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1 Unsupervised multiple kernel and KPCA in mixOmics

Methods presented in the paper are available on CRAN in the R package mixKernel and a full
tutorial on the mixOmics R package WEB site at http://mixomics.org/mixkernel/. Kernels can be
computed using the function compute.kernel that allows to choose between linear, phylogenic and
abundance kernels. Unifrac and weighted Unifrac distances are processed using functions taken from
the phyloseq package [McMurdie and Holmes, 2013]. Bray-Curtis dissimilarities are computed with
the vegan package. The function combine.kernels implements methods described in Section 2.1 and
returns a meta-kernel which can be used as an input for the function kernel.pca. The KPCA result
can then be displayed using the mixOmics plot function plotInd.

To assess variable influence in the different datasets, the function kernel.pca.permute computes
Crone-Crosby distances resulting from permutations. In this function, the user can specify the level at
which the permutations must be performed. The most important variables can then be plotted using
the plotVar mixOmics function. A subset of TARA Oceans datasets and a tutorial are also provided
in the package to help users processing their own data. In addition, the tutorial is also available on
the mixOmics web site http://mixomics.org/mixkernel/ and the method is scheduled to be part
of the next version of mixOmics.

2 Selected samples

Ocean samples used in [Sunagawa et al., 2015, de Vargas et al., 2015, Brum et al., 2015,
Roux et al., 2016] were collected at various locations, representing all main oceanic regions at
different depth layers. Collected samples were located in height different oceans or seas: indian
ocean (IO), mediterranean sea (MS), north atlantic ocean (NAO), north pacific ocean (NPO), red
sea (RS), south atlantic ocean (SAO), south pacific ocean (SPO) and south ocean (SO).

[Sunagawa et al., 2015] focused on 139 prokaryotic-enriched samples collected from 68 stations
and spread across three depth layers: the surface (SRF), the deep chlorophyll maximum (DCM)
layer and the mesopelagic (MES) zones. In [de Vargas et al., 2015], 334 size-fractionated samples
were analyzed from 47 stations at two water-column depths of the photic-zone: SRF and DCM.
The different size-fractions filters used during the sampling allowed to split samples into four ma-
jor eukaryotic organism sizes: piconanoplankton, nanoplankton, microplankton and mesoplankton.
Finally, [Brum et al., 2015] and [Roux et al., 2016] analyzed respectively 43 and 89 viral-fractioned
samples, collected from 45 stations from the SRF, the DCM and the MES layers.

To evaluate the performances of the proposed methods from different points of view, two analyses
were performed. First, the 139 prokaryotic samples were used as inputs of the proof-of-concept
analysis presented in Section 4.1. Then, a more complete analysis is presented in Section 4.2. This
analysis was performed on the whole available material but only samples for which all the prokaryotic,
eukaryotic and viral information was available. As shown in Supplementary Figure S1, this resulted
in 48 common sampling locations which included two depth layers (SRF and MES) and 31 stations.
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Supplementary Figure S1: Common sampling locations among prokaryotic, eukaryotic and viral
samples. Figure was obtained using jvenn [Bardou et al., 2014].

3 Similarities between kernels

To have a general overview on the 8 datasets to integrate, the similarity measure between kernels
defined in Equation (2) is computed. The pairwise values are displayed in Supplementary Figure S2.

Supplementary Figure S2: Similarities between kernels computed using the STATIS-UMKL ap-
proach.

The figure shows that pro.phylo and pro.NOGs are the most correlated pair of kernels. This
result is expected as both kernels provide a summary of prokaryotic communities. Second, the kernel
that is the less correlated (in average) with the other ones is euk.meso and the kernel that is the
most correlated (in average) with the other ones is euk.pina. These facts are supported by the



conclusions stated in [de Vargas et al., 2015]: mesoplanktonic communities are strongly geographi-
cally structured, according to their basin of origin, whereas piconanoplankton communities are more
homogeneous across the world oceans.

When focusing on similarities to environmental and physical variables, as measured by phy-
chem, the figure shows that the kernels that are the most correlated to this kernel are pro.phylo
and euk.pina kernels and that, again, euk.meso provides a different image of the oceans. These
results are supported by a conclusion made in [Sunagawa et al., 2015] and [de Vargas et al., 2015]:
the vertical stratification of the ocean microbiome is mainly driven by temperature rather than geog-
raphy, but geography plays a strong role to structure communities with respect to the large organism
size fractions.

Finally, vir.VCs is also more similar to small size organisms kernels than kernels representing
larger ones. This is explained by the fact that the biographical structure of viruses is due to host
community structure and to a passive transport by oceanic currents [Brum et al., 2015].

These results confirm the discussion reported in Supplementary Section S4: STATIS-UMKL
allows to have an overview on the different datasets and should be used when the integrated analysis
focuses on correlated informations.

4 Comparison of the different integration options

In the following section, the different methods proposed and especially the relevance of using a specific
approach to perform the integration is evaluated. To perform this analysis, environmental, prokary-
otic, eukaryotic and viral datasets are integrated together using the three proposed approaches: full-
UMKL, sparse-UMKL and STATIS-UMKL. The weights obtained for each methods are presented in
Supplementary Figure S3.

Supplementary Figure S3: Kernels weights obtained for the three proposed approaches: full-UMKL,
sparse-UMKL and STATIS-UMKL. Colors represent the different kernels.

First, note that, Supplementary Figure S3 shows that STATIS-UMKL gives more weights to
euk.micro, euk.pina, pro.NOGs and pro.phylo, meaning that these kernels are strongly cor-
related. In the contrary, full-UMKL gives more importance to atypical kernels, i.e., euk.meso,
euk.micro, pro.NOGs and vir.VCs, which are the only kernels selected by the sparse-UMKL
approach, the other ones being discarded from the final meta-kernel.



Results show that the three proposed methods are complementary and can be used depending
on the research question and the analysis step. The STATIS-UMKL approach allows to have an
overview on the correlation between the different datasets to analyze and to integrate them in a
consensual way. sparse-UMKL can be used to focus on a more even contribution of the various
images provided by the different kernels and to remove redundant informations. Finally, a similar
goal is achieved with the full-UMKL method, that should be preferred when the analysis requires to
be performed on the whole material.

5 Supplementary figures

Supplementary Figure S4: Only datasets of [Sunagawa et al., 2015]. The 10 most important
variables for the second KPCA axis, ranked by decreasing Crone-Crosby distance. Variables of the
pro.phylo kernel were permuted at the phylum level.



Supplementary Figure S5: Only datasets of [Sunagawa et al., 2015]. Entropy preserved by the
15 first axes of the KPCA performed on the meta-kernel obtained using the full-UMKL approach.



Supplementary Figure S6: Only datasets of [Sunagawa et al., 2015]. Projection of the obser-
vations on the first two KPCA axes. Colors represent the relative abundance of clade SAR11 : blue
for low values and red for high values.

Supplementary Figure S7: Only datasets of [Sunagawa et al., 2015]. Projection of the obser-
vations on the first two KPCA axes. Colors represent the temperature: blue for cold waters and red
for warm waters.



Supplementary Figure S8: Only datasets of [Sunagawa et al., 2015]. Projection of the obser-
vations on the first two KPCA axes. Colors represent the nitracline mean depth: blue for low values
and red for high values.

Supplementary Figure S9: Only datasets of [Sunagawa et al., 2015]. Projection of the obser-
vations on the first two KPCA axes. Colors represent the relative abundance of cyanobacteria: blue
for low values and red for high values.



Supplementary Figure S10: Only datasets of [Sunagawa et al., 2015]. The 10 most important
variables for the second axis of KPCA, ranked by decreasing Crone-Crosby distance. Variables of
the pro.phylo kernel were permuted at the phylum level.

Supplementary Figure S11: The 5 most important variables for the second axis of the KPCA and
for each of the 8 datasets, ranked by decreasing Crone-Crosby distance.



Supplementary Figure S12: Entropy preserved by the 15 first axes of the KPCA performed on the
meta-kernel obtained using the full-UMKL approach and environmental, prokaryotic, eukaryotic and
viral datasets.

Supplementary Figure S13: Projection of the observations on the first two KPCA axes. Colors
represent the relative abundance of alveolata organisms in the nanoplanktonic community: blue for
low values and red for high values.



Supplementary Figure S14: Projection of the observations on the first two KPCA axes. Colors
represent the longitude: blue for low values and red for high values.

Supplementary Figure S15: Projection of the observations on the first two KPCA axes. Colors
represent the relative abundance of rhizaria organisms in the mesoplanktonic community: blue for
low values and red for high values.



Supplementary Figure S16: Projection of the observations on the first two KPCA axes. Colors
represent the relative abundance of opisthokonta organisms in the nanoplanktonic community: blue
for low values and red for high values.
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