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Model details

Here we provide additional details regarding the context-dependent clustering model described
in the main paper.

Generative process in the decoupled model

To illustrate workings of the second formulation of the clustering model, the decoupled model,
here we give an overview of the generative process in the model:

1. For contexts c = 1, . . . , C, sample parameters for K(c) clusters from the prior

θ
(c)
l ∼H

(c)

2. For contexts c = 1, . . . , C, sample local mixture proportions

π(c) ∼ Dirichlet
( α0

K(c)
, . . . ,

α0

K(c)

)
3. Sample global mixture proportions for S global clusters

ρ ∼ Dirichlet
(γ0
S
, . . . ,

γ0
S

)
4. For the S global clusters, sample assignment to local clusters in each context

k(c)s | π(c) ∼ Categorical
(
π(c)

)
, c = 1, . . . , C

5. For N data points, sample their assignment to global clusters

zn | ρ ∼ Categorical (ρ)

6. Sample value of each data point given its cluster assignment

x(c)
n | zn,

(
k(c)s

)S
s=1

, (θl)
K(c)

l=1 ∼ F (c)
(
x(c)
n | θ

(c)
kzn

)
Relation to the hierarchical Dirichlet process and other models

Both models presented in the main paper are finite models with pre-specified numbers of clusters
K(c) for each context c and the number of global clusters S. However, we can also view them
as finite approximations to the Dirichlet process mixture model.

The decoupled model (Eq. (5) in the main paper) is composed of two levels of finite Dirichlet
mixture models. Ishwaran and Zarepour [1, 2] show that a mixture model with a finite Dirichlet
prior and with a symmetric concentration parameter is a close approximation for the Dirichlet
process. More precisely, the finite Dirichlet prior converges weakly (converges in distribution)
to a Dirichlet process as the number of clusters goes to infinity, K → ∞ [2]. This applies to
both Dirichlet distributions in the decoupled model (Eq. (1)).

Kurihara et al. [3] also note that in practice there is little difference between using finite sym-
metric Dirichlet priors and stick-breaking approximations to Dirichlet processes in the context
of approximate variational inference.

Therefore, if we set the number of clusters large enough, we can view the models as variants
of hierarchical Dirichlet process mixtures. The number of clusters serves only as an upper bound
on the number of clusters that we can expect in the data. Only a smaller number of clusters will

2



be required to represent the data in the posterior. We can also use the theory behind Dirichlet
processes to approximate the number of clusters that we can expect in the data [4]:

E[S] ' γ log

(
1 +

N

γ

)
where we used the notation from the decoupled model (5). This result shows that the expected
number of clusters grows only logarithmically with the number of data points N .

Dirichlet processes have been widely used to estimate the number of components in complex
data, for example by Medvedovic et al. [5] in context of gene expression clustering. However,
we should note that Dirichlet processes do not estimate the correct number of clusters in the
posterior. This behaviour was both shown to be a theoretical property of the Dirichlet process
by Miller and Harrison [6] and observed in practice [7].

Miller and Harrison [6] also note that this inconsistency is caused by the tendency of Dirichlet
processes to allocate some number of very small clusters. Bearing this behaviour in mind, when
we are interested in the posterior number of clusters we can look only at larger clusters which
form a good representation of the modelled data.

Moving past simple Dirichlet processes, the two models presented in this chapter are also
closely related to the hierarchical Dirichlet process (HDP, [8]). The hierarchical Dirichlet process
is a Bayesian nonparametric model which can be used for joint clustering of groups of data.
It assumes that each group of data is modelled using a mixture distribution with a Dirichlet
process prior. The individual groups are then linked with a hierarchical model through a
common top-level Dirichlet process prior.

Teh et al. 2006 [8] present two different finite models which both lead to the hierarchical
Dirichlet process (HDP) in their limit when the number of clusters goes to infinity. The two
models which give rise to the hierarchical process in their infinite limit are (using notation
consistent with this section):

π | α0 ∼ Dirichlet(α0/K, . . . , α0/K)

ρj | π, γ0 ∼ Dirichlet(γ0π)

θk | H ∼ H

zjn | ρj ∼ Categorical(ρj)

xjn | zjn, {θk}Kk=1 ∼ F
(
xjn | θzjn

)
(S11)

and

π | α0 ∼ Dirichlet(α0/K, . . . , α0/K)

ρ | γ0 ∼ Dirichlet(γ0/S, . . . , γ0/S)

kjs | π ∼ Categorical(π)

zjn | ρ ∼ Categorical(ρ)

θk | H ∼ H

xjn | zjn, {kjs}Ss=1, {θk}Kk=1 ∼ F (xjn | θkjzjn )

(S12)

where j indices the group of data j = 1, . . . , J . The first model uses a similar approach to
the fully combinatorial model, and the second model has a similar structure as the decoupled
version.

Using the two models we can look at the context-dependent clustering as a finite representa-
tion of a hierarchical Dirichlet process, where we have only a single group of data xj1, . . . ,xjN ,
j = 1, but multiple top-level prior distributions, one for each context. These prior mixture
distributions are grouped together and form atoms of the base distribution for the lower-level
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Figure 1: Graphical models of the (a) standard hierarchical Dirichlet process and (b) the limiting
hierarchical Dirichlet process for the context-dependent clustering model.

Dirichlet process G. The resulting hierarchical Dirichlet process has the following form:

G(c) | α0, H
(c) ∼ DP

(
α0, H

(c)
)
, c = 1, . . . , C

G | γ0, G(1), . . . , G(C) ∼ DP

(
γ0,

C⊗
c=1

G(c)

)
φn | G ∼ G

xn | φn ∼ F (xn | φn) =

C∏
c=1

F (c)
(
x(c)
n | φn[c]

)
(S13)

where φn are atoms drawn from the Dirichlet process G, which are composed of tuples of atoms
from context-specific Dirichlet processes G(1), . . . , G(C); φn[c] is then the c-th element of the
tuple, which represents the atom from G(c). Wade et al. [9] used a similar approach with
coupled Dirichlet process atoms to represent a joint model for covariates and responses in the
context of density estimation.

Fig. 1 compares the graphical models for standard hierarchical Dirichlet process and the
Dirichlet process originating from the context-dependent clustering model.

Although both forms of the finite models (S11) and (S12) lead to the hierarchical Dirichlet
process in the limit, they lead to different forms of the process. The first model (S11) leads
to a formulation with stick-breaking priors, whereas the second formulation (S12) leads to
the Chinese restaurant franchise process [8], which is a sampling process equivalent to the
hierarchical Dirichlet process. In the original Chinese restaurant franchise metaphor, we can
view the hierarchical mixture distribution as a set of restaurants (standard Dirichlet processes)
which share a common set of dishes across the franchise (top-level Dirichlet process). Actual
dishes served in individual restaurants may be different but they are sampled from the same
top-level menu.

We can devise a similar metaphor for sampling in our context-dependent clustering: consider
a Chinese restaurant where the dishes are not cooked, but instead are ordered from C caterers.
Each caterer supplies only one type of dish (starter, main, side, etc.). Customers come to the
restaurant and are seated at a table s with probability proportional to the number of customers
already sitting at the table, or are seated at a new table with probability proportional to γ0.
Each table orders a full set of C dishes, one of each type c, with probability proportional to
the number of tables that have already ordered the dish, or sample a new dish with probability
proportional to α0.

In this metaphor, customers correspond to data items x1, . . . ,xN and tables represent the
global clusters. Menus that are served at each table are tuples of context-specific local cluster
parameters that represent the cluster in each context c.

The decoupled Clusternomics model (5) uses a similar approach as the one developed in
Liu et al. [10] for clustering of two contexts: gene expression and ChIP-chip data. The paper
develops a special case of the decoupled model for integration of the two specific datasets.
However, our model presents a general treatment of both the local and the global clustering
and the theoretical background of the model in the framework of hierarchical Dirichlet processes.

Inference in the context-dependent clustering model

This section outlines the inference for the two models presented in the main paper. Here we
derive collapsed Gibbs sampling algorithms for both models and we also look at variational
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inference in the fully combinatorial model.

Posterior inference in the fully combinatorial Clusternomics model

First we derive distributions for posterior sampling in the fully combinatorial model (3). Because
the model is non-conjugate due to a Dirichlet distribution used as a prior for the lower-level
Dirichlet distribution, we use an auxiliary variable approach.

The joint distribution in the model (3) is

p

({
π(c)

}C
c=1

,ρ,Z,X(1), . . . ,X(C),
{
θ
(1)
k , . . . , θ

(C)
k

}K
k=1

)
=

=

{
C∏
c=1

p
(
π(c) | α0

)}
p
(
ρ | π(1), . . . ,π(C), γ0

)
×

{
N∏
n=1

p (zn | ρ)

[
C∏
c=1

p
(
x(c)
n | θ

(c)
zn[c]

)]}{ K∏
k=1

C∏
c=1

p
(
θ
(c)
k

∣∣∣H(c)
)}

We perform posterior inference over the context-level mixture weights π(c), cluster assign-
ment variables zn, while integrating out the global mixture weights ρ and cluster parameters
θ.

We start by deriving the updates for 2 contexts to keep the notation simple and we later
show how the sampling distributions look for a general number of contexts C. To integrate out
ρ, we use the fact that it has a Dirichlet distribution conjugate with Categorical distribution
over cluster assignments zn. This allows us to get an analytical solution:

p
(
Z | π(1),π(2)

)
=

=

∫
p
(
ρ | γ0,π(1),π(2)

) N∏
n=1

p(zn | ρ) dρ

=
Γ
(∑K(1)

i=1

∑K(2)

j=1 γ0π
(1)
i π

(2)
j

)
∏K(1)

i=1

∏K(2)

j=1 Γ
(
γ0π

(1)
i π

(2)
j

)
×

∫
K(1)∏
i=1

K(2)∏
j=1

ρ
γ0π

(1)
i π

(2)
j −1

ij

N∏
n=1

K(1)∏
i=1

K(2)∏
j=1

ρ
δ[zn=(i,j)]
ij dρ

=
Γ(γ0)∏K(1)

i=1

∏K(2)

j=1 Γ
(
γ0π

(1)
i π

(2)
j

)∏K(1)

i=1

∏K(2)

j=1 Γ
(
γ0π

(1)
i π

(2)
j + nij

)
Γ (γ0 +N)

=
Γ(γ0)

Γ(γ0 +N)

K(1)∏
i=1

K(2)∏
j=1

Γ
(
γ0π

(1)
i π

(2)
j + nij

)
Γ
(
γ0π

(1)
i π

(2)
j

) (S14)

where nij =
∑N

n=1 δ[zn = (i, j)].
After integrating out ρ and θ, we get the following joint distribution for general number of

contexts C:

p

({
π(c)

}C
c=1

,Z,X(1), . . . ,X(C)

)
=

{
C∏
c=1

p
(
π(c) | α0

)}

× p
(
Z | π(1), . . . ,π(C), γ0

) C∏
c=1

K(c)∏
l=1

p
(
X

(c)
l | H

(c)
)

(S15)
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where the individual terms are

p
(
π(c) | α0

)
=

Γ
(
K(c)α0

)
(Γ(α0))

K(c)

K(c)∏
i=1

(
π
(c)
i

)α0−1

p
(
Z | π(1), . . . ,π(C), γ0

)
=

Γ(γ0)

Γ(γ0 +N)

K(1)∏
i1=1

· · ·
K(C)∏
iC=1

Γ
(
γ0π

(1)
i1
· · ·π(C)

iC
+ ni1,...,iC

)
Γ
(
γ0π

(1)
i1
· · ·π(C)

iC

)
X

(c)
l =

{
x(c)
n ;n = 1, . . . , N where zn[c] = l

}
The data likelihood p

(
X

(c)
l | H

(c)
)

depends on the data distribution.

We proceed by looking at the Gibbs sampling distributions for the individual variables, using
the joint distribution (S15). The posterior distribution of zn combines the data likelihood and
the derived distribution (S14), yielding

p
(
zn = (i1, . . . , iC) | π(1), . . . ,π(2),Z−n,X

)
∝
(
γ0π

(1)
i1
· · ·π(C)

iC
+ ni1,...,iC ;−n

) C∏
c=1

F
(
x(c)
n |X

(c)
ic,−n

)
where X

(c)
ic

is the set of all data points assigned to context-specific cluster ic and the subscript
−n denotes that the n-th data point is excluded.

The posterior sampling distributions for π(c) are complicated by the non-conjugacy of Dirich-
let distributions. We use auxiliary variables to derive the posterior distributions, similarly to
inference in hierarchical Dirichlet processes derived in Teh et al. [8]. The same inference scheme
can be also derived using finite stick-breaking construction.

Again, we show the derivation using two contexts and provide the resulting equations for
the general case. Starting from (S14), we introduce the auxiliary variables using the properties
of the Gamma function:

Γ
(
γ0π

(1)
i π

(2)
j + nij

)
Γ
(
γ0π

(1)
i π

(2)
j

) =

nij∏
mij=1

(
γ0π

(1)
i π

(2)
j +mij − 1

)

which we can recognise as the rising factorial.
Coefficients of the rising factorial are the unsigned Stirling numbers of the first kind

[
n
k

]
:

x(x+ 1)(x+ 2) · · · (x+ n− 1) =

n∑
k=0

[n
k

]
xk

Using the unsigned Stirling numbers of the first kind, we can rewrite the equation as

Γ
(
γ0π

(1)
i π

(2)
j + nij

)
Γ
(
γ0π

(1)
i π

(2)
j

) =

nij∑
mij=0

[
nij
mij

](
γπ

(1)
i π

(2)
j

)mij

(S16)

We use the variables mij , i = 1, . . . ,K(1), j = 1, . . . ,K(2) as auxiliary variables in our model.
Putting (S16) together with the joint distribution (S15) while introducing the auxiliary variables
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M = {mij , i = 1, . . . ,K(1), j = 1, . . . ,K(2)}, we get the new joint distribution

p
(
π(1),π(2),Z,X(1),X(2),M

)
=

=
Γ(K(1)α0)

Γ(α0)K
(1)

K(1)∏
i=1

(
π
(1)
i

)α0−1 Γ(K(2)α0)

Γ(α0)K
(2)

K(2)∏
j=1

(
π
(2)
j

)α0−1

Γ(γ0)

Γ(γ0 +N)

K(1)∏
i=1

K(2)∏
j=1

[
nij
mij

](
γπ

(1)
i π

(2)
j

)mij

We can see that summing out M yields the original joint distribution (S15).
Using the joint distribution with auxiliary variables, we get closed form posterior sampling

distributions:

p
(
mij = m | Z,π(1),π(2),M−ij

)
∝
[nij
m

] (
γ0π

(1)
i π

(2)
j

)m
p
(
π(1) | Z,M ,π(2)

)
∝

K(1)∏
i=1

(
π
(1)
i

)α0+
∑K(2)

j=1 mij−1

and similarly for π(2). Then the posterior of π(c) follows the Dirichlet distribution

π(c) ∼ Dirichlet(α(c))

α
(c)
k = α0 +m

(c)
k

m
(c)
k =

K(1)∑
i1=1

· · ·
K(c−1)∑
ic−1

K(c+1)∑
ic+1

· · ·
K(C)∑
iC

mi1,...,ic−1,k,ic+1,...,iC

where m
(c)
k is the sum of the auxiliary variables mi1,...,iC over all contexts except c such that

ic = k. The general form of the sampling distribution for auxiliary variables M is the following:

p
(
mi1,...,iC = m | Z,π(1), . . . ,π(C),M−i1,...,iC

)
∝
[ni1,...,nC

m

] (
γ0π

(1)
i1
. . . π

(C)
iC

)m
In this section, we presented Gibbs sampling distributions for assignment variables zn and

context-specific mixture weights π(c), integrating out the global mixture weights ρ and cluster
parameters θ(c). This completes the basic MCMC algorithm for sampling in the fully combina-
torial Clusternomics model (3). Computational complexity of each iteration of this algorithm is

O
(
NC

∏C
c=1K

(c)
)

, additionally multiplied by the complexity of evaluating the data likelihood

F (c) for each context. The next section derives Gibbs sampling in the second form of the model
- the decoupled CDC model (5).

Posterior inference in the decoupled Clusternomics model

This section looks at posterior inference in the decoupled Clusternomics model in Equation (5).
Gibbs sampling in this form of the model is more straightforward than the fully combinatorial
because it does not use the hierarchical combination of two Dirichlet distributions, which are
non-conjugate.

7



The joint distribution in the decoupled Clusternomics model is

p (ρ, z,π,k,θ,X | γ0, α0,H,K, S) =

= p (ρ | γ0)×
N∏
n=1

S∏
s=1

p(zn = s | ρ)×
C∏
c=1

p
(
π(c) | α0

)
×

×
C∏
c=1


S∏
s=1

K(c)∏
l=1

p
(
k(c)s = l | π(c)

)
×
K(c)∏
l=1

p
(
θ
(c)
l |H

(c)
)×

×
C∏
c=1

N∏
n=1

p
(
x(c)n | θ

(c)
kzn

)
As in the fully combinatorial model, we can integrate out some of the variables: both

the global mixture weights ρ and context-specific mixture weights π(c), as well as the cluster
parameters θ(c).

To marginalise the mixture weights ρ and π(c), we again use the conjugacy of the Dirichlet
distribution with the Categorical:

p(z | γ0) =

∫
p(ρ | γ0)

N∏
n=1

p(zn | ρ) dρ

=
Γ (γ0)

Γ
(γ0
S

)S
∫ S∏

s=1

ργ0/S+ns−1
s dρ

=
Γ (γ0)

Γ
(γ0
S

)S ×
∏S
s=1 Γ

(γ0
S + ns

)
Γ (γ0 +N)

where ns is the number of data points assigned to global cluster s : ns =
∑N

n=1 δ[zn = s].
We can use this expression to derive conditional probability of zn given all other assignments,

which we need in the Gibbs sampler:

p (zn = s | Z−n, γ0) =
p (zn,Z−n | γ0)
p (Z−n | γ0)

=
γ0
S + n

(·)
s·,−n

γ0 +N − 1

where ns,−n =
∑

n′ 6=n δ[zn′ = s] is the number of data points assigned to cluster s, leaving out
the n-th data point.

Similarly, we can integrate out the context-specific mixture weights π(c) and get the following
expressions:

p
(
k(c) | α0

)
=

Γ (α0)

Γ
(

α0

K(c)

)K(c)
×

∏K(c)

l=1 Γ
(

α0

K(c) +m
(c)
l

)
Γ
(
α0 +K(c)

)
p
(
k(c)s = l | k(c)−s, α0

)
=

α0

K(c) +m
(c)
l,−s

α0 + S − 1

where m
(c)
l is number of global clusters that map to context-cluster l in context c: m

(c)
l =∑S

s=1 δ
[
k
(c)
s = l

]
. The additional subscript −s denotes omission of the s-th global cluster.

Looking at ml and using the hierarchical Dirichlet process metaphor, m
(c)
l would correspond to

the number of tables serving dish l, which is the c-th item in the menu.
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If the data distribution F (c) is conjugate with respect to H(c), we can integrate out the
cluster parameters θ(c) as well, giving us the following Gibbs sampling distributions for zn and

k
(c)
s :

p (zn = s | z−n,X, γ0) ∝
γ0
S + ns,−n

γ0 +N − 1

C∏
c=1

F (c)
(
x(c)
n |X

(c)
l,−n,H

(c)
)

(S17)

and

p
(
k(c)s = l | k(c)−s, α0,X

)
∝

α0

K(c) +m
(c)
l,−s

α0 + S − 1
× F (c)

(
X(c)
s |X

(c)
l,−s,H

(c)
)

(S18)

where the subscripts −n and −s represent the omission of the n-th data point and s-th global
cluster respectively, and

X(c)
s =

{
x(c)n ;n = 1, . . . , N where zn = s

}
is the set of data points in context c assigned to global cluster s.

Finally, after we marginalise out the mixture weights ρ and π(c), and cluster parameters
θ(c), we get the following joint likelihood:

p (z,k,X | γ0, α0,H,K, S) = p (z | γ0)
C∏
c=1

p
(
k(c) | α0

) C∏
c=1

K(c)∏
l=1

p
(
X

(c)
l |H

(c)
)

(S19)

where the individual terms are:

X
(c)
l =

{
x(c)n ;n = 1, . . . , N where kzn = l

}
(S110)

p (z | γ0) =
Γ (γ0)

Γ
(γ0
S

)S ×
∏S
s=1 Γ

(γ0
S + ns

)
Γ (γ0 +N)

(S111)

p
(
k(c) | α0

)
=

Γ (α0)

Γ
(

α0

K(c)

)K(c)
×

∏K(c)

l=1 Γ
(

α0

K(c) +m
(c)
l

)
Γ (α0 + S)

(S112)

This completes the derivation of Gibbs sampling distributions for the decoupled Cluster-

nomics model. Computational complexity of each iteration of the algorithm isO
(
NCS + S

∑C
c=1K

(c)
)

,

additionally increased by the complexity of evaluating data likelihood F (c). Compared to the
fully combinatorial model, complexity of this algorithm is lower for S <

∏C
c=1K

(c) because of
the decoupled representation.

Variational inference in the fully combinatorial model

Although collapsed Gibbs sampling is unbiased, the MCMC chain may take a long time to
converge in larger and more complex datasets. The inference is inefficient because every Gibbs
sampling iteration requires sampling of assignments for every individual data point. Also, to
obtain estimates of the posterior distribution which is also necessary to summarise the MCMC
samples.

Variational inference represents a popular alternative to Gibbs sampling because it is sig-
nificantly faster than collapsed Gibbs sampling, making it more suitable for application to
large real-world datasets. In this section we briefly look at mean-field variational inference and
we present a simple approximate variational algorithm for the Clusternomics model with fully
combinatorial structure (3).

Variational inference in general is a deterministic algorithm for approximate inference in
probabilistic models [11]. Suppose we want to estimate the true probability distribution p∗
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which is intractable. We can approximate it by using a simpler distribution q which is tractable
and easier to work with. We make the approximate distribution q as close as possible to p∗ by
minimising the reverse Kullback-Leibler distance between the distributions:

KL (q||p∗) =

∫
q(Y ) log

q(Y )

p∗(Y )
dY

where Y is the set of all unknown variables in the model. This formulation also transforms
inference into an optimisation problem. In general, p∗ is substituted with its un-normalised
form, p̃,

p̃(Y ) = p(Y ,X) = p∗(Y )p(X)

where X represents observed data and p(X) serves as the normalising constant. Following the
derivations given by Murphy [12], then

KL (q||p∗) = KL (q||p̃)− log p(X)

The task of minimising the KL divergence can then be also expressed as the problem of
maximising the lower bound on data log likelihood:

L(q) =̂ −KL (q||p̃) + log p(X) ≤ log p(X)

Here L is the so-called variational lower bound. The value of the variational lower bound can
be used to assess the convergence of the algorithm and it is also invaluable during debugging,
because its value should never decrease during optimisation.

A popular choice for the distribution q is the mean field approximation [13]: a fully factorised
distribution over all latent variables and parameters Y :

q(Y ) =
∏
i

qi(Yi)

This factorisation breaks dependencies that exist between the latent variables and parameters,
making inference in complex models tractable. For the Clusternomics model, the mean-field
form of the function q is the following:

q
(
π(1), . . . , π(C),ρ,Z,θ(1), . . . ,θ(C)

)
= q(ρ) q(Z)

C∏
c=1

q(π(c)) q(θ(c))

In the mean field method, optimising the KL divergence with respect to each unknown
variable leads to coordinate descent algorithm. Each step is given by solution of the equation
(for derivation of the result see for example [12]):

log qi(Yi) = 〈log p̃(Y )〉q−i
+ const

where 〈·〉q = Eq[·] is the expectation with respect to distribution q, and q−i =
∏
i 6=j qj are all

the mean field distributions except qi. Therefore, each variational distribution here is updated
using the mean values of other variational distributions.

Here we derive only a simplified version of the algorithm, combining variational inference
with an EM-style approach. The full variational inference is applied only to the global mixture
weights ρ, assignment variables z and cluster parameters θ. We use standard optimisation to
update values of the context-specific mixture weights π(c). It is also possible to derive a fully
variational algorithm, for example using approaches similar to the ones applied to hierarchical
Dirichlet processes in Teh et al. [14] or Hughes et al. [15].

The presented algorithm gives us an efficient method to estimate clustering in the Cluster-
nomics model. One of the main limitations of variational inference is that it can yield biased
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Figure 2: Lower bound on log likelihood computed for 100 runs of the variational inference
algorithm described in Section 2.3, compared with the average log likelihood obtained from
Gibbs sampling on the same model. Most of the runs converge within 50 iterations.

results [16], especially in cases where there is only a small number of data points assigned to
some of the mixture components [17]. Unfortunately, this is often the case for currently avail-
able biological and genomic datasets, where the data points represent patients. When applying
variational inference to real-world data for cancer subtyping, we found that variational inference
is prone to getting trapped in local optima and many re-runs are necessary to obtain a good
result. However, we can use variational inference as a fast way to initialise MCMC chain for
collapsed Gibbs sampling, giving faster convergence.

In the main paper we use the collapsed Gibbs sampling to evaluate the model because it
was shown to have better test set performance than models fitted with variational inference
[14, 18]. Nevertheless, the efficiency of variational inference makes it a very popular algorithm
for fitting Dirichlet process-type of models making it applicable to large datasets.

Figure 2 shows the variational lower bound for iterations 5 to 50 for 100 runs of the vari-
ational inference algorithm, compared to the mean posterior log likelihood of an equivalent
model obtained with the Gibbs sampling. Although the variational inference suffers from local
maxima in the log likelihood, it converges very quickly. The runtime for the plotted 100 runs
of variational inference was also lower than for the single Gibbs sampling chain.

Implementation and results

Here we provide some additional technical details on the context-dependent clustering algorithm
and its implementation. The decoupled Clusternomics algorithm was used on the datasets
presented in the main paper. Implementation of the algorithm in R is available from CRAN as
the clusternomics package.

Clusternomics and ad-hoc integrative clustering

In this section we compare the Clusternomics method with an ad-hoc integration of local clus-
tering assignments. The ad-hoc manual integrative clustering works as a two-step procedure:

1. Cluster data within each data source (context) independently, to get local cluster assign-
ments.

11
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Figure 3: Comparison of Clusternomics with independent clustering within each context
(dataset) followed by manual construction of global clusters, applied to simulated datasets de-
scribed in the main paper. The plot shows the ARI values comparing results of the algorithms
where higher values correspond to better agreement between the estimated cluster assignments
and the true cluster membership. The comparison shows two types of manual integration:
with k-means clustering in each dataset (Kmeans+Manual), and using Gaussian mixture model
clustering (GMM+Manual). All methods have similar performance on this dataset.

2. Use combinations of local cluster assignments to manually construct global clusters.

This form of integrative clustering does not share any information between contexts.
For the small simulated dataset presented in the main paper, the results we get when using

the ad-hoc integrative approach are equivalent because the small dataset has only well-defined
clusters. The example illustrates mainly how existing approaches deal with situations where
the cluster structure is not consistent across the different contexts. Figure 3 shows the ARI
values for the range of simulated datasets, comparing Clusternomics and two versions of ad-hoc
clustering: using k-means and Gaussian mixture models for local clustering. The results of all
three algorithms are equivalent for the simulated dataset.

The difference between Clusternomics and manual integration of independent local clusters
appears when applied to a real-world dataset where sharing of information between datasets is
beneficial. Clusternomics encourages clusters to be shared across contexts: if two data points
are clustered together in one dataset, they have a higher posterior probability of being clustered
together in other contexts as well.

We applied the two variants of ad-hoc clustering to the breast cancer dataset from TCGA
described in the main paper. Figure 4 shows the number of global clusters constructed from
local cluster assignments in the breast cancer dataset, using three local clusters per context.
We used the Gaussian mixture model with diagonal covariance matrix implemented in the R
package mclust [19], and standard k-means algorithm implemented in the R function kmeans.

The ad-hoc integration using k-means algorithm shows the largest number of estimated
global clusters: 44. The Gaussian mixture model-based integration, which is methodically closer
to Clusternomics, identified 24 global clusters. The Clusternomics algorithm identified 16 global
clusters (depending on the setting of the parameter). The global clusters identified by manually
integrating local clusters is larger than the number of clusters estimated by Clusternomics,
because the ad-hoc integration fails to share information between contexts.

The ad-hoc integration also produces a large number of small clusters. The number of
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Figure 4: Comparison of Clusternomics with independent clustering within each context
(dataset) followed by manual construction of global clusters, applied to the breast cancer
dataset. The comparison shows the number of global clusters estimated by Clusternomics, and
constructed using the two local clustering methods: k-means (Kmeans+Manual), and Gaussian
mixture model with diagonal covariance matrix (GMM+Manual).

global clusters with 5 or fewer data points was 28 for the k-means based clustering, and 7 for
the GMM-based clustering, compared to 2 clusters in Clusternomics (see Fig. 14 in the main
paper). The large number of small clusters makes the results fragmented and less interpretable.

We also looked at the resulting partitioning of the data and how it relates to the survival
probabilities of individual clusters. For the k-means based clustering, the resulting clusters were
not significant based on their survival probabilities (p-value 0.834). For the Gaussian mixture
model based clustering, the clusters reached statistical significance (p-value ¡ 0.05). However,
as we argued before, the large number of fragmented clusters identified by this method is less
interpretable.

MCMC sampling and runtime

Here we look at the convergence of the MCMC sampling algorithm on the TCGA datasets. We
ran the Gibbs sampling algorithm for 10,000 iterations. We discarded the first 5,000 iterations
as burn-in, and used every third sample. We repeated this procedure for different numbers of
global clusters to assess the stability of the algorithm. Each full chain took approximately 3
hours to run on an Intel Xeon 2.60GHz CPU on the breast cancer dataset, 12 hours on the
kidney dataset and 16 hours on the lung dataset. Longer runtime on the kidney and lung
datasets was caused by their high dimensionality and our setting of larger number of global
clusters.

Parameter settings

Simulated datasets

The settings of the algorithms compared in the main text were the following:

Clusternomics The number of local context-specific clusters was set to two in each con-
text, and four globally. Concentration parameters α0 and γ0 were given Gamma(1, 1) prior
distribution. The number of iterations was 10,000.
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Figure 5: This plot shows the proportion of variance explained by the first twenty principal
components for the breast cancer TCGA dataset. The individual figures represent a) gene
expression dataset (b) DNA methylation dataset (c) miRNA expression dataset (d) RPPA
dataset.
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BCC We set the number of clusters to 4 overall, running the algorithm for 10,000 iterations.
The adherence parameter α was given Beta(1, 1) prior distribution and it was fitted separately
in each context.

iCluster The algorithm was run with k = 4 clusters for up to 10,000 iterations. Other
parameters were left at their default values.

MDI The algorithm was run with default parameters for 10,000 iterations, assuming Gaussian
distribution of the data.

SNF The algorithm was run using the R package SNFtool with default parameters, using
pairwise Euclidean distance and number of clusters C = 4.

Cancer subtyping

To model the three cancer datasets presented in the main paper, we used a multivariate Gaussian
distribution with a diagonal covariance matrix for all the data contexts. We ran the Gibbs
sampling algorithm for 10,000 iterations. We discarded the first 5,000 iterations as burn-in, and
used every third sample. We repeated this procedure for different numbers of global clusters
to assess the stability of the algorithm. Each full chain took approximately 3 hours to run on
an Intel Xeon 2.60GHz CPU on the breast cancer dataset, 12 hours on the kidney dataset and
16 hours on the lung dataset. Longer runtime on the kidney and lung datasets was caused by
their high dimensionality and our setting of larger number of global clusters.

We summarised the results after burn-in using the method by Dahl [20] using the posterior
co-clustering matrix to infer the posterior cluster assignments. The model is not very sensitive
to the value of the concentration parameters α0 and γ0. In the inference we used the following
small fixed values to encourage smaller number of clusters: α0 = 0.1 and γ0 = 0.001.

Stability of results: posterior co-clustering matrices

To assess convergence of the MCMC algorithm, we ran 10 parallel chains and compared the co-
clustering matrices resulting from samples from each of the chains. The posterior co-clustering
matrix computes the posterior probability of data points being assigned to the same component.
The value in row i and column j is the posterior probability of data points i and j being assigned
to the same global cluster, estimated from the MCMC samples. If the parallel MCMC chains
converged to the same clustering solution, they should result in similar co-clustering matrices.

Figures 6 and 7 show the co-clustering matrices from the 10 parallel MCMC chains from
the breast cancer TCGA dataset. The number of context-specific clusters K(c) = 3, and the
number of global clusters S = 18. Figure 6 shows the co-clustering matrix of the first MCMC
chain as a heatmap. Heatmaps corresponding to the other chains are shown in Figure 7. The
ordering of rows and columns in the co-clustering matrices is the same as in the visualization
of chain 1 to facilitate comparison. Overall, there is a good agreement between the individual
chains, especially for the main clusters.

Figures 8 and 9 show similar comparison for the lung cancer TCGA dataset. The number
of context-specific clusters K(c) was set to 3, and the number of global clusters S to 20. For
this dataset, the results are again relatively stable across the individual MCMC chains.

Finally, figures 10 and 11 show the posterior co-clustering comparison for the kidney cancer
TCGA dataset. The number of context-specific clusters K(c) was set to 3, and the number
of global clusters S to 31. In this case all the individual chains converge to a very similar
co-clustering matrix.
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Figure 6: Heatmap visualization of the posterior co-clustering matrix of Gibbs sampling MCMC
chain number 1 from the TCGA breast cancer example, where K(c) = 3 and S = 18.. The value
in row i and column j is the estimated posterior probability of samples i and j being assigned
to the same global cluster.

Choosing number of clusters

We investigated some commonly used criteria for cluster consistency, namely the Dunn index
[21] and the average Silhouette score [22]. Both measures were used to select optimal numbers
of clusters in various settings, for example Curtis et al. [23] estimate the number of clusters
in integrative analysis using iCluster on the METABRIC dataset using the Dunn index. The
Silhouette score was used for example in Wang et al. [24] to evaluate consistency of integrative
clusters.

Fig. 12 shows values of these measures for the individual results. Neither of the criteria is
maximised for the models with good separation of survival prospects. Such criteria therefore
seem less suitable for this type of high-dimensional data.
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Figure 7: Heatmap visualizations of the posterior co-clustering matrices of Gibbs sampling
MCMC chains number 2 to 10 from the TCGA breast cancer example. The rows and columns
have the same order as in Figure 6 to facilitate comparison. The number of context-specific
clusters K(c) = 3, and the number of global clusters S = 18.
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Figure 8: Heatmap visualization of the posterior co-clustering matrix of Gibbs sampling MCMC
chain number 1 from the TCGA lung cancer example. The value in row i and column j is the
estimated posterior probability of samples i and j being assigned to the same global cluster.
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Figure 9: Heatmap visualizations of the posterior co-clustering matrices of Gibbs sampling
MCMC chains number 2 to 10 from the TCGA lung cancer example. The rows and columns
have the same order as in Figure 8 to facilitate comparison. The number of context-specific
clusters K(c) = 3, and the number of global clusters S = 20.
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Figure 10: Heatmap visualization of the posterior co-clustering matrix of Gibbs sampling
MCMC chain number 1 from the TCGA kidney cancer example. The value in row i and
column j is the estimated posterior probability of samples i and j being assigned to the same
global cluster.
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Figure 11: Heatmap visualizations of the posterior co-clustering matrices of Gibbs sampling
MCMC chains number 2 to 10 from the TCGA kidney cancer example. The rows and columns
have the same order as in Figure 10 to facilitate comparison. The number of context-specific
clusters K(c) = 3, and the number of global clusters S = 31.
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Figure 12: Two commonly used cluster consistency criteria, the Dunn index (a) and the Sil-
houette score (b), evaluated on clustering results from the Clusternomics model. Both criteria
are maximised for compact and consistent clusters. However, in this application the values of
both criteria do not agree with the predictive power of the clustering results in terms of survival
probabilities.
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