Fano: vcg = Fgµcg

3. Constant CV 2: vcg = CV 2
g µcg

1.1 Constant Variance

Under this scenario, we assume that all the cells for a particular gene share a variance vg which is
independent of the mean. This independence implies that the predicted values are homoscedastic.
Thus, the prior Gamma distribution under the moment parametrization takes the form

λcg ∼ Gamma

(
µ2cg
vg
,
µcg
vg

)
To find vg, we need to maximize the marginal likelihood of Ycg given µcg and vg. Here, Ycg|µcg, vg
follows a negative binomial distribution with density function

f(y|µcg, vg) =
syc
y!

(
µcg
vg

)
µ2cg
vg

Γ(
µ2cg
vg

)

Γ(y +
µ2cg
vg

)

(sc +
µcg
vg

)
y+

µ2cg
vg
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Assuming independence across cells, the likelihood is simply the product of the individual densities:

L(vg|Ycg, µcg) =
C∏
c=1

s
Ycg
c

Ycg!

(
µcg
vg

)
µ2cg
vg

Γ(
µ2cg
vg

)

Γ(Ycg +
µ2cg
vg

)

(sc +
µcg
vg

)
Ycg+

µ2cg
vg

l(vg|Ycg, µcg) =

C∑
c=1

Ycg log sc − log Ycg! +
µ2cg
vg

logµcg −
µ2cg
vg

log vg − log Γ

(
µ2cg
vg

)

+ log Γ

(
Ycg +

µ2cg
vg

)
−
(
Ycg +

µ2cg
vg

)
log

(
sc +

µcg
vg

)
We find the vg which maximizes this likelihood using the optimize function in R.

1.2 Constant Fano Factor

Under the constant Fano factor assumption, we assume that the variance scales linearly with the
mean. This corresponds with assuming the distribution of a gene is Poisson-like in the mean-variance
relationship. The Fano factor Fg can be expressed as

Fg =
vcg
µcg

=
1

βg

Thus, assuming a constant Fano factor is equivalent to assuming a constant rate βg parameter in
the usual Gamma distribution parametrization. Therefore, we have the following prior and want to
find βg.

λcg ∼ Gamma(µcgβg, βg)

The log-likelihood is calculated similarly as above.

l(βg|Ycg, µcg) =

C∑
c=1

Ycg log sc − log Ycg! + µcgβg log βg − log Γ(µcgβg)

+ log Γ(Ycg + µcgβg)− (Ycg + µcgβg) log(sc + βg)

For numerical stability, we maximize with respect to 1/βg to get βg.

1.3 Constant Coefficient of Variation

Under the constant coefficient of variation assumption, we assume that the variance scales quadrat-
ically with the mean. This corresponds to a typical constant scaling of a Gamma distribution, since
scaling by a constant c still gives a Gamma distribution with mean scaled by c and variance scaled
by c2. The coefficient of variation CV 2 can be expressed as

CV 2
g =

vcg
µ2cg

=
1

αg

Thus, assuming a constant coefficient of variation is equivalent to assuming a constant shape αg
parameter in the usual Gamma distribution parametrization. Therefore, we have the following prior
and want to find α̂g.

λcg ∼ Gamma

(
αg,

αg
µcg

)
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The log-likelihood is

l(αg|Ycg, µcg) =

C∑
c=1

Ycg log sc − log Ycg! + αg logαg − αg logµcg − log Γ(αg)

+ log Γ(Ycg + αg)− (Ycg + αg) log

(
sc +

αg
µcg

)
For numerical stability, we maximize with respect to 1/αg to get αg.

2 Correlation Adjustment Factor Derivation

The SAVER estimate λ̂cg contains uncertainty, which is represented by the posterior distribution.

Thus, if we want to calculate the correlation between gene g and g′, Cor(λ̂g, λ̂g′) will overestimate
the actual correlation. What we actually want to calculate is Cor(λg,λg′). We can express this as

Cor(λg,λg′) =
Cov(λg,λg′)√

Var(λg)
√

Var(λg′)

Let Z = {Yg,Yg′ ,αg,αg′ ,βg,βg′}. Given Z, λg and λg′ are independent. By the law of total
covariance,

Cov(λg,λg′) = E[Cov(λg,λg′ |Z)] + Cov[E(λg|Z),E(λg′ |Z)]

= Cov(λ̂g, λ̂g′)

In addition, by the law of total variance,

Var(λg) = Var[E(λg|Z)] + E[Var(λg|Z)]

= Var(λ̂g) + E[Var(λg|Z)]

Thus,

Cor(λg,λg′) =
Cov(λ̂g, λ̂g′)√

Var(λ̂g) + E[Var(λg|Z)]
√

Var(λ̂g′) + E[Var(λg′ |Z)]

=
Cov(λ̂g, λ̂g′)√

Var(λ̂g)
√

Var(λ̂g′)

√
Var(λ̂g)

√
Var(λ̂g′)√

Var(λ̂g) + E[Var(λg|Z)]
√

Var(λ̂g′) + E[Var(λg′ |Z)]

= Cor(λ̂g, λ̂g′)

√
Var(λ̂g)

√
Var(λ̂g′)√

Var(λ̂g) + E[Var(λg|Z)]
√

Var(λ̂g′) + E[Var(λg′ |Z)]

Let subscript s represent the sample estimate. Then, the sample adjusted correlation is

Cors(λg,λg′) = Cors(λ̂g, λ̂g′)

√
Vars(λ̂g)

√
Vars(λ̂g′)√

Vars(λ̂g) + Es[Var(λg|Z)]
√

Vars(λ̂g′) + Es[Var(λg′ |Z)]
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Supplementary Figure 1 Comparison of distributions of expression across cells between FISH, observed Drop-seq, and 
SAVER recovered expression for 13 genes.
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Supplementary Figure 2 Gene-to-gene correlations in differentiating mouse embryonic stem cells (a) Pluripotency factor 
Trim28 and epigenetic regulator Dnmt3b. (b) Pluripotency factor Sox2 and Dnmt3b. (c) Epiblast marker Krt18 and 
pluripotency marker Nanog. (d) Primitive Endoderm marker Sparc and Nanog.



Efficiency SAVER+Rank Obs+Rank MAST SCDD SCDE
Reference 3224 2722 2757 2829 2318

25% 3133 1916 1899 2050 1170
10% 2878 1328 1222 1329 682
5% 2579 895 725 926 403

Supplementary Table 1 Significant differentially expressed genes.


