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S1 Methods details

This section provides some details about the different parts of our modelling approach: parameter balanc-

ing for obtaining kinetic parameters, a fast implementation of enzyme cost minimization, the conversion

between enzyme-specific biomass production into cell growth rates, and a comparison of flux-analysis ECM

to traditional kinetic and constraint-based modelling approaches.

S1.1 Parameter balancing

Parameter balancing [1] is a method for translating incomplete, potentially inconsistent sets of kinetic and

thermodynamic constants into a complete, consistent set of model parameters. In brief, parameter balancing

works as follows. We collect all relevant quantities that appear in the data or in the model and merge them

into a vector y. These quantities must satisfy Wegscheider conditions and Haldane relationships, which

defines linear equality constraints between their logarithmic values. Accordingly, to satisfy the constraints

in a safe way, we write all these quantities as linear combinations of independent parameters (ln kV, ln kM,

and µ◦ values), with the definition kV =
√
k+cat k

−
cat. The independent parameters, which are collected in

a vector x, can be varied without violating any constraints. The linear dependence between the complete

and the independent parameter sets can be written as y = Rx with a matrix R derived from the model

structure. Using this equation as a linear regression model, we can convert an experimentally known vector

ydata (which may be incomplete) into a best estimate of the underlying vector x. Using the estimate x,

we again apply R to obtain a completed, consistent version of y. Since this regression problem is usually

underdetermined, we employ Bayesian estimation. Priors allow us to obtain plausible estimates even from

sparse data. Accordingly, the result is not simply a point estimate of y, but a multivariate Gaussian posterior

distribution for possible parameter vectors y. A best estimate is given by the center of the distribution; from

the covariance matrix, we obtain uncertainties of individual model parameters as well as the correlations

between them.

S1.2 Enzyme cost minimization implemented in the GAMS modeling system

The optimization of enzyme cost for an individual EFM is a convex problem and can therefore be solved with

local optimization methods and in polynomial time. This allows us to use a powerful solver that optimizes a

single enzyme profile in a few seconds. Enzyme cost minimization has been implemented within the General

Algebraic Modeling System (GAMS) modeling system [2], accessible through the NEOS server (https:

//neos-server.org/neos/), which provides a convenient way to write down the optimization problem and

uses automatic differentiation techniques to exactly evaluate derivatives, e.g., of the functions defining the

constraints and objective function of the model. This is important since it allows the nonlinear optimization

solvers that are linked to the modeling system to efficiently use this information for improved solution speed

and accuracy. As a default setting, general rate equations as in this paper are used (modular rate laws

[3], possibly with simple allosteric regulation). However, the implementation also allows for custom rate

equations, such as the biomass equation in this paper (a case study with explanations can be found on

http://www.neos-guide.org/content/enzyme-cost-minimization). To define an optimization problem,

the user provides the metabolic network (in the form of reaction stoichiometries), kinetic constants, fluxes,

and possibly enzyme costs. These data can be provided as a single csv file or a collection of csv files, and

the user can select a particular optimization solver from within those linked to the GAMS system, and files

defining the model and its parameters. A number of additional arguments allow for defining bounds on

subsets of the decision variables, changing the solver used for convex optimization, and setting options for
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Quantity Symbol Physical unit
Metabolite level (metabolite i) ci mM
Metabolite flux (reaction l) vl mM s−1

Enzyme concentration (enzyme l) El mM
Biomass production vBM mg l−1 h−1

Total enzyme cost Emet mg l−1

Enzyme doubling time τmet h
Enzyme specific biomass production rBM h−1

Cellular protein mass Ptot mg l−1

Biomass concentration cBM mg l−1

Doubling time T h
Cell growth rate µ h−1

Table S1: Mathematical symbols and physical units used in the formulae.

the solver. Although the method is applied here to EFMs only, it can also be used to compute the enzyme cost

of any given flux mode. The calculations for this article were executed on a shared server: a Dell PowerEdge

R430 server with the following configuration: CPU - 2x Intel Xeon E5-2698 @ 2.3GHz (32 cores total), HT

Enabled, Memory - 192GB RAM, Disk - 4x 300G SAS drives setup in RAID5, Network - 1Gb/s Ethernet.

S1.3 Converting enzyme investments into cell growth rates

Being able to compute enzyme-specific biomass production rates, we next translate these rates into cell

growth rates. The growth rate of a cell is given by µ = vBM/cBM, where cBM is the biomass concentration,

i.e. the amount of biomass per cell volume and vBM is the rate of biomass production (amount of biomass

produced per cell volume and per unit time). The cell’s growth rate can be approximately computed from

the enzyme cost of biomass production, and we will see that higher enzyme-specific biomass production

rates entail higher growth rates. Therefore, an assessment of enzyme-specific biomass production rates (in

optimization, or in drawing a rate/yield scatter plot) is equivalent to an assessment of growth rates. Here

we derive two conversion formulae: a linear formula (by which growth rate and enzyme-specific biomass

production only differ by a scaling factor) and a nonlinear one (which takes into account the growth-rate-

dependent investment in ribosomes). As shown in Figure S1, even the latter prediction yields an overall

picture very similar to the direct assessment of enzyme-specific biomass production.

Linear formula based on fixed enzyme fraction in the proteome To estimate µ from the enzyme-specific

biomass production rBM = vBM/Emet, we need to know the ratio Emet/cBM, i.e., the mass fraction of

biomass formed by metabolic enzymes. Empirically, metabolic enzymes (or more specifically: the metabolic

enzymes considered in our model) occupy about one eighth of the biomass (in mass units). The mass

fraction of protein mass within biomass is: αprot = Ptot/cBM ≈ 0.5 (BioNumber 101955 [4]) relatively

constant across cell types. The mass fraction of metabolic enzyme within the proteome, in E. coli, varies

around αccm = Emet/Ptot ≈ 25% (from proteomics data [5]). If these numbers were constant, the growth

rate

µ =
vBM

cBM
=

vBM

Emet︸ ︷︷ ︸
rBM

Emet

Ptot︸ ︷︷ ︸
αccm

Ptot

cBM︸︷︷︸
αprot

(S1)

would be proportional to the enzyme-specific biomass production rBM, with a prefactor of αccm · αprot ≈
0.125. We obtain the formula

µ ≈ 0.125 rBM. (S2)
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Nonlinear formula based on growth-dependent enzyme fraction In reality, the proteomic fraction of

metabolic enzymes changes with the growth rate. As shown by experiments, and as explained by the alloca-

tion of protein resources between metabolic enzymes and ribosomes [6], if the growth rate varies because of

varying metabolic efficiency, the fraction of metabolic enzymes decreases with the growth rate. To account

for this fact, the formula needs to be modified. In experiments where cell growth is controlled by nutrient

quality or by dilution in chemostats, we can assume a linearly decreasing fraction [6]

Emet

Ptot
= a− b µ. (S3)

with positive coefficients a and b. These coefficients can be estimated from proteomics data [5]: the protein

fraction devoted to central carbon metabolism decreases from ≈ 25% during slow growth (µ = 0.11/h) to

≈ 18% during faster growth (µ = 0.48/h), leading to estimates a ≈ 27% and b ≈ 20% h. Inserting (S3) into

(S1) and solving for µ, we obtain the formula

µ =
αprot a rBM

1 + b rBM αprot
. (S4)

Inserting the numerical values, we obtain

µ =
0.5 · 0.27 · rBM

1 + 0.2[h] · 0.5 rBM
=

0.135 rBM

1 + 0.10[h] · rBM
. (S5)

In both approximation formulae (S2) and (S5), µ increases with rBM. This is why, in the article, maximizing

the growth rate µ is equivalent to maximizing rBM = vBM/Emet or minimizing Emet at given vBM. As shown

in Figure S1, the linear and nonlinear formulae for growth rate calculations yield almost the same results.

It is useful to rewrite formulae (S2)-(S5) also in terms of doubling time. For that, we define the metabolic
enzyme doubling time as

τmet ≡
ln(2)Emet

vBM
=

ln(2)

rBM
(S6)

and the cell doubling time (in hours) will thus be

T =
ln(2)

µ
=

τmet

αprot a
+

ln(2) · b
a

= 7.4 τmet + 0.51[h]. (S7)

An alternative derivation, which directly refers to the sector models by Scott al. [6], is given in the following

section.

Nonlinear conversion between enzyme-specific biomass production and growth rate, derived from

enzyme-ribosome trade-off In the main article, we derived the nonlinear rate/growth relationship from

the empirical observation that the metabolic enzyme fraction if the proteome decreases linearly with th

growth rate. Here we add an alternative derivation that directly refers to the sector models by Scott al. [6].

To derive the nonlinear relationship (S4) between enzyme-specific biomass production and cell growth rate,

we assumed that the fraction of metabolic enzymes within the proteome varies with growth rate, and we

described this dependence by a simple linear function (with offset), which we extracted from proteome data.

This argument agrees with the proteome sector models by Scott al. [6], in which the proteomic fraction of

metabolic enzymes is given by a constant baseline amount plus a variable amount that is proportional to

the growth rate. To clarify the close connection to proteome sector models, we derive our formula again

with the terminology of the growth rate models. We assume that the proteome can be split into three mass
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Figure S1: Biomass production rates and growth rates. (a) Enzyme-specific biomass production vs.
biomass yield. (b) Cell growth rate vs. biomass yield. The nonlinear scaling (i.e. using equation S5) of
the growth rate has only a slight effect on the Pareto plot.

fractions: a constant fraction (about half of the proteome), a variable fraction x (consisting of metabolic

enzymes), and a variable fraction y (consisting of ribosomal proteins). We further assume that each of the

variable fractions x and y is proportional to the cell growth rate λ, i.e., λ = ax x = ay y. We further assume

that ax is given by (or proportional to) the enzyme-specific biomass production rate (which we can compute

from our model for each EFM) and that ay is constant (because we do not consider, for example, the effects

of translational inhibitors). With these assumptions, the growth rate is given by

λ =
1

1
ax

+ 1
ay

[x+ y]︸ ︷︷ ︸
cvp

(S8)

where cvp is the (constant) sum of variable protein fractions. We now set ax = r/cbm, where r is the biomass

production rate (in carbon molar biomass / time) per metabolic enzyme (in carbon molar) and ccm is the

biomass concentration in cells (in carbon molar). The value of ay can be obtained from a proteomics data

set by a regression between growth rate and ribosome fraction. Eventually, we obtain

λ =
1

cbm

r + 1
ay

· cvp =
cvp · r

cbm + 1
ay
r
. (S9)

This is a hyperbolic function just like the one we derived before. By adjusting this formula to proteomics

data, we obtain the same parameters as above.

S1.4 Flux-analysis ECM provides advantages over common kinetic or constraint-
based modelling methods

Flux-analysis enzyme cost minimization includes full kinetic information and a realistic description of en-

zyme costs into a flux optimization setting and thereby closes the gap between kinetic and stoichiometry-

based modeling. It provides a clear theoretical link between kinetic models and other network-based ap-

proaches, which have incorporated some of the kinetic information. In contrast to these existing methods,
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Figure S2: Flux-analysis enzyme cost minimization can be used to simulate a wide range of enzyme
perturbations and their effects on growth and metabolic strategies (a) From the rate law of a reaction
(in this schematic example, a simplified hypothetical Michaelis-Menten rate law with oxygen as a substrate),
we obtain a formula for the enzyme cost as a function of flux (which depends only on the EFM), kcat value,
enzyme burden h, and oxygen level [O2]. Changing these parameters affects the enzyme cost (and therefore
the growth rate) of each EFM differently. For example, EFMs where there is no flux in the perturbed reaction,
will not be affected at all and their growth rate will remain the same (in this case, these are the anaerobic
EFMs). The remaining panels (b-f) show, schematically, the resulting changes in the growth/yield diagram
for different parameter perturbations. In each panel, we mark the EFM with the highest growth rate with
a black frame. The blue and red shaded polygons highlight the Pareto front before and after the change,
respectively. If we lower the oxygen level (b), the growth-maximizing EFM shows a lower growth rate,
but remains optimal. However, at a much lower oxygen level (c) there is another (oxygen-independent)
EFM whose growth rate is higher. A similar change can be achieved by decreasing the kcat value (d) or
increasing enzyme cost weight (e). (f) When the enzyme is knocked out, all EFMs that use this reaction
become infeasible and disappear from the plot. The effect resembles the effect of an extreme decrease in
oxygen or kcat value, or an extreme increase in the enzyme cost weight.
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Figure S3: Total enzyme demand of
the näıve estimate versus fECM. The
“näıve” capacity-based approximation
qcat =

∑
i(|vi| · wi)/kcat,i of the total

enzyme demand assumes that all enzyme
molecules work at full speed (i.e., full
substrate saturation, no reverse fluxes or
saturation by products). By construction,
qcat is a lower bound on the estimate of
the enzyme demand calculated by fECM,
therefore all points in the plot are above
the x = y line. The two optimal EFMs
(i.e. the EFM with the lowest qcat and the
EFM with the lowest enzyme demand) are
highlighted and the x and y values are
shown in parentheses. This comes to show,
that using the approximation (qcat) would
yield different results compared to the full
enzyme demand model we use throughout
this work.

our method allows for systematic studies of parameter sensitivities and uncertainties. Due to the screening

of EFMs, its numerical effort is much higher, but on the contrary, gene knock-outs can be easily studied

after a single run without any additional numerical effort. The main advantages over existing kinetic or

constraint-based methods are as follows.

• Advantage over a direct optimization of enzyme levels in kinetic models Our optimization procedure is

equivalent to a direct optimization of enzyme levels, which would often be numerically impossible: imag-

ine that we treat the enzyme levels El in a kinetic model as free variables to be optimized for minimizing

the ratio vBM(E)/Emet(E). This would be computationally hard: the objective function vBM(E)/Emet(E)

would not only be hard to compute (because this entails the calculation of a steady state in a kinetic

model), but is also likely to be non-convex and non-concave, with potentially many local minima. In

fECM, in contrast, all calculation steps are computationally tractable for medium-sized models. An advan-

tage of our “flux-first” optimization approach is that fluxes and metabolite constraints (e.g. stationarity,

kinetics, thermodynamics) can be easily imposed. Moreover, it is instructive to consider the set of EFMs

and to compute the growth rates even for the non-optimal ones. By inspecting the growth/yield scatter

plot, one can study which EFMs become growth-optimal under what conditions, and how the optimum

switches between them upon parameter changes. This also makes it easy to understand the effects of vary-

ing external conditions, changing enzyme parameters or cost weights, and enzyme knockouts (see Figure

S2).

• Advantage over constraint-based methods with linear flux cost functions On the contrary, our method

could be compared to variants of flux balance analysis that employ flux cost functions mimicking enzyme

cost. For example, the total enzyme investment Etot =
∑
lEl in a pathway or network can be approxi-

mated by Etot ≈ Elb =
∑
l

vl
kcat,l

, which actually puts a lower bound1 on the true value of Etot. In flux-

analysis enzyme cost minimization, we could use this linear function Elb(v) instead of the true enzyme

1A similar idea underlies FBA with molecular crowding. In this method, fluxes are bounded by assuming a bound vl ≤ vmax
l =

El kcat,l on every reaction flux, and an upper limit on the sum of enzyme levels Etot,max ≥ Etot =
∑

l El representing the limited
available space for enzymes. In this case, the linear enzyme cost function is not used as an objective to be minimized, but as a value to
be constrained during optimization.
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cost derived from ECM2. However, as shown in Figure S3, the approximation would not only decrease the

predicted enzyme cost in general, but would do so to different extents across EFMs, and would therefore

distort the prediction of growth-optimizing metabolic strategies.

S2 Model description

This section provides details about our model of E. coli central metabolism: its network structure, the choice

of kinetic equations and enzyme parameters, the usage of physical units and the practical calculation of

growth rates, the choice of external conditions, and a bit of statistics about the elementary flux modes.

S2.1 Network structure

The network structure of our E. coli model (see Figure S4) is based on the model by Carlson (2004) [7].

We changed several details of the model: We split the lumped reactions R7r, R10, R54r and R55r into

separate reaction steps, we added the Entner-Doudoroff pathway (reactions R60 and R61r) and merged

some reactions (the new reactions R27 and R27b) (see Table S2). For a kinetic model it is important to split

linear chains of reactions, since each reaction in the chain might have different kinetics. We kept the ethanol

(R90) and CO2 (R97r) export in the model, but did not consider it in the kinetic calculation of enzyme cost

because this is a passive process that is not catalyzed by enzymes. Finally, we set the internal concentrations

of CO2 and ethanol to 1 mM, which we assume is enough to have the desired export flux through diffusion.

The stoichiometric constants for the biomass reaction (R70) come from the original model (Table II in [7]

for a doubling time of 30 minutes). We added the measured maintenance flux to the ATP stoichiometry in

the biomass equation, which changed the stoichiometry constant for ATP to -1641. An SBML version of the

model is provided in the Supplementary Files. The EFMs were calculated with EFMtool [8]. The model

contains a total of 2772 EFMs, out of which 1566 produce biomass. 760 of the biomass producing EFMs

are not feasible because they both need oxygen and use an oxygen sensitive reaction, 97 are facultatively

aerobic, 470 are strictly aerobic, and 239 strictly anaerobic (see Figure 2b). Some statistics about reactions

used by the biomass producing EFMs can be found in Figure S7.

S2.2 Kinetic equations

We used the same general rate equations for all reactions [3]. Reversible (vr) and irreversible (vi) reactions

are modeled as follows:

vr = er · kcat,r

∏
j

(
sj

KM,sj,r

)nj
(

1−
∏

k p
nk
k /

∏
j s

nj
j

Keq,r

)
∏
j

(
1 +

sj
KM,sj,r

)nj

+
∏
k

(
1 + pk

KM,pk,r

)nk

− 1
(S10)

vi = ei · kcat,i

∏
j

(
sj

KM,sj,i

)nj

∏
j

(
1 +

sj
KM,sj,i

)nj

+
∏
k

(
1 + pk

KM,pk,i

)nk

− 1
. (S11)

With ei the enzyme concentration, sj the substrate concentrations, pk the product concentrations, and n

the (absolute value of the) stoichiometric constant. The KM values are the Michaelis constants, the kcat
2The resulting method would be equivalent to a flux balance analysis with fixed biomass production rate, no other flux constraints,

and a minimization of a weighted sum of fluxes, namely Elb(v).

9



NH3[e]
ex_nh3

tim

biomass

RPTSsy

pgi

pfk fbp

ald

gap

pgk

pgm

pgh

pyk pps

zwfglh

edd

eda

pgd

rpe

rpi

txt1tal

txt2

pdh pfl ex_for

csn

acn

icd

kgd

scs
ex_suc

sdhfrd

fum

mdh

ppc

ppck

me

pta ack ex_ace

ada adh ex_etoh

ldh ex_lac

atpmain

oxphos

ATP ADP

2 ADP 2 ATP

NADH NAD+

Glucose

G6P6PGL6PGC

KDPG

PEP

Pyruvate

F6P
F6P

F6P

FBP

G3P

G3PG3P

BPG

3PG

DHAP

2PG

PEP

Pyruvate

X5P

X5P

R5P

S7P

E4P

AcCoA Ace-P

Acald

Citrate

iso-Citrate

2-oxoglutarate

Succinyl-CoASuccinate

Succinate[e]

Fumarate

Malate

Oxalo
acetate

Ru5P

Lactate Lactate[e]

Formate Formate[e]

Ethanol Ethanol[e]

Acetate Acetate[e]

Pyruvate

PEP

Oxaloacetate

2-oxoglutarate

NH3

AcCoA

E4P

R5P

G6P

ATP

NADH NAD+

ADP CO2

CoA

Biomass

Figure S4: The reaction network of central carbon metabolism in E. coli.

values the turnover numbers and the Keq values the equilibrium constants. In our model, macromolecule

production is quantified by a single biomass production rate vBM . The rate law represents the action of

many (not explicitly modeled) cellular processes operating in steady state [9]. The biomass reaction is a

lumped reaction of all processes involved in biomass production.

vbiom =
ebiom · kcat,biom

1 +
∑
j

KM,sj,biom

sj

(S12)

Equation (S12) corresponds to the equation in [9] with a single unit in the template (n = 1) and ebiom as

the template concentration. The sj are the substrates of the biomass reaction and KM,sj ,biom their Michaelis

constants. Since this reaction is not a real biochemical reaction, but a lumped reaction that summarizes a
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wide range of biosynthetic reactions, its catalytic constant does not have a clearcut biochemical meaning.

We thus opted not give too much weight to the biomass production, as it is a crude approximation, and

the chosen kcat does not affect the rate very much (see Figure S5 and compare with Figure S18). With the

catalytic constant chosen, the kinetics of the biomass reaction does not limit growth, i.e., growth control is

only exerted by the other, metabolic reactions.

S2.3 Choice of consistent model parameters by parameter balancing

A complete and consistent set of model parameters (kcat, Keq, andKM values) was determined by parameter

balancing [1]. Measured kinetic constants from the literature, which were incomplete and may be contradic-

tory, were translated into model parameters that satisfy thermodynamic constraints. Unknown kcat values,

for example, would be substituted by values around 100 s−1, but adjusted to satisfy the Haldane relation-

ships, thermodynamics-based laws that link them to KM values and equilibrium constants. Plausible orders

of magnitude of kinetic parameters were defined by prior distributions (e.g., mean values and a standard

deviation for logarithmic kcat values in general). The median value of 100 s−1 was chosen because kcat
values in central metabolism tend to be higher than generally in metabolism (typical value around 10 s−1)

[10]. The kinetic parameters used as input data for parameter balancing were obtained from the literature

(see Supplementary Files). Some kcat values were calculated from specific activities (SA) with the formula

kcat = SA ·MW(in kDalton)/(60 · nrcatalyticsites). The input and output files of the parameter balancing can

be found in the Supplementary Files. The weights were obtained by calculating the weights for enzyme com-

plexes and dividing by the number of catalytic sites. Whenever the number of catalytic sites was not known,

we used the number of subunits as a proxy for the number of catalytic sites. There was no information

available for the biomass equation and we set the KM values to the measured intracellular concentrations

when available, and otherwise to a low value as not to influence the results (see Supplementary Files). Over-

all, we found literature values for the kcat of 26 out of 51 reactions, and KM values for 87 out of the 171

reactant-enzyme pairs (i.e. about 50% coverage in both cases).

S2.4 Calculation of specific growth rate and yield

To calculate the growth rate µ (using formulae from section S1.3), we first translate the biomass flux to

actual mass units (e.g. grams) by summing up the molecular masses of the biomass reactants times their

stoichiometric coefficient. The ATP/ADP and NADH/NAD+ couples are left out from this calculation because

they produce a negligible amount of biomass. The details of the mass calculation of the biomass are given in
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Table S5.1. That means that one mole of biomass weighs about 20.7 [kg]. Then, we convert the biomass flux

in the model vR70 to the biomass production rate in the growth equations vBM:

vBM = vR70 [mM s−1] · 2.07× 104 [mg mmol−1] · 3.6× 103 [s h−1]

= vR70 · 7.45× 107 [mg s mmol−1 h−1] (S13)

Our model calculates the abundance of each enzyme (ei, in mM) required for this biomass flux. To get

the total mass of enzyme requirement we multiply each ei by the molecular weight per active site of each

enzyme (wi, given in [mg mmol−1]). Therefore, the total cost will be Emet =
∑
i eiwi [mg l−1]. Finally, the

enzyme doubling time would be:

τmet =
ln(2)Emet

vBM
= v−1R70 · 9.3× 10−9[mmol h mg−1 s−1] · Emet (S14)

And according to Equation S7, the doubling time of the cell would be:

T = 7.4 τmet + 0.51[h] =
1

vR70
· 6.9× 10−8 [mg s mmol−1 h−1] · Emet + 0.51[h] (S15)

From equations (S1), (S4) and (S13) the growth rate µ can be calculated from the total cost Emet and the

biomass flux in the model vR70 with the following formula:

µ =
vR70 · 107 [mg s mmol−1 h−1]

Emet + vR70 · 7.5× 106 [mg s mmol−1]
(S16)

The biomass yield is expressed in milligram biomass per millimole of carbon atoms uptake and, therefore,

we need to convert biomass production to grams and substrate uptake rates to mole carbons. Since glucose

molecules contain six carbon atoms, and a mole of biomass weights 20666 grams (see Table S5.1) the

biomass yield is given by:

Yg/C =
20666 [mg mmol−1] vR70

6 · vpts
=
vR70

vpts
· 3.4× 103 [mg mmol−1], (S17)

where vpts is the flux in the PTS glucose uptake system (reaction R1 in the model).

S2.5 Realistic values for enzyme concentrations

Although the model calculates enzyme abundances in mM, there is a hidden scaling factor which needs to

be taken into account in order to use this estimated values for validation. In our implementation of the

optimization problem, we assume that vR70 is equal to 1 [mM s−1]. But is this a realistic value for actual E.
coli cells growing exponentially?

To answer this question, we must first calculate the value of vBM. An average bacterial cell consists of about

30% dry matter [11], which translates to a dry density of ρ ≈ 3×105 [mg l−1]. A typical value for the growth

rate would be µ ≈ 1 [h−1], which would be enough to for a rough estimate of the biomass rate, given by

vBM = ρ · µ. Using equation S13 we can now get:

vR70 =
vBM [mg l−1 h−1]

7.45 · 107 [mg s mmol−1 h−1]
=

ρ [mg l−1] · µ [h−1]

7.45 · 107 [mg s mmol−1 h−1]

≈ 4× 10−3 [mM s−1] . (S18)
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This result means that our standard value for vR70 is ∼250 times too high, and so are the estimates for

enzyme concentrations. To obtain realistic estimated value should, one must therefore divide each ei by

250.

It is important to note, that this overestimation of vR70 and ei does not affect the overall model prediction

of growth rate and yield. One can see, that in formulas S2.4 and S2.4, this scaling factor affects both the

numerators and the denominators and therefore cancels out. This is not a coincidence, but a feature of the

way we calculate growth rate by dividing the rate of biomass production by the required enzyme amount

for that specific rate. As an outcome of this independence, one can also use the predicted growth rate

directly in equation S18 instead of the typical value (1 [h−1]), even though the value of vR70 and the enzyme

concentrations were used to calculate the growth rate in the first place.

S2.6 Choice of standard external conditions

As a standard condition for our simulated cells, we chose a high external glucose concentration of 100 mM.

For O2 we chose the concentration from the same paper as we used for the kinetics of the oxygen using

reactions [12], namely 0.21 mM. The concentration of other external compound that is taken up, NH3, was

set to 10 times more than the highest KM to ensure saturation (1.0 mM). The levels of excreted metabolites

were assumed to be low and were set to 0.01 mM, except for ethanol and CO2 which were set to 1 mM

(which are actually internal metabolites, since we treated the export reactions as non-enzymatic).

S2.7 Details on the elementary flux modes

Some biological and statistical properties of the EFMs are shown in Figures S6, S7, S8, and S9.
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Figure S6: Elementary flux modes, visualized using the t-SNE algorithm. (a) Elementary flux modes
are vectors in a high-dimensional flux space. The t-SNE algorithm [13] represents the EFMs by points on
a two-dimensional plane. It tries to preserve their original distances (i.e., the Euclidean distances in flux
space) while spreading the points evenly over the plane. The biomass yield (b) and specific growth rate (c)
are represented by a color scale. As expected, similar EFMs have very similar yields (since the yield is one of
the dimensions in the flux space) but growth rate can sometime change significantly for neighboring EFMs.
In each of the panels (d-i) we show a single feature in color coding on the same EFM map.
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Figure S7: Statistical properties of biomass producing EFMs and similarity to measured fluxes (a) Usage
of individual reactions by biomass-producing EFMs. For each reaction, a bar shows in what percentage of
all EFMs this reaction is active. A core of 8 essential reactions is active in all biomass producing EFMs (ppc,
ex-nh3, icd, csn, acn, biomass, pts, and rpi). (b) Size distribution of biomass producing EFMs (number
of active reactions). (c) Correlation of measured flux distribution with each other EFM. The color of each
EFM in this Pareto plot corresponds to the Spearman correlation between the fluxes in that EFM and the
experimentally measured fluxes from [14]. (d) Similarly, we plot the Spearman correlation between the
estimated enzyme levels for each EFM and the measured enzyme levels from [15]. Note that even the
point corresponding to exp does not have a correlation of 1, since even though the fluxes are taken from
experiments, the estimated enzyme abundances are still given by the ECM algorithm. Nevertheless, exp is
among the EFMs with the highest correlation.
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Figure S8: Some relevant fluxes for all EFMs plotted in a rate/yield diagram under standard conditions.
More fluxes are given in main text Figure 3. (a) Succinate:fumerate cycling is not very beneficial and occurs
only in suboptimal EFMs. (b) Ammonia uptake is very correlated with yield, because ammonia enters the
biomass equation directly. (c) The ED pathway is used throughout the spectrum but clearly by a whole group
of low yield/high growth rate EFMs. (d) The pentose phosphate pathway is also used throughout, but more
in the higher growth rate EFMs. (e) The flux in upper glycolysis, which is reversible and therefore is depicted
using a red-blue colormap, is zero for the seven EFMs with the highest growth rate and otherwise usually
positive. Only a few EFMs with medium-low growth rates use the reverse direction. (f) The flux through
pyruvate dehydrogenase, which is a very large enzyme complex, is relatively low for the fastest EFMs.

0 10 20

biomass yield [gr dw / mol C glc]

0.0

0.1

0.2

0.3

0.4

0.5

a
ce

ta
te

se
cr

et
io

n
[m

o
l

C
a

ce
/

m
o

l
C

g
lc

]

a

max-grparetomax-yieldana-lac

aero-ace

exp

0 10 20

biomass yield [gr dw / mol C glc]

0.0

0.2

0.4

0.6

o
xy

g
en

u
p

ta
ke

[m
o

l
O

2
/

m
o

l
C

g
lc

]

b

max-gr
pareto
max-yield

ana-lac

aero-ace

exp

0 10 20

biomass yield [gr dw / mol C glc]

20

25

30

35

n
u

m
b

er
o

f
a

ct
iv

e
re

a
ct

io
n

s c

max-gr
pareto

max-yield

ana-lac

aero-ace

exp

0 10 20

biomass yield [gr dw / mol C glc]

0

10

20

30

40

su
m

o
f

fl
u

xe
s

re
la

ti
ve

to
u

p
ta

ke
[a

.u
.]

d

max-gr
paretomax-yield

ana-lac

aero-aceexp

Figure S9: Correlations of biomass
yield with acetate flux, oxygen flux,
number of reactions and sum of
all fluxes, all scaled with the up-
take rate All quantities shown fol-
low directly from the shapes of EFMs,
independently of a specific kinetic
model. (a) Among the acetate-
secreting EFMs, higher acetate secre-
tion tends to imply lower biomass
yields. (b) The oxygen uptake is opti-
mal at around 0.4 [mol O2 per mol C],
as lower uptake forces higher byprod-
uct secretion rates (to make up for the
ATP requirements) and higher O2 up-
take rates reduce yield as well, since
more carbon is oxidized and released
as CO2. (c) The number of active re-
actions, a very simplified measure of
enzyme demand, shows relatively lit-
tle correlation with biomass yield. (d)
The same holds for the sum of fluxes
relative to glucose uptake.
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S3 Model results

This section provides additional results on simulated growth rates for different EFMs, under different ex-

ternal conditions (variation of glucose and oxygen levels), different choice of kinetic constants, under a

restricted usage of pathways, and under enzyme knockouts. It also provides results on the necessary en-

zyme investments (for different EFMs, and under varying external conditions) and on the optimal metabolic

strategies in chemostats at different growth rates (as determined from predicted Monod curve parameters).

S3.1 Growth rates achieved by elementary flux modes

As shown in Figure S10, the predicted cell growth rates do not only vary widely across EFMs, but their

distribution also assumes very different shapes depending on biochemical external conditions. At standard

(high oxygen) conditions, they are relatively evenly distributed, while under low-oxygen conditions, a large

number of EFMs (the oxygen-dependent ones) show very low growth rates, and only a very small percentage

reaches comes close to the maximal growth rate. This has practical consequences for modelling: since the

number of EFMs in a model can be large, it might be tempting to sample EFMs instead of enumerating all of

them, in order to find at least some EFMs with realistic biological properties. However, this approach would

probably fail in the low-oxygen case shown. Almost all EFMs would yield very unfavourable growth rates.

In this example, a pragmatic solution would be to sample EFMs in a way that oxygen-dependent EFMs are

automatically discarded. However, in general cases, such heuristics may be difficult to find. We conclude

that a sampling of EFMs may yield some well-performing EFMs (as here, in high-oxygen conditions), but it

may also fail (as here, in low-oxygen conditions), and which of the two is the case may be hard to control or

assess.
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Figure S10: Distribution of growth
rates over EFMs. (a) Under stan-
dard conditions, the growth rates are
relatively evenly distributed, and by
randomly sampling a small number of
EFMs, there would still be a chance to
find EFMs that maximize the growth
rate. (b) Under low-oxygen condi-
tions, however, the distribution is very
far from uniform and skewed to the
left. The chances of finding one of the
few EFMs with high growth rates (i.e.
> 0.2 [h−1]) using random sampling
are very small.
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Figure S11: Growth effects of a decrease
in glucose level. A drop in glucose level
(from 100 mM to 0.1 mM) decreases the
growth rate for all the EFMs, each to
a different extent. The EFMs with low
yield are more affected (ana-lac, for exam-
ple), since they have higher glucose uptake
rates, and the enzyme burden of the PTS
system is larger. Nevertheless, the Pareto
front changes only slightly, and still consists
of a few EFMs.
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S3.2 How the choice of metabolic strategies depends on glucose and oxygen levels
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Figure S12: Cell growth rate as a function of external glucose and oxygen levels. For each combination
of glucose and oxygen levels, maximal growth is realized by one “optimal EFM” (marked by colors). In
chemostat experiments, the same fixed growth rate could be realized by a (one-dimensional) continuum
of possible states, each entailing a different combination of external glucose and oxygen levels arising in
the medium. The specific choice will probably depend on the ratio of glucose and oxygen supplies to the
chemostat. (a) 23 different EFMs are optimal (i.e. have the highest growth rate) in different regions in
the glucose/oxygen plane. (b) In contrast to the complex map of optimal EFMs, the optimal growth rates
change very smoothly and it is difficult to see any transitions except for one boundary that curves up around
the lower right corner. From overlaying this plane with different EFM properties (c-h) of the optimal EFM
at each region, we can see that this low oxygen/high glucose region consists only of anaerobic EFMs (d).
Interestingly, acetate fermentation is only favorable in a narrow band around this anaerobic region and
becomes unfavorable again at high O2 levels (e).
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Figure S13: Optimal EFMs as functions of uptake rates. (a) The optimal EFMs across the glucose/oxygen
plane (same figure as S12a). (b) The optimal EFM colors overlaid on a 3D surface plot, where hight rep-
resents the optimal growth rate at each condition. (c) Changing the axes in panel (a) to the glucose and
oxygen uptake rates, paints a very different picture. Due to our model assumptions, only EFMs can maxi-
mize the growth rate at a given condition, and since each EFM defines a constant ratio of glucose to oxygen
uptake, its points are all positioned along a straight line (scaled by the growth rate). Therefore, this scatter
plot is very sparse. (d) the same data as in (c), shown as a 3D plot where the z-axis is growth rate. Again,
the points of each EFM are aligned since all rates scale linearly with the growth rate.
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S3.3 Enzyme investment in selected elementary flux modes
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Figure S15: Breakdown of protein cost for selected EFMs (standard concentration conditions). The
reactions that require a lot of enzyme investment are: oxidative phophorylation (R80), citrate synthase
(R21), glucose uptake PTS system (R1) and glyceraldehyde-3P dehydrogenase (R7ra).
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Figure S16: Breakdown of protein cost for varying external concentrations. Varying glucose concentra-
tion (two left columns). Allocation of resources for reactions that require more than 5% of the total cost,
in absolute concentration (left) or as a fraction of the total cost (right). The allocations going to all other
reactions are lumped together in the grey area denoted “other”. Only the six focal EFMs are shown. The two
right columns show the same for varying oxygen concentration.
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S3.4 Trade-off between growth under high-glucose or low-glucose conditions

Cells in a chemostat, at different dilution rates, face different metabolic challenges. Can we expect that

cells use the same metabolic strategies at a wide range of growth rates, or would we rather expect a trade-

off, by which some strategies perform better at low growth rates and others perform better at high growth

rates? To answer this question, Monod curve parameters (Monod coefficient and maximal growth rate) were

calculated for all EFMs by fitting a Hill function to the estimated growth rates across a wide range of external

glucose concentrations. The Monod curve is typically characterized by the formula µ = µmax [S]h

[S]h+Kh
S

, where

µmax is the maximal growth rate, [S] is the concentration of the limiting nutrient (i.e. glucose) and KS is the

substrate saturation constant (or “Monod coefficient”). The Monod coefficient is equal to the concentration

of glucose where the growth rate is exactly half of the maximum (µ = 1
2µ

max), and its reciprocal value can

be seen as the cell’s overall affinity for glucose. In a chemostat at high dilution rates cells must grow fast

because they can only survive if their maximal growth rate exceeds the dilution rate; at low dilution rates,

in contrast, the higher cell density leads to very low glucose levels, and cells with a high growth rate at low

glucose concentrations will be selected for – typically the ones that have a low Monod constant.

To observe possible trade-offs between these two quantities, we used our model to estimate the growth rate

of all EFMs in a wide range of glucose concentrations, either in aerobic or anaerobic conditions, and fitted the

parameters of a Monod curve for each EFM separately. Plotting µmax versus the affinity 1/KS under aerobic

conditions we do find a trade-off (Figure S17(a)). Under anaerobic conditions, a more pronounced trade-off

develops (Figure S17(e)). The growth at low glucose concentration is a combination of the Monod constant

and the maximal growth rate, and as shown in Figure S17(i), our simulations predict almost no trade-off

as long as oxygen levels are high, but in anaerobic conditions (Figure S17(m)), the trade-off becomes more

pronounced, suggesting different winning strategies depending on the dilution rate.
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Figure S17: Trade-off between growth under high-glucose or low-glucose conditions. The trade-off is
presented as a scatter plot of the maximal growth rate (y-axis) either as a function of the inverse Monod
coefficient (panels a-h) or as a function of the growth rate at very low glucose levels (1 µM, panels i-p).
Odd rows show the distribution of all EFMs in aerobic conditions ([O2] = 0.21 mM) and even rows are for
anaerobic conditions (only EFMs that do not consume O2 are shown). The first column (left) displays all
the EFMs, and the three other columns show the oxygen uptake, biomass yield and acetate secretion rate
respectively. One can appreciate, that in aerobic conditions there is almost no trade-off between the maximal
growth rate and the growth on low glucose concentrations. In other words, the best EFMs in high glucose
levels are often the best also in low glucose.
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S3.5 Effect of an individual enzyme parameter on cell growth

If the catalytic constant of an enzyme is decreased, all EFMs using this enzyme will show lower growth

rates because in each EFM, in order to maintain the predefined flux mode, the lower catalytic efficiecy must

be compensated by higher enzyme levels (see proof in SI section S4.4); as a consequence, the biomass

production per enzyme investment decreases, and so does the growth rate. Figure S18 shows the simulated

effects of a changing catalytic constant of triose-phosphate isomerase. In contrast to the case in standard

conditions (light grey dots, same as in main text Figure 2b), the Pareto front now comprises a few EFMs

with very different growth rates, but similar yields. The growth rate of max-yield, which uses tpi, is greatly

reduced, while max-gr is not affected since it has no flux through tpi at all. The sensitivities shown in Figure

S18 (b) correspond to the slope of the graph in Figure S18 (c) at the standard kcat value. The grey shading

marks the range of a two-fold increase or decrease around the standard kcat. One can see that the linear

approximation is not suitable for much larger changes in kcat, such as the change shown in panel a (i.e. a

1000-fold decrease to “low kcat”). The calculation of cost sensitivities is explained in more detail in sections

S4.2 and S4.3. Figure S18c shows the results of a global enzyme optimization after parameter changes.

Therefore, focusing on relatively small parameter changes (which allow us to ignore effects higher than first

order) and given the optimal enzyme profile for some EFM under some standard conditions, the parameter

sensitivities can be computed easily (as described in SI section S4.3 for kcat values, equilbrium constants,

and KM values).
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Figure S18: Growth effects of a varying enzyme parameter. (a) Growth/yield diagram in which the
catalytic constant of triose-phosphate isomerase (tpi) is decreased by a factor of 1000 (from its original value
7800 s−1 to 7.8 s−1). (b) Sensitivity of the biomass production to the kcat of tpi for different EFMs. Error
bars depict the change in growth rate for a two-fold increase or decrease in the kcat value. An approximation
based on an direct compensation of the affected enzyme was used to compute the sensitivity (see SI section
S4.3). (c) Effect of an increased triose-phosphate isomerase kcat value on the growth rate of selected EFMs.
The 2-fold range around the “standard kcat” value is marked by grey shading. The top two EFMs max-gr and
pareto do not use tpi at all and are not sensitive to changes in its kcat.
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S3.6 Growth of strains deficient in EMP glycolysis, ED glycolysis, or respiration

Our analysis of growth-yield trade-offs extends an earlier study of cost/yield trade-offs in ATP regeneration.

Flamholz et al. had studied cost-yield trade-offs between two versions of glycolysis, the Embden-Meyerhof-

Parnas (EMP) and the the Entner-Doudoroff (ED) pathway [16]. Their model comprised only glycolysis, and

ATP yield and enzyme cost (both at a fixed glucose uptake rate) were compared. The EMP pathway, which

provides a two-fold yield, requires much higher amounts of protein per ATP flux, which entails a cost-yield

trade-off. The authors concluded that cells, under a high demand for ATP produced in glycolysis, should use

the EMP pathway, while cells that already produce “cheap” ATP (e.g., by photosynthesis), should rather use

the ED pathway.
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Figure S19: Growth surface plots for strains deficient in EMP glycolysis, ED glycolysis, or respiration.
(a) Growth surface plot for simulated wild-type E. coli. (b) Changes in growth surface after simulated
suppression of ED pathway (wild-type surface shown in blue, mutant surface shown in red). (c) Changes in
growth surface after simulated suppression of EMP pathway. (d) Changes in growth surface after simulated
suppression of respiration.

With our model, we can now revisit this question. Compared to the model in [16], our model has the

following additional features: (i) the model includes the TCA cycle and respiration, so choices between

fermentation and respiration and choices between EMP and ED pathways, which may be entangled, can

be studied at the same time. (ii) Our model predict overall biomass yield and cell growth rate (instead of

only ATP yield and ATP production cost in glycolysis) as output variables. (iii) We screen the behavior for

various glucose and oxygen levels, each providing different possible enzyme costs and possible growth-yield
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trade-offs.

To compare the usages of EMP and ED glycolysis, as well as the usage of respiration, we consider model

versions in which some of these pathways are suppressed, i.e., all EFMs that include these pathways will

be discarded3. If a metabolic pathway cannot be used, it may have to be by-passed by other, less efficient

pathways. This will decrease the growth rate under all (glucose and oxygen) conditions in which the original

pathway was used, and the quantitative decrease may again depend on the (glucose and oxygen) conditions.

Here we compare our simulated wildtype E. coli (capable of using EMP glycolysis, ED glycolysis, and respira-

tion) to variants in which one of the three pathways, respectively, is suppressed by simulated gene deletions

(see Figures 6 and S19). The suppression of either the EMP or ED pathway have the most marked effects at

low oxygen levels, where respiration is not used and cells rely entirely on glycolysis for their ATP production.

Suppressing the respiration pathway has almost the same effect as setting the external oxygen concentration

to extremely low values (except for the case of extremly low glucose concentrations).

In [16], it was hypothesized that non-respiring cells may be more dependent on ATP generated in glycolysis,

which and may therefore employ the high-ATP-yield EMP pathway despite it higher enzyme cost. Here we

find the opposite: at (low oxygen and) high glucose levels, EMP and ED pathways yield approximately the

same growth rates, and at low to medium glucose levels, the ED pathway even performs better, possibly to

ATP cost/yield ratio, which is still better than the cost/yield ratio of the EMP pathway – a conclusion that

is in line with the simulation results, but not with the verbal conclusions from [16]. Note that our three

model variants could also be seen as simple models of bacterial species that are lacking the genes for EMP

glycolysis, ED glycolysis, or respiration, respectively.

S3.7 Epistatic effects between gene knock-outs

Once the growth rates and yields for all EFMs have been computed, simulating single, double, or multiple

gene knockouts is really easy – we just need to exclude all EFMs that are affected by a knockout and redo the

statistical analysis (e.g., finding the growth-maximising EFM, or determining the Pareto front). By comparing

the performance of simulated single and double knockout strains, we can compute epistasis values, which

quantify whether a double knockout has a less severe or more severe effect than we would have expected

based on the separate single knockouts. Epistasis values can be defined based on growth rate or based on

yield as the fitness objective.

Figure S20 show predicted epistasis values related to growth rate, instead of biomass yield as selection

objective. Lethal knock-outs are the same as for the yield (see Figure S21). However, there are less cases of

positive epistatic interactions. A second knock-out in the PPP (R11-R15) after a knock-out in lower glycosis

(R7-R8) does give an extra reduction in the growth rate (no positive scaled epistasis), while it does not have

a big effect on the yield. There is a positive epistasis in the growth rate for the 2 reactions in the ED pathway

(R60 and R61r), while this pathway is not used in high yield pathways (and therefore no epistasis there).

Some of the epistatic interactions from the yield come back in the case of low oxygen, because high yield

pathways are often also high growth rate pathways at low oxygen (panel d). Interesting is that some epistatic

interactions change signs between different conditions, such as the positive epistasis between uptake (R1)

with the ED pathway (R60 and R61r) (panel b and f) which turns negative at low oxygen (panel d).

The epistatic effects on yield are shown in Figure S21. Panel (a) shows the relative yields of each double

knockout as a fraction of the maximal yield (i.e. the yield of the wild-type). Single knock-outs can be seen

on the diagonal. Obviously, the uptake reaction (R1) and biomass reaction (R70) are essential. As can be

seen, a knock-out of reactions R21-R24 and R40 is lethal because there is no way to produce 2-oxogluterate,
3This analysis does not require any additional optimization runs. It suffices to analyse the existing simulation results, while discarding

some of the EFMs.
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Relative growth rates on
standard glucose (100 mM) and oxygen (0.21 mM)
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Figure S20: Epistatis effect of double knockouts on growth rate. Relative growth rate (a,c,e) and “scaled
growth rate epistatis” (b,d,f). Epistasis values are computed using Equation S19, but based on growth rates
instead of biomass yields. The three rows refer to standard conditions (a-b), low oxygen conditions (c-d),
and low glucose conditions (e-f) respectively. The relative growth rate of single reaction knock-outs can be
seen on the diagonal (only on the left column).
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Figure S21: Epistatic effect of double knockouts on biomass yield. (a) Relative yields of each double
knockout as a fraction of the maximal yield (i.e. the yield of the wild-type). (b) Scaled epistatis for biomass
yields.

which is needed for the biomass reaction (although this is not directly obvious for reaction R20 and R40).

Other essential reactions are R93 (to obtain ammonia) and R12r (to obtain ribose-5-P). Single knock-outs

in oxidative phosphorylation (R80) or lower glycolysis (R7/R8) decrease the yield, because those are used

by the high yield EFMs. Some double knock-outs are synthetically lethal—i.e. only the double knockout

is lethal but each of the single ones are viable, mostly combinations of knock-outs in lower glycolysis, the

ED-pathway and the pentose phosphate pathway. A few double knock-outs lower the yield dramatically,

mostly combinations of the PPP and the TCA cycle. In panel (b), the “scaled yield epistatis” is calculated

with the formula

Y1,2 − Y1 · Y2
|Ỹ1,2 − Y1 · Y2|

, (S19)

where Yi is the scaled yield of knock-out i and Ỹ1,2 = min(Y1, Y2) if Ỹ1,2 > Y1 · Y2 and Ỹ1,2 = 0 otherwise

(definition from [17]). Here we can clearly see the synthetically lethal double knockouts and the double

knockouts that have a dramatically lower yield in red. In blue (i.e. epistasis score = 1) we find combinations

or knockouts where one is dominant, while the other doesn’t reduce the yield further. For instance, this is

the case for sequential reactions in the same pathway (e.g. R10a and R10b).
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S4 Mathematical derivations

S4.1 Computing a stationary flux distribution in a metabolic network from mea-
sured fluxes

Assume we obtain absolute flux measurements using 13C metabolic flux analysis (MFA), but the list of fluxes

does not cover all the 52 reactions in our CCM model. We now describe a method to estimate the missing

reaction fluxes (and maybe adjust the measured ones) in order to get a consistent flux, i.e. one that satisfies

the constrains of the system include mass balance. One option is to find the flux mode (v) that minimizes

the l1 distance to the measured exchange fluxes (v̄ ± σ), and fulfills mass balance constraints:

minimize
∑

i∈Imeas

|vi − v̂i|

Sv = 0

vmin ≤ v ≤ vmax

v̄i − σi ≤ v̂i ≤ v̄i + σi (S20)

where v̂ is an auxiliary variable that represents the actual flux, and constrained to be within the confidence

interval of the absolute measured fluxes. This LP typically has redundant solutions, therefore we add a

secondary optimization goal which is to maximize the ATP production (in our model it means maximizing

vr82).

maximize vr82∑
i∈Imeas

|vi − v̂i| = ε1

Sv = 0

vmin ≤ v ≤ vmax

v̄i − σi ≤ v̂i ≤ v̄i + σi (S21)

where ε1 is the value of the minimum in the first optimization.

S4.2 The global cost sensitivities can be approximated by local cost sensitivities

We now compute the sensitivities between enzyme cost and model parameters, e.g., kcat values. In analogy

to the local and global flux sensitivities in Metabolic Control Analysis, called elasticities and flux response

coefficients respectively, we distinguish local and global sensitivities for enzyme cost at predefined fluxes.

From these sensitivities, we can compute local and global sensitivities between parameter perturbations and

the cell growth rate. . To define the local sensitivities, we perturb one parameter and adapt only the enzyme

of the affected reaction (while all metabolite levels remain unchanged, and the flux must remain the same).

To define the global sensitivities, we perturb the same parameter and adapt all enzymes (and accordingly, all

metabolite levels, where the flux must remain the same and the cost-optimal adaptation is chosen). Below

we show that, for small parameter changes, local and global adaptation lead to the same first-order cost

changes, i.e., that local and global sensitivities are identical.

To define the optimal enzyme cost qopt and the optimal metabolite profile s0 for a given flux vector v, we
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solve the enzyme cost minimization problem

qopt(v, k) = mins q(v, s, k)

sopt(v, k) = argmins q(v, s, k) (S22)

with an enzyme-based metabolite cost function q(v, s, k) derived from a kinetic model. The fluxes v are fixed

and given, the vector of logarithmic metabolite levels s can be varied within the metabolite polytope, and

the vector k contains model parameters (e.g., kinetic constants) that affect individual reaction rates.

To show that local and global sensitivities are identical, we start from the unperturbed reference values k0
and obtain an optimal metabolite vector s0; then we expand the cost function quadratically around this point

with respect to s. To simplify the notation (and without loss of generality), we consider a one-dimensional

problem (with scalar logarithmic concentration s):

q(v, s, k) ≈ a(s− s0)2 + b︸︷︷︸
0

(s− s0) + c, (S23)

with expansion coefficients a, b, and c. Since we expand around an optimum point, the coefficient b vanishes.

Now we consider a small parameter change dk, which changes the cost landscape (and thereby the expansion

coefficients):

q(v, s, k + dk) ≈ [a+ α dk] (s− s0)2 + [β dk] (s− s0) + [c+ γ dk]. (S24)

We compute the new optimum point by equating the derivative to zero:

0 = 2[a+ α dk] (sopt∗ − s0) + [β dk]

⇒ sopt∗ = s0 −
β dk

2(a+ α dk)
≈ s0 −

β dk

2 a
(S25)

where we assume that a ≥ 0 (i.e., we assume that we started from a well-defined, unique optimum optimal).

To compute the resulting cost, we insert sopt∗ back into the perturbed cost function:

qopt(v, k + dk) = q(v, sopt∗(k + dk), k + dk)

≈ [a+ α dk](−β dk

2 a
)2 + [β dk] (−β dk

2 a
)︸ ︷︷ ︸

second-order terms in dk

+ [c+ γ dk]︸ ︷︷ ︸
≈q(v,s0,k+dk)

(S26)

This means:

∂qopt(v, k)

∂k
=
∂q(v, sopt(k), k)

∂k
=
∂q(v, s, k)

∂k
|s=s0 (S27)

or, in other words: the cost change after a parameter perturbation (and with an optimal adaptation of all

enzyme levels) is, to first order, given by the cost change that would ensue from adapting only the affected

enzyme (and keeping all metabolite levels unchanged). Note that our first-order expansion holds only for

small (relative) parameter changes.

S4.3 Cost sensitivities of kinetic constants

Cost sensitivities for kcat values In the case of kcat values, we obtain a simple formula for local cost

sensitivities: With the rate law v = E k f(s), with fixed flux v and metabolite levels s (and thus fixed f),

we obtain Eadapt · kadapt = Eref · kref = v
f = const.. (where ref refers to the reference state, and adapt to
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the perturbed state with adapted enzyme level). The adapted enzyme level reads Eadapt = Eref
kref
kadapt

and its

derivative reads dEadapt

dkadapt
= −Eref kref

k2adapt
, and in the original reference state: (where kadapt = kref):

dEadapt

dkadapt
= −Eref

kref

The local cost sensitivity (with enzyme cost weight h) thus reads

dq

dk
= −h Eref

kref
= − qref

kref

.

As we saw before, these (first-order) local cost sensitivities are identical to the (first-order) global cost

sensitivities.

Cost sensitivities for Keq values To quantify the sensitivity of the total enzyme cost to an independent

change in one of the Keq value, we first calculate the elasticity

q = hv · k−1cat · ηsat(c)−1 ·
[
1−Q(c)K−1eq

]−1
(S28)

∂q

∂Keq
=

q

Keq
· ∂ log q

∂ logKeq
= − q

Keq
·

QK−1eq

1−QK−1eq

= − q

Keq
· 1

KeqQ−1 − 1
(S29)

where Q(c) is the reaction quotient, and η(c) represents the saturation and regulation terms (that do not

depend on Keq). Note that if we use the definition ηthr =
(
1−Q(c)K−1eq

)
, we can rewrite this result as

∂q

∂Keq
= − q

Keq
·
[
ηthr(c)−1 − 1

]
(S30)

Cost sensitivities forKM values (reaction substrates) The expression for the sensitivity of the total enzyme

cost to a certain KM value is given by:

q = h v k−1cat η
thr(c)−1 ·

 ∏
j

cj
KM,cj∏

j

(
1 +

cj
KM,cj

)
+
∏
k

(
1 + ck

KM,ck

)
− 1

−1

= h v k−1cat η
thr(c)−1 ·

∏
j

(
KM,cj

cj
+ 1

)
+
∏
j

(
KM,cj

cj

)
·

(∏
k

(
1 +

ck
KM,ck

)
− 1

) (S31)

where j is the index for c for all substrates and k for all products. We will calculate the sensitivity to changes

in the Michaelis constant of a substrate s, which we denote in short Ks ≡ KM,cs . For this cost function, the
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KM sensitivity would be:

∂q

∂Ks
= h v k−1cat η

thr(c)−1 ·

 1

cs

∏
j 6=s

(
KM,cj

cj
+ 1

)
+

1

cs

∏
j 6=s

KM,cj

cj
·

(∏
k

(
1 +

ck
KM,ck

)
− 1

)
=
q ηsat(c)

Ks

Ks

cs

∏
j 6=s

(
KM,cj

cj
+ 1

)
+
Ks

cs

∏
j 6=s

KM,cj

cj
·

(∏
k

(
1 +

ck
KM,ck

)
− 1

)
=
q ηsat(c)

Ks

∏
j

(
KM,cj

cj
+ 1

)
−
∏
j 6=s

(
KM,cj

cj
+ 1

)
+
∏
j

KM,cj

cj
·

(∏
k

(
1 +

ck
KM,ck

)
− 1

)
=
q ηsat(c)

Ks

ηsat(c)−1 −
∏
j 6=s

(
KM,cj

cj
+ 1

)
=

q

Ks

1− ηsat(c)
∏
j 6=s

(
KM,cj

cj
+ 1

) (S32)

and if s is the only substrate for this reaction, we are left with

∂q

∂Ks
=

q

Ks

[
1− ηsat(c)

]
Cost sensitivities for KM values (reaction products) We again start with equation S31 and derive by

Kp ≡ KM,cp – the Michaelis constant to one of the products. In this case the sensitivity is given by:

∂q

∂Kp
= − q

Kp
· ηsat(c) ·

∏
j

KM,cj

cj
·
∏
k

ck
KM,ck

·
∏
k 6=p

(
KM,ck

ck
+ 1

)

= − q

Kp
· ηsat(c) ·Q(c) ·

∏
j KM,cj∏
kKM,ck

·
∏
k 6=p

(
KM,ck

ck
+ 1

)
. (S33)

and in case there is only one substrate and one product, this simplifies to

∂q

∂Kp
= − q

Kp
·

∏
k

ck
KM,ck

1 +
∏
k

cj
KM,cj

+
∏
k

ck
KM,ck

(S34)

S4.4 Increasing a kcat value will never force the cell to invest more enzyme

Theorem 1 A local increase in one enzyme’s kcat can never increase the minimal total enzyme cost required

Proof 1 Let qopt(v, k) ≡ mins q(v, s, k) be the minimal enzyme cost (over all metabolite level profiles s) for a
given flux vector v and set of kinetic parameters k. Let k̂ be another set of kinetic parameters which is identical
to k except for the kcat of a single enzyme i, specifically k̂cat,i > kcat,i. Now, for any metabolite profile s, if we
compare q(v, s, k̂) to q(v, s, k) the only change would be the cost associated with that one enzyme, so

q(v, s, k̂)− q(v, s, k) = qi(vi, s, k̂)− qi(vi, s, k) =
hivi

k̂cat,i f(s)
− hivi
kcat,i f(s)

=
hivi
f(s)

(
k̂−1cat,i − k

−1
cat,i

)
≤ 0 .

Therefore, ∀s q(v, s, k̂) ≤ q(v, s, k), and this inequality will also trivially apply to the minima of both functions.
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S5 Model details and elementary flux mode statistics

S5.1 Tables with model details

Original reaction New reaction(s) Reaction formula
R7r R7ra GA˙3P + NAD = DPG + NADH

R7rb DPG + ADP = PG3 + ATP
R7rc PG3 = PG

R10 R10a GLU˙6˙P + NAD = GLULAC6P + NADH
R10b GLULAC6P = GLUCO6P
R10c GLUCO6P + NAD = NADH + CO2 + RUBILOSE˙5˙P

R27r R27 SUCC + ADP + OXYext = FUMURATE + ATP
R81 merged with R27
R27r R27b FUMERATE + NADH = SUCC + NAD
R83 merged with R27b
R54r R54ra ACETYL˙CoA + NADH = ACALD + NAD + CoASH

R54rb ACALD + NADH = ETOH + NAD
R55r R55a ACETYL˙CoA + ADP = ACETYLP + CoASH

R55b ACETYLP + ADP = ACETATE + ATP
new R60 GLUCO6P = KDGP
new R61r KDGP = GA3P + PYR

Table S2: Changes in reactions compared to the original model in Carlson and Srienc [7].

Name KEGG ID Stoichiometry Molecular Wt. Weight in biomass #Carbons #Carbons
[mg mmol−1] [mg mmol−1] in biomass

acetyl-CoA C00024 -41 59 -2419 2 -82
α-ketoglutarate C00026 -14 146 -2044 5 -70
CO2 C00011 2 44 88 1 2
DHAP C00236 -5 266 -1330 3 -15
glucose-6P C00345 -4 180 -720 6 -24
NH3 C00014 -139 17 -2363 0 0
oxaloacetate C00007 -24 132 -3168 4 -96
PEP C00631 -32 88 -2816 3 -96
pyruvate C00022 -38 88 -3344 3 -11
ribose-5P C00117 -13 150 -1950 5 -65
erythrose-4P C00279 -5 120 -600 4 -20
TOTAL -20666 -580

Table S3: Breakdown of biomass-producing reaction
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S5.2 Selected elementary flux modes

Acronym∗ EFM # Biomass yield
[g/C-mol]

Growth
rate
[h−1]†

Oxygen
uptake

Acetate
secre-
tion

Lactate
secre-
tion

Succinate
secre-
tion

fraction
PPP

# active
reactions

max-gr 1565 18.6 0.739 0.49 0 0 0 2.77 24
pareto 1218 20.8 0.699 0.42 0 0 0 2.50 25
max-yield 938 22.1 0.422 0.39 0 0 0 0 28
ana-lac 1295 2.1 0.258 0 0 0.92 0.02 0.90 31
aero-ace 559 15.8 0.520 0.21 0.35 0 0 0.11 28
exp 9999 17.7 0.409 0.29 0.22 0 0 0.39 38

∗max-gr: maximum growth rate; max-yield: maximum yield; ana-lac: anaerobic lactate fermentation; aero-suc: aerobic succinate
fermentation; aero-ace: aerobic acetate fermentation; exp: experimentally measured flux distribution †Growth rate is given for standard
conditions, where [glucose] = 100 mM, and [O2] = 0.21 mM.

Table S4: Details on selected EFMs representing different growth strategies. Metabolic fluxes are given in
carbon moles (or O2 moles) per carbon mole of glucose taken up. The flux fraction through the pentose
phosphate pathway (PPP) is defined as the ratio R1/R10a (see Supplementary Figure S4 for the reaction
numbers in the network).
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Figure S22: The flux distributions of max-gr (EFM #1565) and pareto (EFM #1218).
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max-yield aero-ace
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Figure S23: The flux distributions of max-yield (EFM #938) and aero-ace (EFM #1155).
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Figure S24: The flux distributions of ana-lac (EFM #1295) and exp (flux distribution adjusted to mea-
sured fluxes).
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S6 List of supplementary files

Supplementary files describing the E. coli model and the analysis of metabolic strategies therein can be

downloaded from github: https://github.com/liebermeister/flux-enzyme-cost-minimization.

• Ecoli_Central_Metabolism.xml – SBML file of the central metabolism network of E. coli

• Model_Structure.xlsx – reactions, metabolites, stoichiometry matrix and elementary flux modes

• Kinetic_Parameters.xlsx – kinetic parameters obtained from literature with references

• SBtab_Literature_data.tsv – the (averages of the) literature data in a parameter balancing input

file

• SBtab_Output_Parameter_Balancing.tsv – kinetic parameter values after parameter balancing

• Input_File_GAMS.csv – single file GAMS input for the optimization of enzyme levels

• Input_Files_GAMS.zip – multi file GAMS input for the optimization of enzyme levels

• GAMS_run_files.zip – GAMS code files

• Sensitivities_kcat.csv – sensitivities of the kcat values under standard conditions

• Sensitivities_Keq.csv – sensitivities of the keq values under standard conditions

• Sensitivities_KM.csv – sensitivities of the KM values under standard conditions
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