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1 Literature on REML algorithms

We begin by overviewing the existing literature on restricted maximum likelihood (REML) [23]
estimation for linear mixed models (LMMs)—i.e., variance components analysis—focusing on
methods that have been most commonly applied in genetics and methods that apply Monte Carlo
approximation and thus are germane to this work.

1.1 Exact methods

By “exact methods” we mean methods that locally converge to the REML optimum (vs. methods
that approximate the REML optimum, which we discuss next). All REML procedures are iterative
and compute analytically exact solutions only in the limit of infinite iterations; additionally, all
iterative optimizers are at least somewhat sensitive to their starting points and are not guaranteed
to find the global optimum from an arbitrary starting point.

First derivative methods. These methods perform an analog of gradient descent and thus are
most robust—as they monotonically increase the likelihood and never leave the valid parameter
domain—but converge slowly.

• Expectation maximization (EM). Dempster et al. [64] is the canonical reference; see Sec. 8.3
of Searle’s text [65] for an in-depth discussion and derivation of update equations. The pop-
ular GCTA software [2] offers EM as a non-default option.

• EM with parameter expansion (PX-EM). Liu et al. [66] first proposed PX-EM as a general
approach to speed up EM convergence; Foulley and van Dyk [67] provide a comprehensive
treatment of PX-EM for LMMs.

Second derivative methods. These methods use exact or approximate second derivative infor-
mation about the log likelihood surface and therefore converge much faster than EM when near
the optimum but are less robust when far from the optimum. Consequently, many implementations
start by taking a few EM steps (GCTA) or PX-EM steps (GEMMA [68], PX-AI [69]). Second
derivative methods can be classified by the way in which the Hessian is computed or approxi-
mated.

• Newton-Raphson (NR) (exact Hessian). Newton’s method is the standard derivative-based
optimization procedure; in the context of REML, Zhou and Stephens [68] provided an impor-
tant computational advance for NR REML by developing an efficient eigendecomposition-
based algorithm (implemented in the GEMMA software) to compute the gradient and Hes-
sian of the log likelihood.
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• Method of scoring, a.k.a. Fisher scoring (approximate Hessian). This approach replaces
the negative Hessian, which is the observed Fisher information, with its expected value,
which is the information matrix (independent of the observation y) and is sometimes easier
to compute than the Hessian [65]. GCTA offers Fisher scoring as a non-default option.

• Average information (AI) (approximate Hessian). Gilmour et al. [25] proposed using a
matrix equal to the average (appropriately defined) of the negative Hessian (used in Newton-
Raphson) and the Fisher information (used in the method of scoring), terming this matrix
the “average information” as it is an average of the observed and expected information. This
matrix is computationally convenient because it eliminates a trace term involving an inverse
matrix. GCTA uses AI REML as its default option.

• Broyden’s method (approximate Hessian, quasi-Newton). The basic idea is to avoid direct
computation of the Hessian by approximating it using a multi-dimensional analog of the
secant method. Groeneveld [70] applies Broyden’s method to REML in genetics.

1.2 Monte Carlo methods

Unlike exact methods, Monte Carlo REML methods use random sampling to approximate deriva-
tives of the log likelihood, with the goal of trading off a small amount of accuracy in favor of
greater computational speed.

Existing aproaches.

• MC EM. Wei and Tanner [71] first proposed Monte Carlo EM for general EM parameter
estimation; Garcia-Cortes et al. [24] applied MC EM to LMMs. Matilainen et al. [72] inves-
tigate MC EM REML in detail; see the introduction of their paper for further references.

• MC “NR”/AI/Broyden. To our knowledge, Matilainen et al. [22] were the first to use
Monte Carlo to directly approximate second derivative-based matrices in the context of
LMM REML, where the computational challenge is problem size rather than model com-
plexity. They investigated three algorithms that all use Monte Carlo sampling to approximate
the gradient of the log likelihood and differ in their Hessian approximation methods:

1. MC “NR” REML: Uses Monte Carlo to approximate the Fisher information matrix (not
the exact Hessian, as in true Newton-Raphson).

2. MC AI REML: Uses the AI matrix, which does not require Monte Carlo, only requiring
solution of the mixed model equations.

3. MC BM REML: Uses Broyden’s method to estimate the Hessian from Monte Carlo
gradients.
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Matilainen et al.’s study [22] is a proof of concept and compares the three algorithms above
with MC EM REML on a set of simulations.

As an aside, the term “Monte Carlo Newton-Raphson” is unfortunately confusing because it
refers to several methods. Many authors have investigated Monte Carlo approaches within
routines for solving general maximum likelihood problems for which analytic solutions do
not exist and hence Newton-Raphson iteration is used (within EM). In these cases, MC NR
refers to applying MCMC or Gibbs sampling from conditional distributions [73, 74].

1.3 Contribution of BOLT-REML

The algorithm we present here, BOLT-REML, uses a Monte Carlo AI REML algorithm that
broadly speaking applies the same framework outlined in Matilainen et al. [22]. However, we
make the following contributions that are essential to making the method robust and practical:

• Trust region optimization using approximate change in log likelihood. We achieve robust
convergence by applying a trust region method to detect and prevent large, detrimental steps
when far from the optimum. The basic idea is to identify where the local quadratic model
of the log likelihood (based on its approximate gradient and Hessian) starts breaking down
by comparing model-predicted vs. computed values of the log likelihood. Here, computing
the log likelihood is infeasible, so instead we apply a gradient-based approximation of the
change in log likelihood.

• Simple convergence criterion via reuse of Monte Carlo samples. By reusing pseudo-
random Monte Carlo sample components across iterations, the approximate, Monte Carlo
gradient we compute varies smoothly with variance parameter estimates. (The AI matrix is
exactly computed and does not use Monte Carlo, hence is always a smooth function of the
variance parameters.) Consequently, our MC AI REML iteration truly converges rather than
jumping around near the optimum (as is typically the case for Monte Carlo parameter opti-
mization methods), allowing easy assessment of convergence. Garcia-Cortes et al. [24] did
take such an approach in their MC EM REML algorithm, but Matilainen et al. [22] did not,
instead suggesting more complex convergence criteria that have been developed for general
MC EM methods.

• Efficient software implementation. We implement our MC AI REML algorithm in a well-
optimized, open source software package.
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2 Mathematics of BOLT-REML

2.1 Single-trait case

We begin by developing the mathematics of Monte Carlo REML for one phenotype. We will later
generalize to multiple phenotypes, but the multi-trait notation is more cumbersome, so we start
with the single-phenotype case to convey the intuition behind the approach.

2.1.1 Model and log likelihood

We consider the model [20]

y = σ0u0 + σ1Z1u1 + · · ·+ σKZKuK ,

in which y denotes phenotype, σ1Z1u1, . . . , σKZKuK are K random genetic effects, and σ0u0 is
a random environmental (noise) effect, where σ0, . . . , σK are variance parameters to be estimated,
the Zk contain normalized SNPs corresponding to the k-th non-identity variance component, and
all entries of all the uk are iid standard normal. (Note that the uk are vectors of different lengths:
uk has length equal to the number of SNPs in the k-th variance component. Also note that for the
case of a single non-identity variance component containing M SNPs with normalized genotypes
X , we may write Z = X/

√
M and u =

√
Mβ, so that β ∼ N(0, σ2

g/M) ⇐⇒ u ∼ N(0, σ2
g),

Xβ = Zu, and XX ′/M = ZZ ′ is the GRM.) We have not included fixed effect covariates in the
model for notational convenience, but covariates can be incorporated by projecting them out of all
components and adjusting dimensionality accordingly (the REML approach [23]).

We wish to find the values of the variance parameters σ2
0, σ

2
1, . . . , σ

2
K that maximize the likeli-

hood of observing the phenotype y (a vector of observations over N individuals) under the above
model. We can write the model equivalently as y ∼ N(0, V ), where

V = σ2
0IN + σ2

1Z1Z
′
1 + · · ·+ σ2

KZKZ
′
K .

The pdf of this multivariate normal distribution is given by

f(y) =
1√

(2π)N detV
e−

1
2
y′V −1y,

where N is the number of samples (which changes to N − C in REML with C independent
covariates projected out). Thus, up to a constant that we ignore, the log likelihood of observing y
assuming parameters σ2

0, σ
2
1, . . . , σ

2
K is given by

` = `(σ2
0, σ

2
1, . . . , σ

2
K) = −1

2
(log detV + y′V −1y).
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2.1.2 Monte Carlo approximation of the gradient of the log likelihood; MC REML

We may compute the gradient and Hessian of the log likelihood wrt σ2
k by using the matrix calculus

formulas
d log detV = tr V −1dV, dV −1 = V −1dV V −1,

giving
∂`

∂σ2
k

= −1

2

(
tr V −1ZkZ ′k − y′V −1ZkZ ′kV −1y

)
.

For large sample sizes, building and inverting V is computationally challenging, leading us to
rewrite the trace term in terms of an expectation that does not involve matrix inverses, following
equation (14.12) of ref. [75]:

∂`

∂σ2
k

= −1

2

(
tr V −1ZkZ ′kV

−1V − y′V −1ZkZ ′kV −1y
)

= −1

2

(
tr V −1ZkZ ′kV

−1E[yV y
′
V ]− y′V −1ZkZ ′kV −1y

)
= −1

2

(
E[tr V −1ZkZ ′kV

−1yV y
′
V ]− y′V −1ZkZ ′kV −1y

)
= −1

2

(
E[y′V V

−1ZkZ
′
kV
−1yV ]− y′V −1ZkZ ′kV −1y

)
, (1)

where yV is a random vector such that

E[yV y
′
V ] = V.

For fixed σ2
k, sampling such a vector yV is easily done: we build

yV =
√
σ2
0u0 +

√
σ2
1Z1u1 + · · ·+

√
σ2
KZKuK , (2)

where the components of all the uk vectors are iid standard normal. We note in passing that were
V a linear combination of variance components with some negative coefficients, we could still
apply the above trick by writing V = E[yV +y′V+]−E[yV −y

′
V−] with yV + and yV− built from terms

corresponding to the positive and negative variance components, respectively.
The first-order conditions for optimality of the variance parameters are the vanishing of the

gradient of the log likelihood, i.e., ∂`
∂σ2

k
= 0. As noted in ref. [75], σ2

kZ
′
kV
−1y is the BLUP estimate

ûk of uk, so the terms appearing in equation (1) are expected and observed squared norms of
BLUP estimates, and REML optimization amounts to equating these quantities. We previously
presented the rudimentary heritability estimation algorithm used within the BOLT-LMM mixed
model association software [19] in this way. Similarly, the parameter updates of EM REML are
scaled differences between observed and expected squared norms of BLUP estimates (Sec. 4);
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comparing equations (1) and (13–14) show that EM REML is very closely related to gradient
descent.

In practice, we estimate the gradient of the log likelihood by replacing the expectation in equa-
tion (1) with an empirical average over a finite number S of Monte Carlo samples of yV :

∂`

∂σ2
k

= −1

2

(
y′V V

−1ZkZ ′kV
−1yV − y′V −1ZkZ ′kV −1y

)
, (3)

where the overline denotes a Monte Carlo average over S samples. For large N , typically only a
few samples are required to obtain precise enough estimates of these derivatives to use within an
optimization routine. Computing the quantities on the right only requires solving the mixed model
equations, which can be done efficiently with conjugate gradient iteration [17, 18]. Moreover, by
reusing the same S sets of pseudorandom components u0, . . . , uK used in equation (2) to build
the Monte Carlo samples yV [24] for all parameter values σ2

k, the Monte Carlo gradient ∇` =(
∂`
∂σ2

k

)
becomes a smooth function of the variance parameters σ2

k, which is convenient for numerical
optimization. We refer to the approach of approximately maximizing the log likelihood by solving
∇` = 0 as MC REML.

We note that while we have an efficient Monte Carlo method for estimating the gradient of
the log likelihood, this method does not estimate the log likelihood itself, which involves a log
determinant. We are not aware of an efficient way to estimate the log determinant that applies
here; ref. [76] proposes an approximation based on the expansion

− log det(I − A) = −tr log(I − A) = tr (A+
1

2
A2 +

1

3
A3 + · · · ) =

∑
E

[
1

k
· x
′Akx

x′x

]
,

where x ∼ N(0, I) are Monte Carlo samples, but this method requires the eigenvalues of A to be
between −1 and 1 and appears unsuitable here.

2.1.3 Average information (AI) approximation of the Hessian

We may similarly express the second-order partials (i.e., the entries of the Hessian) as

∂2`

∂σ2
k∂σ

2
j

= −1

2

(
tr V −1ZkZ ′kV

−1ZjZ
′
j + 2y′V −1ZkZ

′
kV
−1ZjZ

′
jV
−1y
)

= −1

2

(
−E[y′V V

−1ZkZ
′
kV
−1ZjZ

′
jV
−1yV ] + 2y′V −1ZkZ

′
kV
−1ZjZ

′
jV
−1y
)
. (4)

Instead of approximating this matrix using Monte Carlo sampling, we use the average information
(AI) approximation of ref. [25]. This approximation amounts to replacing the random yV in the
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expectation term of equation (4) with the observed phenotype y, giving

∂2`

∂σ2
k∂σ

2
j

≈ −1

2
y′V −1ZkZ

′
kV
−1ZjZ

′
jV
−1y = IA.

2.2 Multiple traits

We now generalize to multiple traits, following ref. [21, 68, 77]. To avoid notational clutter, we
assume a model with only one genetic effect term, but all of the following easily generalizes to
multiple random genetic effects.

2.2.1 Model

Consider D correlated traits, each measured at the same N individuals. We denote the “stacked”
DN -vector of trait values by y and denote the N -element subvectors corresponding to individual
traits by yd, d = 1, . . . , D, so that

y =

 y1

...
yD

 .

We assume the linear random effects model

y = (ID ⊗ Z)ug + ue, (5)

where Z is an N ×M coefficient matrix (e.g., Z = X/
√
M under our usual SNP normalization),

ug is a stacked DM -vector of effect sizes, and ue is a stacked DN -vector of noise residuals such
that

ug ∼ N(0, Vg ⊗ IM), ue ∼ N(0, Ve ⊗ IN).

Thus,
y ∼ N(0,V),

where
V = (Vg ⊗ ZZ ′) + (Ve ⊗ IN).

The distributional assumption on ug says that for every effect index m, the d-vector of effect sizes
for the d traits is distributed as N(0, Vg), and across different m, effect sizes are independent of
each other. An analogous statement holds for the environmental terms ue. Marginalizing across
individual traits, each trait satisfies the usual LMM:

yd = Zug,d + ue,d.
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We treat the genetic and environmental D × D covariance matrices Vg and Ve, each of which
have D(D + 1)/2 independent coordinates (due to symmetry), as unknowns to be estimated. In
the general case of K random genetic effects, each random effect as well as the environmental
term has its own set of D(D + 1)/2 covariance parameters, so that the model has a total of P =

(1 +K)D(D + 1)/2 parameters.
We note that fixed effect covariates need to be included independently for every trait. In par-

ticular, for D traits, D “all-1s” covariate vectors need to included, namely, the indicator vectors
corresponding to the coordinates of each of the D traits. In REML analysis, doing so is equivalent
to projecting covariates out from the genotypes and each phenotype independently (and adjusting
dimensionality accordingly).

2.2.2 Monte Carlo gradient approximation

We denote the log likelihood of y assuming variance parameters Vg, Ve by ` = `(Vg, Ve) as before,
and we combine the distinct entries of the covariance matrices Vg, Ve (D(D + 1)/2 entries each)
into the parameter vector θ = (θp), where p = 1, . . . , P indexes parameters. Thus,

` = −1

2

(
log detV + y′V−1y

)
∂`

∂θp
= −1

2

(
tr V−1

∂V

∂θp
− y′V−1

∂V

∂θp
V−1y

)
= −1

2

(
E

[
y′VV

−1∂V

∂θp
V−1yV

]
− y′V−1

∂V

∂θp
V−1y

)
.

To compute a Monte Carlo estimate∇` of the gradient∇` =
(
∂`
∂θp

)
, we replace the expectation

with an empirical average over S Monte Carlo samples of yV ∼ N(0,V). Explicitly, we generate
yV via

yV = (ID ⊗ Z)ug,rand + ue,rand

where

ug,rand = vec(randn(M,D) · chol(Vg)
′), ue,rand = vec(randn(N,D) · chol(Ve)

′),

so that

yV = vec(Z · randn(M,D) · chol(Vg)
′ + randn(N,D) · chol(Ve)

′).

To make the Monte Carlo gradient∇` a smooth function of θ, we generate S fixed sets of matrices
randn(M,D) and randn(N,D), one per Monte Carlo trial, and reuse these matrices for all
parameter values θ, as described in Sec. 2.1.2.
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2.2.3 Average information (AI) approximation of the Hessian

As in equation (4), we write

∂2`

∂θp∂θq
= −1

2

(
−tr V−1

∂V

∂θp
V−1

∂V

∂θq
+ 2y′V−1

∂V

∂θp
V−1

∂V

∂θq
V−1y

)
(6)

≈ −1

2
y′V−1

∂V

∂θp
V−1

∂V

∂θq
V−1y = −IA. (7)

to approximate the Hessian using the negative AI matrix. (Note that the second-order partials of
V do not appear in equation (6) because under our parameterization, ∂V/∂θp is a constant matrix
for each θp, so that second-order partials conveniently vanish.)

The AI approximation has two significant advantages over Monte Carlo estimation of the Hes-
sian. First, it is guaranteed to be positive semidefinite, leading to more robust numerical opti-
mization of the log likelihood, especially when some covariances are close to singular. Positive
semidefiniteness can be seen by horizontally concatenating the P vectors ∂V

∂θp
V−1y into a DN×P

matrix

W =

[
∂V

∂θ1
V−1y · · · ∂V

∂θP
V−1y

]
,

in which case we may write

IA =
1

2
W′V−1W.

Because V is psd (i.e., has a Cholesky factorization), it follows that the same holds for IA.
Second, computing IA is cheaper than using Monte Carlo: evaluating the expressions in equa-

tion (7) only requires solving the mixed model equations once per variance parameter θp.

2.3 Standard errors

In general, standard errors of maximum likelihood parameter estimates can be obtained by ap-
proximating the covariance matrix of the estimates with the inverse of the negative Hessian. (This
approximation amounts to fitting a quadratic form to the log likelihood, noting the vanishing of its
gradient at the MLE. The negative Hessian is the observed Fisher information and measures the
curvature of the log likelihood.) Approximating the negative Hessian with the AI matrix, we have

Cov
(
θ̂p

)
≈ I −1

A . (8)

The usual (non-Monte Carlo) AI REML estimated standard error of θ̂p is the square root of the
p-th diagonal entry of the above covariance. For MC AI REML, we multiply the standard error
by a factor of

√
1 + 1/S to take into account the additional variance introduced because MC AI

REML essentially fits the observed data to a reference set of S simulated data sets.
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2.3.1 Standard errors under transformed coordinates

It is most convenient (for exposition and implementation) to parameterize variance components
using entries of the covariance matrices as we have done above: as noted earlier, the (θp) pa-
rameterization results in simple formulas for ∂V

∂θp
and the vanishing of second-order partials of V.

However, the quantities we typically wish to report are heritabilities (i.e., fractions of total vari-
ance contributed by random effects) or genetic correlations (i.e., ratios of off-diagonal covariance
parameters to square roots of products of diagonal entries). Computing point estimates of these
quantities is trivial once maximum likelihood variance parameter estimates have been found, but
estimating their standard errors requires transforming the Hessian of the log likelihood according
to the desired reparameterization, which requires a little more work. We derive the transformation
formulas below; once we have the Hessian of the log likelihood with respect to transformed co-
ordinates, we can then estimate error covariances by the usual approach of inverting the negative
Hessian.

Consider a scalar function f(x) (where x is vector-valued); denote its Hessian by Hx. Suppose
we wish to reparameterize in terms of coordinatesX via a transformation τ : X 7→ xwith Jacobian
J =

(
∂x
∂X

)
. Letting F (X) = f(τ(X)) = f(x), we have

∇XF = J ′∇xf,

i.e., (∇XF )′ = (∇xf)′J , so that

HX = ∇X(∇XF )′ = J ′∇x((∇xf)′J).

In general, applying the product rule to ∇x((∇xf)′J) gives both a Hessian term ∇x(∇xf)′J =

HxJ and a term involving∇xf
′ and derivatives of J . However, at a critical point of f (such as the

MLE if f is a log likelihood), the gradient vanishes, leaving the simple formula

HX = J ′HxJ if∇xf = 0. (9)

We also note that the AI matrix defined in equation (7) obeys the same transformation formula
under change of coordinates. We can derive the transformation by observing that for a reparame-
terization φ 7→ θ, the partial derivatives of V transform according to

∂V

∂φq
=
∑
p

∂θp
∂φq

∂V

∂θp
.

The partials of θp with respect to the new parameters φq are entries of the Jacobian, and expanding
gives the transformation IA 7→ J ′IAJ .

12



In BOLT-REML, we implement the following two sets of transformations to reparameterize
from covariance parameters θp (i.e., entries of Vg and Ve) to genetic correlations and heritabilities.
We carry out the first set of transformations independently across all variance components (envi-
ronmental and genetic), after which we carry out the second set independently across all traits.

Transformation from covariances to correlations. For each variance component, we have
D(D + 1)/2 independent variables that parameterize its covariance matrix. We wish to trans-
form the D(D − 1)/2 off-diagonal covariance parameters into correlations: that is, we start with
D(D + 1)/2 parameters σij , 1 ≤ i ≤ j ≤ D (ignoring the index of the variance component under
consideration for ease of notation), and we wish to reparameterize using D(D − 1)/2 parame-
ters ρij = σij/

√
σiiσjj , 1 ≤ i < j ≤ D, along with the D unchanged diagonal parameters σii,

1 ≤ i ≤ D. Writing
σij = ρij

√
σiiσjj,

the nonzero entries of the Jacobian are given by

J iiii =
∂σii
∂σii

= 1

J ijii =
∂σij
∂σii

=
ρij
√
σjj

2
√
σii

J ijij =
∂σij
∂ρij

=
√
σiiσjj

J ijjj =
∂σij
∂σjj

=
ρij
√
σii

2
√
σjj

where Jrc denotes the r, c entry of the Jacobian.

Transformation from variances to heritabilities. For each trait, we have 1 + K independent
variables σ2

0, σ
2
1, . . . , σ

2
K that parameterize the variances of the environmental and genetic variance

components for that trait (ignoring the index of the trait under consideration for ease of notation).
We wish to reparameterize with 1 overall variance parameter σ2 and K heritability fractions h2k,
1 ≤ k ≤ K, such that

σ2
0 = σ2

(
1−

K∑
k=1

h2k

)
and σ2

k = σ2h2k, 1 ≤ k ≤ K.
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The Jacobian is given by

J =


∂(σ2

0)

∂(σ2)
= 1−

∑
k h

2
k

∂(σ2
0)

∂(h21)
= −σ2 . . .

∂(σ2
0)

∂(h2K)
= −σ2

∂(σ2
1)

∂(σ2)
= h21

∂(σ2
1)

∂(h21)
= σ2 . . .

∂(σ2
1)

∂(h2K)
= 0

...
... . . . ...

∂(σ2
K)

∂(σ2)
= h2K

∂(σ2
K)

∂(h21)
= 0 . . .

∂(σ2
K)

∂(h2K)
= σ2

 .

2.3.2 Breakdown of SE estimates at parameter space bounds, e.g., zero heritability

In the above discussion of standard errors and transformed SEs, we need to be careful that if the
MLE variance parameter vector is located on the boundary of the parameter space due to domain
constraints, the gradient of the log likelihood may not equal zero. In the single-trait case, this
situation typically arises when a variance parameter would have been estimated to be negative if
negative variances were allowed, but is instead estimated to be zero because of the nonnegativity
constraint. An analogous statement holds in the multi-trait case with covariances required to be
positive semidefinite.

If the gradient does not vanish at the MLE due to bound constraints, then the quadratic form
approximation of the log likelihood, which underlies the analytic standard error from equation (8),
breaks down. (Similarly, the transformation formula (9) for change of coordinates no longer holds.)
Therefore, analytic standard errors should only be trusted for variance components not at boundary
constraints, and we further recommend that in situations with zero-heritability variance compo-
nents, REML should be rerun with those variance components removed.

2.3.3 Distinction between SE and likelihood ratio test for nonzero variance

We also note that the analytic standard error of a heritability parameter provides only an approxi-
mate test of whether the corresponding variance component explains nonzero heritability (by com-
puting z = σ̂2/s.e.(σ̂2)): such a test assumes a quadratic approximation to the log likelihood, i.e.,
a normal distribution of the posterior density of the heritability, which in reality is only locally
valid. The proper way to test for nonzero heritability is to perform a likelihood ratio test; however,
a limitation of MC REML is that it does not efficiently compute likelihood ratio test statistics (as
it achieves speedup by circumventing likelihood computations).

In particular, for variance components of very low rank (e.g., modeling a small subset of SNPs),
we have observed that computing a naive z-score based on the analytic standard error produces an
extremely underpowered test for nonzero contribution to variance: even if the component explains
a very large fraction of variance (reflected in an appropriately large REML parameter estimate),
the analytic standard error is also very large, so that the z-score achieved is only ≈2. The reason
is that the posterior distribution on the variance parameter is highly non-normal and asymmetric.
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For example, consider the case of a variance component containing just one SNP estimated to
explain 1% of variance. Despite this huge effect, REML cannot be sure whether the true variance
parameter is actually 2% (and the SNP just happened to get a smaller effect size under the random
effects model). Thus, REML will report a large standard error (reflecting the uncertainty in the
upper tail)—even though a closer examination of the likelihood actually would show that at the
lower tail, the variance explained is convincingly >0% (as the likelihood ratio test would show).

For the goal of computing efficient likelihood ratio tests for whether low-rank variance compo-
nents contribute nonzero variance—which is distinct from our primary goal of estimating variance
parameters—we recommend the spectral decomposition approach of FaST-LMM-Set [78], which
performs fast set association tests using two random-effects components, one for the SNP set being
tested and the other to model potential genome-wide confounders. (In order to achieve computa-
tional efficiency, the latter component can only use a small subset of SNPs, so precautions such as
including principal components as fixed effect covariates may be necessary [79]. We further note
that for case-control ascertained data sets—in which ascertainment induces correlations among
causal SNPs—modeling only a small subset of SNPs should help to avoid loss of power when
testing SNP sets for associations [26]; in contrast, when estimating heritability contributed by a
SNP set, all SNPs need to be modeled in order to avoid inflation of estimates due to the same
phenomenon.)

3 BOLT-REML algorithm

We now describe our algorithm to compute approximate REML estimates of variance parameters.
The overall structure of the algorithm is derivative-based iterative optimization using a trust region
method for robust convergence. We begin with an initial guess θ = (θ1, . . . , θP ). In each iteration,
we propose an update step p = (∆θ1, . . . ,∆θP ) such that θ + p achieves the largest predicted
increase in log likelihood based on a local quadratic model of the log likelihood (built from the
Monte Carlo approximate gradient and AI approximate negative Hessian), subject to parameter
domain and trust region constraints. We evaluate the approximate gradient at the tentative new
parameter vector θ + p and use its value to approximate the actual change in log likelihood. We
compare the approximate actual change in log likelihood to the predicted change based the local
quadratic model, and based on this information, we decide whether to accept the step and/or modify
the trust region radius. We declare convergence of the algorithm when the approximate change in
log likelihood falls below a specified threshold (corresponding to the distance of the current iterate
from the optimum in units of standard errors).
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3.1 Initial guess

3.1.1 Single trait

Because of the possibility of local optima, a good initial guess is very important to the robustness
of an optimization routine. In the single-trait case with K non-identity variance components, we
can use the sample variance of the phenotype as a rough guess of the overall variance parameter
σ2, leaving K heritability fractions to create guesses for as follows:

1. Estimate the total heritability h2 explained by all variance components by combining them
into a single component and applying the secant iteration implemented in the original BOLT-
LMM software [19].

2. For each variance component k, estimate the total heritability h2−k explained by all variance
components except k using one step of secant iteration (as in the original BOLT-LMM re-
estimation of heritability for LOCO reps [19]; the only difference here is that we leave each
variance component—rather than each chromosome—out in turn).

3. Estimate the heritability explained by each variance component as

h2k = max

{
0,

(
1−

(n− 1)h2−k∑n
l=1 h

2
−l

)
h2
}
.

3.1.2 Multiple traits

To obtain guesses of the parameters along the diagonal terms of the covariances Vg, Ve, we apply
the single-trait initial guess procedure above to each trait in turn. To obtain guesses of the off-
diagonal covariance terms, we compute for each pair of traits the phenotypic correlation between
the two traits. We then assume that the environmental correlation and genetic correlation(s) (plural
in the case of multiple genetic variance components) all equal the estimated phenotypic correlation.

3.2 Trust region iterative optimization

After making an initial parameter vector guess, we proceed to take steps in parameter space de-
signed to iteratively optimize the log likelihood. At each iteration, we need to take into account
two important considerations: (1) optimizing the step to try to increase the log likelihood as much
as possible (according to the local quadratic model), to achieve fast convergence; but also (2) being
careful not to take too ambitious of a step, to ensure robustness. We balance these considerations
by using a trust region approach that enforces an adaptive bound ∆ on the maximum allowed size
of the step (with coordinates scaled to improve conditioning).
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3.2.1 Step computation

In each iteration, we begin with a current parameter vector estimate θ and wish to compute a step
p = (∆θp) to an updated estimate θ + p. We choose the step to maximize the predicted change in
log likelihood according to the local quadratic model

predicted ∆` = ∇`′p− 1

2
p′IAp (10)

(where ∇` is the Monte Carlo gradient and IA is the AI negative Hessian) over steps p satisfying
the following constraints:

1. REML parameter domain: Positive semidefiniteness of the covariance matrices (one per
variance component) corresponding to the new parameter vector θ + p.

2. Trust region bound on the scaled step norm: ||diag(IA)p|| < ∆.

The value of ∆ bounds the region in which the local quadratic approximation of ` is trusted. Note
that the objective function in equation (10) is a simple quadratic, so that if there were no constraints,
the optimal p would be the Newton step. On the opposite extreme, if ∆ is very small, the optimal
p is approximately parallel to∇` as in gradient descent.

Finding the step p that maximizes the predicted change in log likelihood given in equation
(10) subject to the above bounds is itself an optimization problem, but because the objective
function is quadratic, we can apply standard numerical optimization methods to solve it at triv-
ial computational cost. To increase robustness, we run three optimization routines implemented in
NLopt [80]—MMA [81], CCSAQ [81], and SLSQP [82]—and use the best result.

3.2.2 Step acceptance criterion and trust region radius update

After computing a potential step p using the above procedure, we need to decide whether to accept
the step and also whether and how to update the trust region radius ∆. Usually, trust region methods
do so by comparing the predicted change in the objective function (here, the log likelihood) to the
actual change, but a challenge that our method faces is that it can only estimate derivatives of the
log likelihood: we are unable to compute or estimate the log likelihood itself. Instead, we use the
following derivative-based proxy for the change in the objective function:

∆` ≈ p′ · 1

2

(
∇`(θ) +∇`(θ + p)

)
. (11)

(Note that this quantity is different from the predicted change in log likelihood given in equation
(10), which was what we optimized to compute the step.) The rationale is that the change in log
likelihood equals the dot product of the step vector p with the mean value of the gradient along the
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step from θ to θ+p. We can approximate the mean gradient with the average of the (approximate)
gradients at the beginning and end of the step, i.e., at θ and θ+p, and this approximation is precisely
equation (11). The approximation is an accurate estimate of the change in the log likelihood as
long as the approximate gradient is reasonably close to linear over the step from θ to θ + p, which
in particular holds if the step size is not too big.

We update the trust region radius ∆ according to how well the change in log likelihood pre-
dicted by the quadratic model (10) matches the approximate actual change (11). We use the proce-
dure and parameters recommended by ref. [83] with the additional safeguard that we reject steps
that more than double the norm of the gradient (suggesting that the local quadratic model may be
invalid). Details are provided in the pseudocode (Sec. 3.4).

3.3 Convergence criterion

We declare convergence of the iterative optimization when the predicted change in log likelihood
drops below a set threshold (10−4 by default). Note that suboptimality of the achieved vs. optimal
log likelihood has a simple interpretation in terms of the accuracy of the final parameter estimates.
If our converged parameter estimates θfinal give log likelihood `final whereas optimal REML esti-
mates θopt give log likelihood `opt, then

(θp,opt − θp,final)
′I −1

A (θp,opt − θp,final) ≈ `opt − `final

if we assume that the log likelihood is locally well-approximated by the quadratic −IA (which is
the assumption underlying the analytic standard error estimates discussed in Section 2.3). If we
further assume near-independence of coordinates, we have

P∑
p=1

(
θp,opt − θp,final

SE(θp)

)2

≈ `opt − `final.

3.4 Pseudocode for main trust region iteration

const eta1 = 0.0001, eta2 = 0.99;

const alpha1 = 0.25, alpha2 = 3.5;

Delta = Inf; // initialize trust region radius

x = initial variance parameter guesses

compute gradMC(x) using fixed pseudorandom vectors

do

// compute step

compute HessAI(x)

compute constrained Newton step p:
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optimize quadratic model: p’ * gradMC - 0.5 * p’ * HessAI(x) * p

subject to: ||diag(HessAI(x))*p|| < Delta, covariance matrices psd

dLLpred = p’ * gradMC(x) - 0.5 * p’ * HessAI(x) * p

// check convergence of algorithm

if dLLpred < tolLL

break

// assess step quality

compute gradMC(x+p) using fixed pseudorandom vectors

dLLapprox = p’ * 0.5 * (gradMC(x) + gradMC(x+p))

if ||gradMC(x+p)|| > 2*||gradMC(x)||

rho = -1; // dangerous model deviation: reject step; reduce trust radius

else

rho = dLLapprox / dLLpred

// decide step acceptance

if rho > eta1

x = x+p

// update trust region radius

if rho < eta1

Delta = alpha1 * ||diag(HessAI(x))*p||;

else if rho < eta2

;

else

Delta = max(Delta, alpha2 * ||diag(HessAI(x))*p||);

done

3.5 Number of Monte Carlo samples and speedup via two-phase optimiza-
tion

In choosing the number of Monte Carlo samples S to use in estimating the gradient of the log
likelihood, we need to balance two considerations: (1) accuracy, which increases with S (because
the variance of our estimates scales roughly with 1 + 1/S, as discussed in Sec. 2.3); and (2)
computational cost, which increases linearly with S plus a constant (Sec. 3.6). In our BOLT-REML
implementation, we finesse this trade-off by applying a two-phase optimization using different
values of S. First, we run a “coarse” optimization using S = 15 samples and stopping the iteration
once the predicted change in log likelihood drops below 0.01. Then, starting from the final iterate
of the coarse optimization, which should be close to the true optimum, we run a “fine” optimization
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using S = 100 samples and iterating to a log likelihood tolerance of 10−4.

3.6 Computational cost

The cost of evaluating the approximate gradient in equation (3) is dominated by computation of the
terms V−1yV for each of S Monte Carlo simulated phenotype vectors yV and the term V−1y (for
the real phenotype vector y). This computation amounts to solving a batch of S + 1 mixed model
equation systems, which we do using conjugate gradient iteration [17, 18]. To compute the AI
matrix entries given in equation (7), we need to further compute V−1 ∂V

∂θp
V−1y for each parameter

θp, requiring P = (1 +K)D(D + 1)/2 additional solutions of the mixed model equations.
Thus, the total cost of the algorithm per AI iteration is O(S + KD2) conjugate gradient runs,

each of which has cost scaling roughly with MN1.5D1.5 according to ref. [19]. (As defined above,
S is the number of Monte Carlo samples, K is the number of variance components, D is the
number of traits, M is the total number of SNPs across all variance components, and N is the
number of individuals.) In our experience, fewer than 10 AI iterations are typically needed for
convergence.

3.6.1 Comparison to other approaches

For context, we now provide a detailed discussion of the computational requirements of BOLT-
REML vs. existing approaches. To streamline the exposition, we restrict to the single-trait case
D = 1, which is most frequently used in practice, and we focus on the scaling of computational
costs with N and M . We primarily compare BOLT-REML to GCTA [2], which is the most widely
used and most versatile among publicly available REML software for genetics; we point out other
methods that contribute algorithms of particular interest.

Computation of genetic relationship matrices (GRMs). For variance component models built
from genetic random-effect terms, most REML algorithms (e.g., GCTA) begin by computing the
genetic relationship matrices corresponding to the random effects. (BOLT-REML and the FaST-
LMM [84] family of spectral decomposition-based methods are exceptions.) Computing the GRMs
takes O(MN2) time, which may appear to be the dominant term in typical settings with M >

N ; however, this computation can easily be parallelized across a computing cluster (e.g., with
PLINK2 [59]), so in practice, it is not typically a computational barrier.

Computation per REML iteration. For large N , the running time of standard Newton-type
REML methods is dominated by the costs (per REML iteration) of inverting the estimated phe-
notypic covariance (i.e., computing V−1) and performing a few N × N matrix multiplications
per entry of the Hessian. Both inversion and matrix multiplication are O(N3) operations, and the
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inversion is particularly difficult to parallelize across multiple machines. BOLT-REML iterations
have cost scaling roughly withMN1.5 (which is also difficult to parallelize across machines), so for
typical M < 106 in genetics, BOLT-REML achieves a speedup once N exceeds several thousand
individuals, with the break-even point increasing with M .

We note that in the special case of only one non-identity variance component, spectral decom-
position techniques drastically reduce computational cost per-REML iteration [68, 85]. We also
note that for situations in which all or all but one of the variance components have low rank, two
other approaches exist that can (for certain ranges of M and N ) achieve speedup beyond BOLT-
REML. Listgarten et al. [78] observed that if the total number of SNPs in the model is smaller
than the sample size (i.e., M < N ), then spectral decomposition can be used to reduce compu-
tational cost to O(M2N) (for one SVD) per REML iteration. FaST-LMM-Set [78] implements
this approach for mixed model set association tests. Speed et al. [86] observed that if only one
variance component has full rank (as in our estimation of per-Mb schizophrenia SNP-heritability),
then its GRM only needs to be computed and inverted once at O(MN2 + N3) cost, after which
the Woodbury matrix identity can be used to efficiently perform REML iterations at O(M otherN

2)

cost, where M other is the total number of SNPs in the low-rank components. MultiBLUP [86]
implements this approach for mixed model prediction.

Memory use. Standard REML methods compute and work with one N ×N GRM per variance
component; GCTA currently stores all of these matrices in memory, so that in practice, memory
constraints become a computational barrier before running time. For models with many variance
components, the memory footprint could be reduced by rereading each GRM from disk when nec-
essary; however,O(N2) memory would still be needed to work with at least a fewN×N matrices.
In contrast, BOLT-REML (like BOLT-LMM [19]) stores only raw genotypes in memory, requiring
≈MN/4 bytes of memory (regardless of the number of variance components). We have found this
memory requirement to be mild in practice, but it could potentially be reduced by storing geno-
types in compressed form and decompressing on-the-fly in each REML iteration (which would
especially help for rare SNPs) or by rereading genotypes from disk in each REML iteration; the
latter approach would incur a substantial performance penalty, however.

4 Appendix: EM REML

Here we derive the BLUP estimates (assuming known variance parameters) and EM REML update
equations (for variance parameter estimation) for the multi-trait mixed model given in equation (5),
following ref. [65]. We derive these equations primarily to point out the relationship between
Monte Carlo gradient approximation and the EM REML update formulas. EM REML can also be
efficiently approximated with Monte Carlo [24], but the first derivative-based MC EM algorithm
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converges much more slowly than Newton-type MC REML methods [22] such as our MC AI
REML algorithm.

4.1 Mixed model equations: BLUP estimates

To solve the mixed model equations and obtain BLUP estimates of random effects, we write out
the joint distribution of y, ug, and ue. From the model equations (5), we have y

ug

ue

 ∼ N


 0

0

0

 ,

 V Vg ⊗ Z Ve ⊗ IN
Vg ⊗ Z ′ Vg ⊗ IM 0

Ve ⊗ IN 0 Ve ⊗ IN


 .

Conditioning on y, we have (by Appendix S.3 of ref. [65])(
ug

ue

)∣∣∣∣∣y ∼ N

((
Vg ⊗ Z ′

Ve ⊗ IN

)
V−1y, (12)(

Vg ⊗ IM 0

0 Ve ⊗ IN

)
−

(
Vg ⊗ Z ′

Ve ⊗ IN

)
V−1

(
Vg ⊗ Z Ve ⊗ IN

))
.

Therefore, the BLUP random effect estimates given observed y are

ûg = (Vg ⊗ Z ′)V−1y, ûe = (Ve ⊗ IN)V−1y.

4.2 EM REML update equations

Following the derivation of ref. [65] Sec. 8.3 (noting in particular equation (14) on p. 300), the EM
equations for estimating Vg and Ve amount to the successive updates

Vg,pq ← Vg,pq +
1

M

(
û′g,pûg,q − E[û′g,pûg,q]

)
(13)

Ve,pq ← Ve,pq +
1

N

(
û′e,pûe,q − E[û′e,pûe,q]

)
, (14)

for p, q = 1, . . . , D, where the expectations are taken over random effect estimates based on ran-
domly generated y according to the assumed model parameters Vg and Ve. Note that at conver-
gence, the pairwise dot products of estimated random effects (resp. residuals) across all pairs of
traits equal their expectations.
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Detailed derivation of EM update equations. For p, q = 1, . . . , D, we wish to update Vg,pq and
Ve,pq according to the sufficient statistics

Vg,pq ←
1

M
E[u′g,pug,q | y], Ve,pq ←

1

N
E[u′e,pue,q | y].

We will carry out the derivation for the genetic terms; the residual terms behave analogously. Write

E[u′g,pug,q | y] = E[u′g,p | y]′E[ug,q | y] + tr Cov(ug,p,ug,q | y)

= û′g,pûg,q + tr (Vg,pqIM − (V ′g,p ⊗ Z ′)V−1(Vg,q ⊗ Z))

using equation (12) for the covariance conditional on y. Now

tr Vg,pqIM = M · Vg,pq

and

tr (V ′g,p ⊗ Z ′)V−1(Vg,q ⊗ Z) = tr V−1(Vg,q ⊗ Z)(V ′g,p ⊗ Z ′)
= tr V−1(Vg,q ⊗ Z)(V ′g,p ⊗ Z ′)V−1V
= tr V−1(Vg,q ⊗ Z)(V ′g,p ⊗ Z ′)V−1E[yVy

′
V]

= E[y′VV
−1(Vg,q ⊗ Z)(V ′g,p ⊗ Z ′)V−1yV]

= E[û′g,qûg,p],

and substituting gives the desired update equation.
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Pocklington, John Powell, Alkes Price, Ann E. Pulver, Shaun M. Purcell, Digby Quested, Hen-
rik B. Rasmussen, Abraham Reichenberg, Mark A. Reimers, Alexander L. Richards, Joshua L.

30



Roffman, Panos Roussos, Douglas M. Ruderfer, Veikko Salomaa, Alan R. Sanders, Ulrich Schall,
Christian R. Schubert, Thomas G. Schulze, Sibylle G. Schwab, Edward M. Scolnick, Rodney J.
Scott, Larry J. Seidman, Jianxin Shi, Engilbert Sigurdsson, Teimuraz Silagadze, Jeremy M. Sil-
verman, Kang Sim, Petr Slominsky, Jordan W. Smoller, Hon-Cheong So, ChrisC. A. Spencer,
Eli A. Stahl, Hreinn Stefansson, Stacy Steinberg, Elisabeth Stogmann, Richard E. Straub, Eric
Strengman, Jana Strohmaier, T. Scott Stroup, Mythily Subramaniam, Jaana Suvisaari, Dragan M.
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Supplementary Figure 1. Bounds on polygenicity for type 2 diabetes. See caption of Figure 2
for detailed explanations of panels. The smaller hg–cc

2 of type 2 diabetes (Supplementary Table 3
resulted in low inferential power: in panel (b), all simulated architectures are consistent with the
observed data, and in panel (c), the concentration of SNP-heritability into top regions is virtually
unknown.
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Supplementary Figure 2. Histograms of raw REML heritability parameter estimates per
region. Panels (a–d), 1Mb regions; panels (e–h), 0.5Mb regions. The first bin in each histogram
corresponds to zero estimated heritability explained. These plots show the bulk distributions of
the parameter estimates; outliers (which would extend far to the right, especially for
dyslipidemia) are not plotted, as they are visible in the Manhattan-style plots (Fig. 2a and
Supplementary Figures 1a and 5a).
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Supplementary Figure 3. Probability of a zero heritability estimate as a function of actual
heritability explained per region. Panel (a), 1Mb regions; panel (b), 0.5Mb regions. Plotted
data points (×) correspond to empirical data from simulations; solid curves are best-fit sums of
two exponentials. Colors correspond to simulations with hg

2 calibrated to the hg–cc
2 of

dyslipidemia (blue), hypertension (gold), and schizophrenia (red).
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Supplementary Figure 4. Simulations verifying correctness of method for upper-bounding
fraction of SNP-heritability explained by top regions. We simulated three case-control data
sets with case over-ascertainment according to the following procedure. We simulated genotypes
by generating individuals as mosaics of up to 100 random “ancestors” from the PGC2 controls,
resampling ancestors every 250 SNPs. We simulated case-control phenotypes using a liability
threshold model in which we first generated continuous phenotypes with hg

2=0.24 explained by
either 4,000, 20,000, or 100,000 markers and then defined cases as individuals with phenotypes
exceeding a threshold corresponding to 0.4% population risk of disease. In each simulation, we
ascertained 22,537 cases and 28,109 controls, matching the case-control ratio of the PGC2
schizophrenia data we analyzed. (The exact numbers of cases and controls differ slightly from our
PGC2 data because they match an earlier round of QC.)
(a) For each simulated case-control data set, we estimated hg,1Mb

2 per 1Mb region and computed
the fraction P (0) of regions with zero hg,1Mb

2 estimates (solid blue horizontal lines), which we
compared to the calibration data we used in our schizophrenia analysis (dashed red curve; same as
Fig. 2b) based on quantitative traits simulated for real PGC2 individuals. We observed that the
calibration curve closely matches the number of simulated causal SNPs in each simulation. (b)
We then applied the same procedure we used in our main analyses (Fig. 2c and Online Methods)
to bound the fraction of SNP-heritability explained by the 1Mb regions explaining the most
heritability (dashed red curves), which we compared to the true fractions of SNP-heritability
explained by the top 1Mb regions (solid blue curves), known from the simulation procedure. We
observed that the our bounding procedure produced a conservative upper bound in each of the
three simulations, as expected for a (conservative) 95% confidence bound.
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Supplementary Figure 5. Differing levels of polygenicity of complex diseases. (This plot is
the analog of (Figure 2) using 0.5Mb regions.) (a) Manhattan-style plots of estimated
SNP-heritability per 0.5Mb region of the genome, hg,0.5Mb

2, for dyslipidemia, hypertension, and
schizophrenia. The APOE region of chromsome 19 is an outlier with an hg,0.5Mb

2 estimate of
0.025. (b) Fractions of 0.5Mb regions with estimated hg,0.5Mb

2 equal to its lower bound constraint
of 0 in disease phenotypes (solid) and simulated phenotypes with varying degrees of polygenicity
and with hg

2 matching the hg–cc
2 of each disease (dashed). Simulation data plotted are means over

5 simulations; error bars, 95% prediction intervals assuming Bernoulli sampling variance and
taking into account s.e.m. (c) Conservative 95% confidence intervals for the cumulative fraction
of SNP-heritability explained by the 0.5Mb regions that contain the most SNP-heritability. Lower
bounds are from a cross-validation procedure involving only the disease phenotypes while upper
bounds are inferred from the empirical sampling variance of hg,0.5Mb

2 estimates (Online Methods).
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Supplementary Figure 7. SNP-heritability of disease liability partitioned by chromosome.
Results are from a single REML analysis for each disease using one variance component per
chromosome; hg,chr

2, SNP-heritability explained per chromosome, as defined in Online Methods.
Error bars, 95% confidence intervals based on REML analytic standard errors.
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Supplementary Figure 8. Optimizing α (parameterizing MAF-dependence of SNP effects).
We performed least-squares regression of estimated hg,MAF

2 for schizophrenia in each of six MAF
bins (Fig. 4b) using hg,MAF

2 from simulations (based on a given value of the parameter α) as a
lone regressor (with no intercept term). For α = 0, –0.25, –0.5, –1, we averaged hg,MAF

2 over
4,000 simulation replicates; for other values of α, we interpolated hg,MAF

2 from the closest two
simulated values of α. We plot the mean-squared residual error as a function of α (blue solid
curve); as a point of reference, we also show the mean squared standard error of our
schizophrenia estimates (black dashed line). The value of α minimizing residual error is –0.34.
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Supplementary Figure 9. Inferred heritability of GERA disease liabilities due to SNPs of
various allele frequencies. (This plot is the analog of Fig. 4b,c for the three GERA traits with
largest hg–cc

2; see the caption of Figure 4 for details.) We ran GERA analyses using the 558,778
GERA SNPs with MAF≥2% and ran UK10K simulations (to infer hMAF

2 from hg,MAF
2) using the

535,626 SNPs with IDs also present in the UK10K data. We averaged simulation results over the
91% of GCTA runs that converged. Estimates of hMAF

2 are based on best-fit α = −0.45, 0,−0.25
for dyslipidemia, hypertension, and type 2 diabetes. Error bars for hg,MAF

2, 95% confidence
intervals based on REML analytic standard errors; error bars for hMAF

2 and σMAF
2, unions of 95%

confidence intervals assuming 0 ≥ α ≥ −1.
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Supplementary Figure 10. Impact of including covariates on SNP-heritability of GERA
traits. The heat map depicts the ratio of hg

2 estimated using additional covariates to hg
2 estimated

using only our standard set of covariates (age, sex, 10 principal components, and Affymetrix kit
type). The first nine rows correspond to augmenting the covariate set with each survey-derived
covariate in the GERA data individually; the last row corresponds to including all nine additional
covariates. The “general health” covariate denotes self-reported health status at date of survey
completion.
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Supplementary Figure 11. Approximate linear relationship between genetic correlations
and total liability correlations. Scatter plots of genetic correlations (rg) vs. total liability
correlations (rl) for the 36 trait pairs analyzed in Figure 5, (a) before adjusting for BMI as a
covariate, and (a) after adjusting for BMI as a covariate. For the regression fits, we used rl as the
lone regressor (with no intercept term); we note that standard errors on values of rl are negligible
(Supplementary Table 13). Horizontal and vertical bars indicate estimates of rl and rg plus or
minus 1 s.e.
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Supplementary Figure 12. Effect of case-control ascertainment on heritability partitioning
using variance components analysis. Results are shown for simulations in which genotypes of
samples were generated from mosaics of GERA individuals using the procedure described in
Supplementary Fig. 4 with disease liabilities simulated using a polygenic model with (20,000
causal SNPs with total hg

2=0.24). Individuals with liabilities in the top 0.4% were designated as
cases; 22,537 cases and 28,109 controls were simulated in this way, matching the case-control
ratio of the schizophrenia data we analyzed. To test the robustness of heritability partitioning
using REML under case-control ascertainment, we simulated genetic architectures in which SNPs
have per-allele average effect size variances proportional to p(1− p)α(chrNum)chrPow, where p
denotes minor allele frequency, chrNum denotes the chromosome (1–22) on which the SNP is
located, and α and chrPow are parameters. We then partitioned heritability across MAF bins (a,
c) and across chromosomes (b, d) using REML and applying the liability threshold
transformation of ref. [3]. Each simulation was repeated 10 times; means and 95% confidence
intervals are plotted. While the absolute hg

2 estimates were downward-biased (a, b), as expected
due to over-ascertainment of cases [26, 27], the relative hg

2 contributions of different variance
components were correctly estimated (c, d). 43
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Supplementary Figure 13. Negligible impact of using 432K vs. 472K SNPs for
MAF-partitioning of SNP-heritability. Estimates of hg,MAF

2 are statistically indistinguishable
using the full set of 472,178 well-imputed markers vs. 432,177 SNPs with IDs present in UK10K
data. (Of the 40,001 markers lost, we checked that 25,689 are indels.) Error bars, 95% confidence
intervals based on REML analytic standard errors.
We note that the sum of hg,MAF

2 over 6 MAF bins is slightly lower (by a factor of ≈0.96) than
hg

2 estimated using all SNPs in one variance component. While this slight difference is not
statistically significant (given the standard errors of our REML analyses), it is consistent with the
observation of Speed et al. [29] that mismatch between the true MAF-dependence of allele effect
sizes (parameterized by α; see Online Methods) and the modeled MAF-dependence (α = −1)
leads to slight bias in estimated SNP-heritability. Indeed, the sign and magnitude of the difference
are roughly as predicted by the simulations of ref. [29] (interpolated for our estimated α = −0.34
for schizophrenia).
We also note that our MAF-partitioned analyses only approximately allow the variance
component model to adjust for MAF-dependent genetic architectures (as all SNPs within a given
MAF bin are normalized according to the standard assumption α = −1); however, given the
small MAF range within each bin, this procedure effectively estimates hg,MAF

2 [30].
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Supplementary Table 1. Detailed computational performance of BOLT-REML and GCTA
heritability analysis algorithms.

(a) MAF partitioning (6+1 variance components)
BOLT-REML BOLT-REML GCTA

N 15 MC trials 100 MC trials GRM computation REML analysis Total CPU
5 0.5 hr / 1.0 GB 1.4 hr / 1.0 GB 0.7 hr / 3.5 GB 0.1 hr / 1.9 GB 0.8 hr
10 1.3 hr / 1.7 GB 3.0 hr / 1.7 GB 2.4 hr / 7.1 GB 0.6 hr / 7.5 GB 3.0 hr
20 4.3 hr / 3.1 GB 8.9 hr / 3.2 GB 8.8 hr / 15.6 GB 6.3 hr / 29.9 GB 15.1 hr
30 6.5 hr / 4.5 GB 16.3 hr / 4.7 GB 19.4 hr / 25.5 GB 20.8 hr / 67.1 GB 40.2 hr
40 11.9 hr / 6.0 GB 25.1 hr / 6.1 GB NA NA NA
50 16.0 hr / 7.4 GB 35.4 hr / 7.6 GB NA NA NA

(b) Chromosome partitioning (22+1 variance components)
BOLT-REML BOLT-REML GCTA

N 15 MC trials 100 MC trials GRM computation REML analysis Total CPU
5 1.0 hr / 1.4 GB 2.2 hr / 1.4 GB 0.8 hr / 1.5 GB 0.1 hr / 4.9 GB 0.9 hr
10 2.3 hr / 2.1 GB 5.2 hr / 2.1 GB 2.6 hr / 3.3 GB 1.1 hr / 19.4 GB 3.7 hr
20 7.0 hr / 3.5 GB 12.4 hr / 3.5 GB 9.1 hr / 8.0 GB 7.9 hr / 77.5 GB 17.0 hr
30 11.8 hr / 5.0 GB 21.7 hr / 5.0 GB NA NA NA
40 17.6 hr / 6.4 GB 32.9 hr / 6.6 GB NA NA NA
50 24.8 hr / 7.9 GB 44.7 hr / 8.2 GB NA NA NA

(c) Bivariate analysis
BOLT-REML BOLT-REML GCTA

N 15 MC trials 100 MC trials GRM computation REML analysis Total CPU
5 0.8 hr / 0.9 GB 2.1 hr / 0.9 GB 0.7 hr / 15.1 GB 0.6 hr / 3.4 GB 1.3 hr
10 1.5 hr / 1.6 GB 6.1 hr / 1.7 GB 2.3 hr / 30.3 GB 3.9 hr / 13.5 GB 6.2 hr
20 5.0 hr / 3.0 GB 12.9 hr / 3.2 GB 8.8 hr / 61.8 GB 35.2 hr / 53.7 GB 44.0 hr
30 8.0 hr / 4.4 GB 23.7 hr / 4.7 GB NA NA NA
40 12.8 hr / 5.8 GB 46.6 hr / 6.3 GB NA NA NA
50 16.5 hr / 7.3 GB 47.6 hr / 7.7 GB NA NA NA

(This table provides numeric data plotted in Figure 1 with additional details.) We benchmarked
BOLT-REML and GCTA in three heritability estimation scenarios: (a) partitioning across six MAF bins,
(b) partitioning across 22 chromosomes, and (c) bivariate analysis. Runs used subsets of the GERA cohort
with fixed SNP count M=597,736 and increasing sample size (N ) and analyzed dyslipidemia as the
phenotype in the univariate analyses and hypertension as the second phenotype in the bivariate analysis.
Reported run times are medians of five identical runs using one core of a 2.27 GHz Intel Xeon L5640
processor. Reported run times for GCTA break down total CPU time into time required for computing the
GRM and time required for performing REML analysis. “NA” indicates scenarios in which GCTA required
more memory than the 96GB available. Software versions: BOLT-REML, v2.0; GCTA, v1.24.
For bivariate analysis (with all SNPs in a single variance component), the default GCTA GRM computation
used more memory than GCTA REML analysis at the sample sizes we tested. Given that the memory
footprint of GCTA GRM computation can easily be circumvented (e.g., by combining GCTA-computed
per-chromosome GRMs or by using PLINK2 [59]), we plotted only the memory use of GCTA REML
analysis in Fig. 1b; we report the memory use of GCTA GRM computation in these tables for
completeness. We also note that while PLINK2 allows efficient parallelization of the GRM computation,
the total CPU time required is similar to that of GCTA GRM computation (data not shown).
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Supplementary Table 2. Breakdown of PGC2 schizophrenia cohorts samples analyzed.

Cohort Cases Controls Total
ajsz 885 1570 2455
asrb 452 283 735
buls 195 606 801
butr 599 606 1205
cims 66 64 130
clm2 3418 3873 7291
clo3 2057 1889 3946
cou3 524 673 1197
denm 443 443 886
dubl 263 826 1089
edin 363 280 643
egcu 216 1064 1280
ersw 255 307 562
gras 988 1113 2101
irwt 1278 972 2250
lacw 153 218 371
lie2 129 266 395
lie5 492 380 872
mgs2 2573 2286 4859
msaf 187 92 279
pewb 506 1714 2220
pews 150 233 383
s234 1845 2141 3986
swe5 1726 2508 4234
swe6 924 1098 2022
top8 377 403 780
ucla 656 576 1232
umeb 285 526 811
umes 172 619 791
Total 22177 27629 49806

Four-character abbreviations and full descriptions of cohorts are detailed in ref. [12].
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Supplementary Table 3. Estimated proportions of variance in disease liability explained by
SNPs for schizophrenia and all GERA diseases.

Disease Cases Controls hg–cc
2 (s.e.) hg

2 (s.e.)
Schizophrenia 22,177 27,629 0.435 (0.008) 0.317 (0.006)
Allergic rhinitis 13,437 41,297 0.039 (0.008) 0.074 (0.015)
Asthma 8,929 45,805 0.068 (0.008) 0.152 (0.018)
Cardiovasc. dis. 14,861 39,873 0.051 (0.008) 0.092 (0.015)
Diabetes type 2 6,845 47,889 0.115 (0.009) 0.297 (0.022)
Dyslipidemia 29,511 25,223 0.167 (0.009) 0.263 (0.014)
Hypertension 27,921 26,813 0.162 (0.009) 0.255 (0.014)
Macular degen. 3,700 51,034 0.066 (0.008) 0.242 (0.029)
Osteoarthritis 19,832 34,902 0.059 (0.008) 0.098 (0.014)
Osteoporosis 5,337 49,397 0.066 (0.008) 0.195 (0.024)
Cancer (all) 16,828 37,906 0.072 (0.008) 0.124 (0.014)
Depression 6,957 47,777 0.025 (0.008) 0.063 (0.020)
Dermatophytosis 7,479 47,255 0.020 (0.008) 0.049 (0.019)
Hemorrhoids 8,817 45,917 0.007 (0.008) 0.016 (0.017)
Hernia abdominopelvic 6,132 48,602 0.023 (0.008) 0.064 (0.021)
Insomnia 3,851 50,883 0.013 (0.008) 0.046 (0.028)
Iron deficiency 2,404 52,330 0.016 (0.008) 0.079 (0.038)
Irritable bowel 2,968 51,766 0.015 (0.008) 0.063 (0.032)
Peripheral vasc. dis. 4,278 50,456 0.022 (0.008) 0.076 (0.026)
Peptic ulcers 897 53,837 0.015 (0.008) 0.144 (0.073)
Psychiatric (all) 8,240 46,494 0.052 (0.008) 0.123 (0.019)
Stress (acute reaction) 4,127 50,607 0.020 (0.008) 0.070 (0.027)
Varicose veins 2,435 52,299 0.023 (0.008) 0.113 (0.038)

Schizophrenia cases and controls are from the PGC2 data set [12]; cases and controls for the other
22 diseases are from the GERA data set. For all diseases, the reported hg–cc

2 is the raw REML
heritability parameter obtained by running BOLT-REML on the full data set. For schizophrenia,
the hg

2 estimate is based on assuming a population risk of 1% and averaging across 100 analyses
of 10x downsampled data sets to avoid REML bias induced by over-ascertainment of
cases [26, 27] (Supplementary Table 5). For GERA diseases, hg

2 estimates assume random
sample ascertainment. We restricted further analyses to the top nine GERA diseases, eliminating
11 diseases with very low hg–cc

2≤0.025 as well as two heterogeneous traits (all types of cancer
and all psychiatric diseases).
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Supplementary Table 4. Effect of sample size on REML heritability parameter estimates
(hg–cc

2) in ascertained and non-ascertained traits.

Subsampling Schizophrenia Dyslipidemia Hypertension Diabetes type 2
1x 0.435 0.167 0.162 0.116
2x 0.473 (0.007) 0.167 (0.007) 0.161 (0.009) 0.121 (0.007)
3x 0.498 (0.003) 0.184 (0.008) 0.170 (0.009) 0.120 (0.006)
4x 0.519 (0.005) 0.172 (0.006) 0.172 (0.009) 0.118 (0.006)
5x 0.528 (0.006) 0.179 (0.007) 0.169 (0.009) 0.126 (0.005)
6x 0.539 (0.006) 0.182 (0.008) 0.162 (0.009) 0.111 (0.007)
7x 0.551 (0.005) 0.190 (0.009) 0.169 (0.009) 0.126 (0.007)
8x 0.554 (0.006) 0.190 (0.009) 0.165 (0.008) 0.126 (0.008)
9x 0.565 (0.007) 0.194 (0.009) 0.157 (0.008) 0.127 (0.007)

10x 0.568 (0.007) 0.184 (0.008) 0.158 (0.008) 0.122 (0.006)

We report BOLT-REML hg–cc
2 estimates for schizophrenia and the three GERA traits with highest

hg–cc
2 on subsamples of the the PGC2 and GERA data sets. The first row contains estimates using

all samples (corresponding to hg–cc
2 values reported in Supplementary Table 3). Subsequent rows

show the results of randomly splitting the data into F = 2, . . . , 10 folds and computing hg–cc
2 for

each fold. For each value of F , we repeated this experiment F times (using different random
splits); values reported are means over F 2 estimates (s.e.m. in parentheses). The liability-scale
estimates of hg

2 for 1x and 10x subsamples of the schizophrenia data are 0.243 and 0.317,
respectively (assuming 1% population risk).
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Supplementary Table 5. Downward bias of REML hg
2 estimates for simulated diseases of

varying prevalence and schizophrenia.

(a) Simulated case-control data with over-ascertainment of cases matching PGC2 data
Sim. parameters N=50K N=5K subsets, 100 rep mean hg–cc

2(50K / 5K)
hg

2 K hg–cc
2 s.d. hg

2 s.d. hg–cc
2 s.d. hg

2 s.d. ratio s.d.
0.315 0.01 0.471 0.007 0.263 0.004 0.549 0.008 0.307 0.004 0.858 0.011
0.26 0.004 0.472 0.008 0.216 0.004 0.554 0.009 0.254 0.004 0.852 0.011
0.205 0.001 0.469 0.010 0.167 0.003 0.563 0.010 0.201 0.004 0.834 0.014

(b) Analyses of PGC2 schizophrenia data set
Prevalence N=50K N=5K subsets, mean over 100 reps Ratio
K hg–cc

2 hg
2 hg–cc

2 hg
2 hg–cc

2(50K) / hg–cc
2(5K)

0.01 0.435 0.243 0.568 0.317 0.767
0.004 0.435 0.199 0.568 0.260 0.767

In table (a), we report data from BOLT-REML runs on simulated case-control data sets with case
over-ascertainment. We simulated genotypes by generating individuals as mosaics of up to 100
random “ancestors” from the PGC2 controls, resampling ancestors every 250 SNPs. We
simulated case-control phenotypes using a liability threshold model in which we first generated
continuous phenotypes with hg

2=0.315, 0.26, 0.205 explained by 50,000 markers and then defined
cases as individuals with phenotypes exceeding thresholds corresponding to the desired
prevalences K=0.01, 0.004, 0.001. In each simulation, we ascertained 22,537 cases and 28,109
controls, matching the case-control ratio of the PGC2 schizophrenia data we analyzed. (The exact
numbers of cases and controls differ slightly from our PGC2 data because they match an earlier
round of QC.) We ran BOLT-REML on the full simulated data (N=50K), obtaining hg–cc

2, which
we transformed to hg

2 (ref. [3]) using the simulated population prevalence; we also averaged 100
hg–cc

2 estimates on 10x subsamples of the data (Supplementary Table 4) and transformed this
estimate to hg

2, and we compared the estimate based on N=5K subsamples to the N=50K
estimate. Reported values are the mean and s.d. over 10 independent simulations. In table (b), we
report results on the real PGC2 schizophrenia data assuming population risk of 1% and 0.4%.

From (a), we observe that the N=50K hg
2 estimates are substantially downward biased, as

expected [26, 27], whereas the subsampling approach using N=5K hg
2 estimates shows at most

faint downward bias. We also see that the downward bias hg–cc
2(50K) / hg–cc

2(5K) decreases with
decreasing disease prevalence (i.e., increasing severity of ascertainment), but the observed
hg–cc

2(50K) / hg–cc
2(5K) of 0.767 in (b) is lower than any value we obtained in simulations. We

hypothesize that this discrepancy may be due to heterogeneity among cohorts (e.g., in
phenotyping, sample ascertainment, or genotype quality), unmodeled complexities of genetic
architecture, or deviation of the true phenotype from the liability threshold model; further
investigation will be required to fully understand these effects.
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Supplementary Table 6. Comparison of published schizophrenia SNP-heritability estimates.

Study Data set Cases Controls SNPs hg
2(s.e.) Notes

This study PGC2 22,177 27,629 472K
2x LD-pruned
(r2 = 0.9)

0.317 (0.006)
0.264 (0.006)
0.243 (0.005)

N=5K at a time
N=25K at a time
All 50K together

597K LD-pruned 0.236 (0.005) All 50K together
1.6M HapMap3 only 0.205 (0.004) All 50K together
3.9M All well-imp. 0.205 (0.004) All 50K together
(1000 Genomes imp.)

Lee et al. 2012 ISC 3,220 3,445 915K 0.27 (0.02) N=7K
(Table 1 of [5]) MGS 2,571 2,419 (HapMap3 imputed) 0.31 (0.03) N=5K

ISC+MGS 5,791 5,864 0.25 (0.01) N=12K
PGC1 9,087 12,171 0.23 (0.01) N=21K

Ripke et al. 2013 Subset of 7,301 1.1M HapMap3 only 0.32 (0.03) N=7K
[11] sw1-6 (core Swedish) (1000 Genomes imp.)
Golan et al. 2014 sw5-6 6,731 617K MAF≥5% 0.334 (0.029) N=7K, REML
(Supp Tab 2, [27]) (Swedish) (array) 0.372 (0.044) PCGC regression

We survey estimates of schizophrenia hg
2 from recent studies. All estimates reported above

assume population risk of 1% and do not apply an adjustment for incomplete tagging. We observe
that our estimate, hg

2=0.317 (s.e.=0.006) in the top line, is significantly higher than the estimate
hg

2=0.23 (s.e.=0.01) of Lee et al. [5] using the full PGC1 data set. Our analyses suggest that two
factors together fully explain this discrepancy: (1) downward bias of large-sample REML
hg

2 estimates due to case over-ascertainment [26, 27] (Supplementary Table 4), which we
corrected for in this study; and (2) LD bias of REML hg

2 estimates due to LD-dependent genetic
architecture [29]. While previous work has shown that REML analysis of LD-pruned data (as in
this study) generally produces larger hg

2 estimates than direct REML analysis of all imputed
markers [31] (as in ref. [5, 11]), the question of which procedure is unbiased (or less biased)
remains open. We are aware of preliminary studies suggesting REML hg

2 estimates based on
unpruned marker sets incur downward bias due to enrichment of heritability in lower-LD SNPs
(B.K.B., H.K.F., V. Anttila; personal communication), but further investigation is needed.
We also note that our subsampling experiments (Supplementary Table 4) and simulations
(Supplementary Table 5) indicate that at the sample size analyzed by Golan et al. [27], we would
expect REML estimates of schizophrenia hg

2 to be downward biased by <0.01, so our
interpretation of the large but non-significant difference between REML and PCGC estimates in
ref. [27] is that it is mostly due to noise.

50



Supplementary Table 7. Minimal cross-tagging of heritability across adjacent 1Mb or
0.5Mb regions.

(a) 1Mb regions
MAF range of causal SNPs hg,1Mb

2, left region hg,1Mb
2, causal region hg,1Mb

2, right region
0.05–0.5 0.004 (0.000) 0.443 (0.001) 0.004 (0.000)
0.01–0.05 0.010 (0.000) 0.440 (0.002) 0.010 (0.001)
0.005–0.01 0.014 (0.001) 0.374 (0.004) 0.014 (0.001)
0.001–0.005 0.008 (0.001) 0.160 (0.004) 0.007 (0.001)

(b) 0.5Mb regions
MAF range of causal SNPs hg,0.5Mb

2, left region hg,0.5Mb
2, causal region hg,0.5Mb

2, right region
0.05–0.5 0.009 (0.000) 0.434 (0.001) 0.009 (0.000)
0.01–0.05 0.027 (0.001) 0.417 (0.002) 0.027 (0.001)
0.005–0.01 0.036 (0.001) 0.357 (0.003) 0.037 (0.001)

0.001–0.005 0.019 (0.001) 0.201 (0.003) 0.020 (0.001)

(a) Using genotypes from 3,413 unrelated UK10K samples, we simulated quantitative phenotypes
in which variance-normalized UK10K SNPs in a specific MAF range (5–50%, 1–5%, 0.5–1%,
0.1–0.5%) and in a given 1Mb region were assigned standard normal effect sizes. We then ran
BOLT-REML with one variance component containing the PGC2 SNPs in the causal region, one
component containing the PGC2 SNPs in the region to the left, and one component containing the
PGC2 SNPs in the region to the right. Each reported value is the mean (s.e.m.) over the 2,567
1Mb regions. (b) We repeated this experiment using the 5,136 0.5Mb regions containing ≥5
SNPs.
The results show that nearly all of the heritability tagged by the PGC2 SNPs is tagged by SNPs in
the causal region, with very little “leakage” of heritability into the regions to the left and right
(especially for 1Mb regions). As expected, PGC2 SNPs tag most of the heritability when causal
SNPs are common (5–50%), whereas PGC2 SNPs do not tag most of the heritability when causal
SNPs are rare (0.1–0.5%).
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Supplementary Table 8. Autocorrelations of annotations across consecutive 1Mb or 0.5Mb
genomic segments.

PGC2 1Mb GERA 1Mb PGC2 0.5Mb GERA 0.5Mb
GC content 0.80 0.79 0.81 0.81
Genic content 0.30 0.28 0.37 0.39
Replication timing 0.69 0.69 0.85 0.85
Recombination rate 0.57 0.59 0.51 0.54
Background selection 0.61 0.63 0.69 0.70

We filtered out regions with length <80% of the nominal region length (e.g., due to region
truncation at centromeres and telomeres); these truncated regions accounted for 3-6% of the
≈2,600 1Mb regions and ≈5,300 0.5Mb regions. The region boundaries and numbers of regions
in the PGC2 and GERA analyses were slightly different because PGC2 data was in build 37
coordinates while GERA data was in build 36 coordinates.
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Supplementary Table 9. Correlations of per-region SNP-heritability estimates with
long-range annotations.

(a) 1Mb regions, regressing out SNP count
GC content Genic content Replic. timing Recomb. rate Bkgd. selection

Schizophrenia 0.089 (p=6E-06) 0.069 (p=0.0004) 0.065 (p=0.001) 0.047 (p=0.02) -0.044 (p=0.02)
Dyslipidemia 0.089 (p=6E-06) 0.035 (p=0.07) 0.082 (p=2E-05) 0.052 (p=0.008) -0.013 (p=0.5)
Hypertension 0.116 (p=3E-09) 0.080 (p=4E-05) 0.097 (p=7E-07) 0.088 (p=7E-06) -0.020 (p=0.3)
Diabetes type 2 0.096 (p=1E-06) 0.069 (p=0.0005) 0.094 (p=2E-06) 0.065 (p=0.0009) -0.028 (p=0.2)

(b) 1Mb regions, regressing out SNP count and GC content
Genic content Replication timing Recombination rate Background selection

Schizophrenia 0.036 (p=0.07) 0.000 (p=1) 0.003 (p=0.9) -0.029 (p=0.1)
Dyslipidemia -0.001 (p=1) 0.027 (p=0.2) 0.005 (p=0.8) 0.003 (p=0.9)
Hypertension 0.037 (p=0.06) 0.020 (p=0.3) 0.031 (p=0.1) 0.001 (p=0.9)
Diabetes type 2 0.033 (p=0.09) 0.037 (p=0.06) 0.016 (p=0.4) -0.011 (p=0.6)

(c) 0.5Mb regions, regressing out SNP count
GC content Genic content Replic. timing Recomb. rate Bkgd. selection

Schizophrenia 0.077 (p=5E-08) 0.067 (p=2E-06) 0.049 (p=0.0005) 0.057 (p=7E-05) -0.029 (p=0.04)
Dyslipidemia 0.073 (p=2E-07) 0.024 (p=0.08) 0.060 (p=2E-05) 0.053 (p=0.0001) -0.007 (p=0.6)
Hypertension 0.085 (p=1E-09) 0.052 (p=0.0002) 0.075 (p=7E-08) 0.071 (p=3E-07) -0.013 (p=0.3)
Diabetes type 2 0.078 (p=3E-08) 0.033 (p=0.02) 0.061 (p=1E-05) 0.072 (p=3E-07) -0.003 (p=0.8)

(d) 0.5Mb regions, regressing out SNP count and GC content
Genic content Replication timing Recombination rate Background selection

Schizophrenia 0.044 (p=0.002) -0.006 (p=0.7) 0.025 (p=0.08) -0.015 (p=0.3)
Dyslipidemia 0.000 (p=1) 0.013 (p=0.3) 0.019 (p=0.2) 0.005 (p=0.7)
Hypertension 0.025 (p=0.07) 0.023 (p=0.1) 0.033 (p=0.02) 0.002 (p=0.9)
Diabetes type 2 0.008 (p=0.6) 0.010 (p=0.5) 0.038 (p=0.006) 0.010 (p=0.5)

For each region, we computed GC content based on the human reference, genic content as the
complement of the “intergenic” annotation of ref. [6], replication timing as the region-wide
average of data from ref. [34], recombination rate as the ratio of genetic map distance (according
to HapMap phase II [35]) to physical distance spanning each region, and background selection as
the region-wide average of data from ref. [36]. We filtered out regions with length <80% of the
nominal region length (e.g., due to region truncation at centromeres and telomeres); these
truncated regions accounted for 3-6% of the ≈2,600 1Mb regions (a,b) and ≈5,300 0.5Mb
regions (c,d). (The region boundaries and numbers of regions in the PGC2 and GERA analyses
were slightly different because PGC2 data was in build 37 coordinates while GERA data was in
build 36 coordinates.) We then computed correlation coefficients between these annotations and
per-region SNP-heritability estimates after regressing out SNP count per region (a,c) or both SNP
count and GC content (b,d).
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Supplementary Table 10. Correlations among long-range annotations.

(a) 1Mb regions, regressing out SNP count
GC content Genic content Replic. timing Recomb. rate Bkgd. selection

GC content 1.00 0.40 0.72 0.54 -0.18
Genic content 0.40 1.00 0.49 0.10 -0.45
Replication timing 0.72 0.49 1.00 0.25 -0.49
Recombination rate 0.54 0.10 0.25 1.00 0.35
Background selection -0.18 -0.45 -0.49 0.35 1.00

(b) 0.5Mb regions, regressing out SNP count
GC content Genic content Replic. timing Recomb. rate Bkgd. selection

GC content 1.00 0.33 0.69 0.50 -0.17
Genic content 0.33 1.00 0.43 0.06 -0.43
Replication timing 0.69 0.43 1.00 0.21 -0.48
Recombination rate 0.50 0.06 0.21 1.00 0.34
Background selection -0.17 -0.43 -0.48 0.34 1.00

We report correlation coefficients between pairs of annotations across regions after filtering and
regressing out SNP count as described in Supplementary Table 9.
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Supplementary Table 11. PGC2 and GERA marker counts per GC quintile.

GC content quintile # PGC2 markers # GERA SNPs
1 (lowest GC content) 86671 107591
2 102657 129653
3 105563 138340
4 103925 136804
5 (highest GC content) 73340 85292

We report the total numbers of markers in each GC quintile of PGC2 1Mb regions (based on build
37 coordinates) and GERA 1Mb regions (based on build 36 coordinates): i.e., the 20% of PGC2
1Mb regions with lowest per-region GC content contained 86,671 PGC2 markers. The total
marker counts are very slightly less than the sizes of our PGC2 and GERA marker sets because
we excluded regions with <5 SNPs.

55



Supplementary Table 12. PGC2 marker count and UK10K SNP count per MAF bin.

MAF bin PGC2 markers UK10K SNPs Ratio
0.02-0.05 99607 1315932 13.21
0.05-0.1 78564 1114949 14.19
0.1-0.2 99867 1416648 14.19
0.2-0.3 73460 1060806 14.44
0.3-0.4 62216 930520 14.96
0.4-0.5 58464 867114 14.83

We report the numbers of PGC2 markers and UK10K SNPs in each MAF bin used in our
MAF-partitioning analyses (Figure 4 and Supplementary Fig. 9).
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Supplementary Table 14. Accuracy of BOLT-REML and GCTA heritability analysis in
simulations.

(a) BOLT-REML, 15 Monte Carlo trials
Variance component True hg

2 Mean est. hg
2(s.e.m.) RMSE (s.e.) Mean reported SE (s.e.m)

Chromosome 21 0.2 0.1998 (0.0001) 0.0322 (0.0001) 0.0342 (0.0000)
Chromosome 22 0.3 0.2995 (0.0001) 0.0312 (0.0001) 0.0347 (0.0000)

(b) BOLT-REML, 100 Monte Carlo trials
Variance component True hg

2 Mean est. hg
2(s.e.m.) RMSE (s.e.) Mean reported SE (s.e.m)

Chromosome 21 0.2 0.1997 (0.0001) 0.0312 (0.0001) 0.0333 (0.0000)
Chromosome 22 0.3 0.2995 (0.0001) 0.0301 (0.0001) 0.0338 (0.0000)

(c) GCTA
Variance component True hg

2 Mean est. hg
2(s.e.m.) RMSE (s.e.) Mean reported SE (s.e.m)

Chromosome 21 0.2 0.1995 (0.0001) 0.0310 (0.0001) 0.0331 (0.0000)
Chromosome 22 0.3 0.2997 (0.0001) 0.0299 (0.0001) 0.0336 (0.0000)

Simulations used genotypes from N=2,000 GERA individuals and M=13,971 SNPs on
chromosomes 21 and 22. In each of 50,000 simulation replicates, we simulated a quantitative trait
with 20% of variance explained by SNPs on chromosome 21 and 30% of variance explained by
SNPs on chromosome 22. We then performed REML analysis using one variance component per
chromosome. We ran BOLT-REML using 15 Monte Carlo trials (a), BOLT-REML using 100
Monte Carlo trials (b), and GCTA (c).
We observed that all methods computed accurate estimates with negligible bias. We expected
from theory (Supplementary Note) that BOLT-REML estimates using S Monte Carlo trials would
have variance 1+1/S times larger than exact REML estimates (e.g., computed using GCTA), and
our simulations confirmed that indeed, to within the statistical resolution available from 50,000
replicates, the RMSE of BOLT-REML was greater than that of GCTA by a factor of

√
1 + 1/S.

(We also observed that in this particular simulation setup, standard errors reported by
REML—computed using analytic approximations based on Fisher information—were slightly
conservative compared to observed RMSE.)
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Supplementary Table 15. Accuracy of BOLT-REML heritability analysis in bivariate
quantitative trait simulations.

Var comp Parameter True value Mean est (s.e.m.) RMSE (s.e.) Mean reported SE (s.e.m)
Chr 1 Trait 1 hg,chr

2 0.15 0.144 (0.001) 0.014 (0.001) 0.012 (0.000)
Gen corr rg 0.4 0.408 (0.003) 0.032 (0.002) 0.036 (0.000)
Trait 2 hg,chr

2 0.6 0.603 (0.001) 0.015 (0.001) 0.015 (0.000)
Chr 2 Trait 1 hg,chr

2 0.6 0.597 (0.001) 0.014 (0.001) 0.015 (0.000)
Gen corr rg -0.2 -0.195 (0.004) 0.037 (0.003) 0.043 (0.000)
Trait 2 hg,chr

2 0.15 0.150 (0.001) 0.012 (0.001) 0.012 (0.000)
Resid Trait 1 he

2 0.25 0.259 (0.002) 0.020 (0.001) 0.016 (0.000)
Resid corr re 0.6 0.585 (0.004) 0.040 (0.003) 0.037 (0.000)
Trait 2 he

2 0.25 0.246 (0.002) 0.017 (0.001) 0.016 (0.000)

Simulations used genotypes from N=10,000 GERA individuals and M=96,543 SNPs on
chromosomes 1 and 2. In each of 100 simulation replicates, we simulated a pair of correlated
quantitative traits covariance given by

Cov
(
ytrait1

ytrait2

)
=

(
0.15 0.12
0.12 0.6

)
⊗Gchr1 +

(
0.6 −0.06
−0.06 0.15

)
⊗Gchr2 +

(
0.25 0.15
0.15 0.25

)
⊗IN ,

where Gchr1 and Gchr2 denote genetic relationship matrices computed using SNPs on
chromosomes 1 and 2, respectively, and IN denotes the N ×N identity matrix (corresponding to
environmental effects). We then estimated these variance parameters by running bivariate
BOLT-REML (with 15 Monte Carlo trials) using one variance component per chromosome.
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Supplementary Table 16. Accuracy of BOLT-REML heritability analysis in bivariate
case-control trait simulations.

Case-control Liability transform
VC Parameter True Mean raw est Mean estimate RMSE Mean reported SE
Chr 1 Trait 1 hg,chr

2 0.15 0.089 (0.001) 0.139 (0.002) 0.022 (0.001) 0.021 (0.000)
Gen corr rg 0.4 0.441 (0.006) 0.441 (0.006) 0.075 (0.004) 0.070 (0.001)
Trait 2 hg,chr

2 0.6 0.270 (0.002) 0.614 (0.004) 0.040 (0.003) 0.039 (0.000)
Chr 2 Trait 1 hg,chr

2 0.6 0.379 (0.002) 0.596 (0.003) 0.025 (0.002) 0.027 (0.000)
Gen corr rg -0.2 -0.195 (0.006) -0.195 (0.006) 0.063 (0.004) 0.079 (0.001)
Trait 2 hg,chr

2 0.15 0.068 (0.001) 0.155 (0.003) 0.032 (0.002) 0.031 (0.000)
Resid Trait 1 he

2 0.25 0.532 (0.002) 0.265 (0.003) 0.035 (0.002) 0.034 (0.000)
Resid corr re 0.6 0.123 (0.003) 0.568 (0.014) 0.139 (0.013) 0.130 (0.002)
Trait 2 he

2 0.25 0.662 (0.002) 0.231 (0.005) 0.053 (0.004) 0.049 (0.000)

We simulated 100 pairs of correlated quantitative traits exactly as in Supplementary Table 15 and
then converted each trait to a case-control trait according to a liability threshold model.
Specifically, for each pair, we used a case cutoff of z > 0 for trait 1 (corresponding to 50%
population prevalence) and a case cutoff of z > 1 for trait 2 (corresponding to 16% population
prevalence). We then estimated the variance parameters of the underlying liabilities (i.e., the
original quantitative traits) by running bivariate BOLT-REML (with 15 Monte Carlo trials) using
one variance component per chromosome and transforming parameter estimates to the liability
scale. Explicitly, we used the formula of ref. [3] to transform hg,chr

2; we did not transform
rg (ref. [7]); and we transformed total phenotypic correlation to total liability correlation as
described in Online Methods, after which we computed re by subtracting the two genetic
covariances from the total liability covariance.
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