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Materials and Methods 

The data for this study were obtained from the inpatient EHR used at the hospitals affiliated with 

three large academic medical centers in New York City: Columbia University Medical Center, 

Weill Cornell Medical College, and Mount	Sinai	Health	System. Columbia University Medical 

Center and Weill Cornell Medical College operate together as NewYork-Presbyterian Hospital 

and herein, we will refer to the hospitals and the data associated with them as Columbia and 

Cornell, respectively. Similarly, we will refer to Mount	Sinai	Health	System	and	its	data	as	

Mount	Sinai.		

 

1. Relationship Inference from the Electronic Health Record (RIFTEHR) 

 

This research was approved by the institutional review boards at the three study sites. As is 

common practice, when patients received care at either site, they were asked to provide 

information about an emergency contact. This information included the person's name, address, 

phone number, and their relationship to the patient (e.g., parent, sibling, friend). We used the 

emergency contact information to identify familial relationships in the EHR in cases where the 

emergency contact person had his or her own record generated by an encounter with the 

healthcare system. Algorithmically, we then inferred additional relationships from the 

connectedness of the identified individuals. This information was validated against genetic data 

and a separate module of the EHR which documented the linkage between mother’s and their 

newborn’s medical record. Using the relationships identified, we assigned phenotypes using 

clinical history and subsequently evaluated familial recurrence for all available clinical 

phenotypes.   

 

1.1. Deriving familial relationships from emergency contact data 
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1.1.1. Matching emergency contact to medical records. Our algorithm creates for each patient a 

list of all reported emergency contacts. Then, for each emergency contact, it attempts to identify a 

medical record by matching first name, last name, primary phone number, and ZIP code. First, we 

consider all cases with first name and filter the table that contains all patients’ information to 

identify records that contain the same first name. We then return the identified records and 

perform the same comparison with last name, primary phone number, and ZIP code. 

Subsequently, we compare the combination of two variables at a time (i.e. first name and last 

name, first name and primary phone number, first name and ZIP code, etc.). We then perform 

combinations of three variables and then of all four variables. We only consider it successful 

when we identify a single patient that matches to the emergency contact information given. We 

also capture which variables were used in the matching process for each one of the emergency 

contacts (i.e. first name and last name; first name, last name and phone number, etc.). The output 

of this algorithm contains the patient’s identifier, the relationship between the patient and the 

matched emergency contact, the emergency contact’s identifier, as well as a list of the variables 

used to perform the matching process. We use as patient identifiers the Enterprise Master Patient 

Index (EMPI), when available or the medical record number (MRN). EMPIs are a unique 

identifier created to refer to multiple MRNs across the healthcare organization. Using EMPIs 

allow us to perform better in the matching process since duplicates from patients having more 

than one MRN are excluded.  

 

1.1.2. Quality Control of matches. Once the matches are identified, we exclude patients with 

non-biological relationships (i.e. spouse, friend). Specific relationships are mapped to relationship 

groups (e.g. the relationship “mother” is mapped to “parent”). We then calculate the age 

difference between two related patients and exclude parents that are less than 10 years older than 

their children, children that are less than 10 years younger than their parents, grandparents that 

are less than 20 years older than their grandchildren, grandchildren that are less than 20 years 
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younger than their grandparent. Since parents and grandparents must be older than their children 

and grandchildren, we also flip relationships when the age difference between parent or 

grandparent and its child or grandchild is negative, specifically the relationship “parent” becomes 

“child” and the relationship “grandparent” becomes “grandchild.” The same process is done when 

the age difference between children and grandchildren in positive. We also exclude every patient 

that matches to 20 or more distinct emergency contacts. Finally, we generate the opposite 

relationship for every relationship pair. For example, if we have that A is a parent of B, the 

opposite relationship is that B is a child of A.  

 

1.1.3. Inferring familial relationships. Using the matches identified, we infer additional 

relationships. The inference process is made based on familial relationship rules. For example, if 

patient A is the mother of patient B and patient B is the mother of patient C, then by inference we 

know that A is the grandmother of C and C is the grandchild of A. The rules used to perform 

these inferences are described in Table S4.  

 

1.1.4.  Quality Control of inferred relationships. Once additional relationships are inferred, we 

remove ambiguous relationships such as “Parent/Aunt/Uncle” if the same pair contains a unique 

specific relationship, in this case, either “Parent” or “Aunt/Uncle.” The same is done for 

“Child/Nephew/Niece”, “Sibling/Cousin”, “Parent/Parent-in-law”, “Child/Child-in-law”, 

“Grandaunt/Granduncle/Grandaunt-in-law/Granduncle-in-law”, “Grandchild/Grandchild-in-law”, 

“Grandnephew/Grandniece/Grandnephew-in-law/Grandniece-in-law”, 

“Grandparent/Grandparent-in-law”, “Great-grandchild/Great-grandchild-in-law”, “Great-

grandparent/Great-grandparent-in-law”, “Nephew/Niece/Nephew-in-law/Niece-in-law”, and 

“Sibling/Sibling-in-law.” 
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1.1.5. Identification of families. To identify families in the datasets, we exclude all non-

biological relationships such as spouses and in-laws, as well as ambiguous relationships such as 

“Parent/Parent-in-law.” Using both provided and inferred relationships, we created a network 

where each node corresponds to a patient and edges represent familial relationships. To identify 

different families, we decomposed the network into individual connected components. 

 

1.1.6. Identification of twins. To identify twins, we matched siblings that shared the same last 

name and the same date of birth. We do not have enough information to distinguish between 

monozygotic and dizygotic twins.  

 

1.2. Evaluation of automatically inferred relationships 

 

1.2.1. Evaluation using the EHR’s mother-baby linkage. We used the EHR’s mother-baby 

linkage as the gold standard to evaluate identified maternal relationships. True positive cases are 

when maternal relationships identified by our algorithm are also present in the EHR’s mother-

baby linkage table. False positive cases are when maternal relationships identified by our 

algorithm are discordant with the relationship available in the EHR’s mother-baby linkage table. 

And lastly, false negative cases are when a maternal relationship was captured by the EHR’s 

mother-baby linkage but not by our method. Overall performance was evaluated by calculating 

overall sensitivity and positive predictive value (PPV). To assess if matches identified by 

different variables perform differently, we also computed sensitivity and PPV. We stratified the 

identified relationships by the number of variables used to match the emergency contact to a 

patient in a healthcare system (Table S2), as well as by the combination of variables (i.e. last 

name only, first name and last name, etc.) used to perform the match (Table S3).   
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1.2.2. Evaluation using genetic data with analysis for kinship. Genotype data were collected 

from existing sources for 1,524 individuals.  

At Columbia, genotype data were available for 302 individuals. Data were collected from three 

separate sources, the Institute for Genomic Medicine, The Columbia University Medical Center 

Pathology Department, and the Washington Heights/Inwood Informatics Infrastructure for 

Comparative Effectiveness Research (WICER) project, using whole exome sequencing, 

Affymetrix CytoScan HD array, and the Illumina Multi-Ethnic Genotyping Array, respectively. 

To select SNPs for kinship, minor allele frequency was filtered to >5%, and genotyping rate to 

99% using PLINK (15). Independent SNPs were selected using the sliding window (100 SNPs) 

linkage disequilibrium approach. This resulted in a total of 24,752 variants from the Institute for 

Genomic Medicine data, 8,544 SNPS from the WICER data, and 32,938 SNPs from the 

Pathology Department data. PLINK was then used to calculate identity by descent (IBD) by 

determining 𝜋	results (P(IBD=2)+0.5*P(IBD=1)(proportion IBD)) for each pair of individuals. 

We consider that the predicted relationship is correct if the blood relationship fraction between 

the two people is the same as the one expected for the predicted relationship with a margin of 

error of 20% of the expected blood relationships. For example, for predicted mother-child pairs, 

two individuals in a pair share 50% (±10%) of their genetic information, then that gives us 

evidence to consider that the predicted relationship is correct. Likewise, for a predicted aunt-niece 

pair, the two individuals are expected to share 25% (±5%). The performance was evaluated by 

calculating PPV. 

At Mount Sinai, we leveraged genome array data for 24,441 participants recruited to the 

BioMe Biobank Program of The Charles Bronfman Institute for Personalized. Genotyped 

participants had a mean age 55.8 years, and approximately 61% are female. Participants self-

identify as: Hispanic/Latino (45%), African American (31%), White/Caucasian (8%), Asian 

(6%), Mixed ancestry (6%), or Other (11%). To calculate genetic relatedness, we first merged 

BioMe participants (N) genotyped either on the Illumina OmniExpress HumanCore (N=11,212) 
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and Multi-Ethnic Genotype Array v1.0 (N=10,467) platforms, retaining only the intersection of 

sites (n) between the two arrays (n=385,531). We subsequently removed palindromic sites 

(n=7,215 SNPs) and sites with a missingness rate > 1% (n=517) and a MAF < 5% (n=112,537) 

leaving a total of 112,537 SNPs. Of 21,679 BioMe participants with genotype data, emergency 

contact information was available for 16,341, and in 1,222 cases both family members with 

relationship inferred by RIFTEHR were in BioMe. Pairwise genetic relationships were estimated 

by Identity-by-State analysis with PLINK1.9 using the –genome flag. Inferred relationships from 

RIFTEHR were compared to pairwise genetic relationships to assess performance metrics using 

the “caret” package with R version 3.0.3. Pairs of patients with conflicting familial relationships 

were analyzed based on the closest relationship available. For example, if the same pair has two 

distinct relationships inferred based on their emergency contact information (e.g. parent and 

aunt/uncle), we consider the first-degree relationship to be correct (in this case, parent) for 

evaluation of the relationship against genetic data. Parent-offspring and sibling relationships 

groups were both expected to share ~50% genetic relatedness IBS (pi_hat mean 0.5, s.d. ± 0.1). 

We could distinguish between these two groups by examining the IBS measures at heterozygous 

(IBS1) and homozygous (IBS2) sites. Parent-offspring were defined as IBS1 > 0.75 and IBS2 < 

0.25 (n=1087 pairs), full-siblings were defined as pairs that shared between 0.35 and 0.65 IBS1, 

and IBS2 > 0.15 and < 0.5 (n=502), monozygotic twins were defined as individuals sharing > 0.8 

IBS2 (n=2). In each RIFTEHR group we calculated positive predictive values (PPV) based on 

how many predicted parent-offspring and siblings met this genetic criteria. Grandparental, 

avuncular and half-siblings are all expected to share ~25% genetic relatedness IBS (pi_hat mean 

0.25, s.d. ± 0.05). We could not distinguish these groups any further, so calculated positive 

predictive values for each group based on how many total pairwise relationships met this criteria 

(n=976).  We did not calculate PPV for cousins, grand-avuncular, great-grandparental, great-

grand-avuncular, first cousin once removed relationships as the numbers of predicted 

relationships per group were low (n≤10). Finally, as negative control, we compared predicted 
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spousal relationships with low or no evidence of IBS sharing (pi_hat < 0.05, < 0.1 IBS1 and < 0.1 

IBS2). The BioMe Biobank Program (Institutional Review Board 07–0529) operates under a 

Mount Sinai Institutional Review Board-approved research protocol. All study participants 

provided written informed consent. 

 

1.2.3. Evaluation using clinical data. As a qualitative validation of all relationship types, 

including distant relationships such as great-grandparent, we calculated age difference between 

all pairs of family relatives and stratified it by relationship type. We compared the identified age 

differences to what would be expected in a real family structure. For example, great-grandparents 

should be much older than their great-grandchildren.  

 

2. Phenotyping in the EHR 

 

We used clinical pathology reports (e.g., laboratory tests such as hemoglobin A1c which is 

primarily used to measure the three-month average glucose concentration in plasma) as 

quantitative traits and diagnosis billing codes (ICD codes) as dichotomous traits. We extracted the 

most commonly performed laboratory tests and mapped them to LOINC codes so that they could 

be matched between institutions. Each patient may have multiple laboratory reports over time. To 

extract a single phenotype value, we collapsed all reports for each patient into a single value 

using the mean. This mean represents the average value for the laboratory report for the patient. 

For example, a patient's mean blood glucose value over their lifetime. 

For dichotomous traits, we used any diagnosis billing code that was used for at least 1,000 

distinct patients. Any patient with evidence of that code in their medical record history was 

considered a "case." For ICD-9 codes, controls were chosen as any patient that did not have that 

diagnosis nor any diagnosis that shared an ancestor according to the Clinical Classifications 

Software (CCS). This tool was developed by the Agency for Healthcare Research and Quality 
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(AHRQ). CCS is composed of diagnoses and procedures organized in two related classification 

systems. In this study, we only used the diagnoses classifications. The single-level system 

consists of 285 mutually-exclusive diagnosis categories. It enables researchers to map any of the 

3,824 ICD-9-CM diagnosis codes into one of the 285 CCS categories. CCS also has a multi-level 

system composed of 4 levels representing a hierarchy of the 285 categories. The first level is 

broken into 18 categories. To define a control group, we linked the ICD9 codes associated with a 

phenotype of interest to their CCS categories using the top-level hierarchical categories. We also 

generated a table associating each patient to CCS categories from their diagnosis. Once this 

mapping was done, each phenotype was associated with one or multiple distinct CCS categories. 

We matched the CCS categories in the multi-level system to identify the first level parent 

category. We considered these top-level categories as our exclusion criteria: the control cohort for 

this phenotype should have no mention of any CCS under these categories in its medical records. 

For example, the controls for atrial fibrillation will exclude patients with cardiovascular diseases. 

For conditions recorded using ICD-10 codes, we use the hierarchy from ICD-10 to identify 

patients for the control group. Patients that did not have the same ICD-10 code as diagnosis nor 

any diagnosis that shared an ancestor code were considered controls.  

We semi-manually curated a set of 85 phenotypes to use for training and testing the 

SOLARStrap algorithm (See Methods 3.3). For these 85 phenotypes, we grouped closely related 

diagnoses codes together to increase the total number of patients (Table S5).  

 

3. Estimation of heritability from the Electronic Health Records 

 

3.1. Rationale 

 

The primary and most significant challenge when using traits defined from an observational 

resource, like the electronic health records (EHR), is the lack of ascertainment. In a heritability 
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study, the phenotype of each study participate is, ideally, carefully evaluated and quantified. This 

is infeasible, however, when the cohort contains millions of patients with thousands of 

phenotypes. The differential probability that a given individual will be phenotyped for a study 

trait is the ascertainment bias. The bias may depend on many latent factors, including the trait 

being studied, the trait status of relatives, the proximity to the hospital, and an individual's 

ethnicity and cultural identification, among others. The consequence of this uncontrolled 

ascertainment bias is that heritability estimates will be highly dependent on the particular 

individuals in the study cohort. We hypothesized that repeated subsampling would be robust to 

biases introduced by extremely different ascertainment between families. We define the 

observational heritability, or ho
2, as the average of the statistically significant sample estimates 

(using median). For a given trait, the procedure, which we call SOLARStrap, involves sampling 

families, running SOLAR to estimate sample heritability, and rejecting or accepting the estimate 

based on a set of quality control criteria. Each step is detailed below. 

 

3.2. SOLARStrap Protocol 

 

3.2.1. Building pedigree files. Of the 223,307 families at Columbia, there were 6,894 that 

contained conflicting relationships -- where two individuals were inferred to have two different 

relationships. At Cornell 3,258 families out of 155,811 and at Mount Sinai 25,438 families out of 

187,473 contained conflicts. These families were excluded from the heritability studies. In some 

cases, more than one mother or father is annotated for an individual. This could be because of 

duplicate patient records or errors in the EHR relationship extraction. We resolve these issues by 

choosing the mother or father that has more relationships in the family. The other relationship is 

discarded. We then constructed a master pedigree file for each site. To construct this pedigree 

file, we iterate through each member of each family. For each individual, we will either know the 

mother and father from the EHR-derived relationships or not. If not known, then a new identifier 
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is created to represent the parent. At this point, we iterate through all other family members and 

record the relationships between the new individual and each family member. We repeat this 

process until the entire pedigree file is created. The master pedigree files contain 1,404,671, 

949,440 and 863,340 individuals for Columbia, Cornell, and Mount Sinai, respectively. 

 

3.2.1. Sampling Families. The number of families that are sampled combined with the prevalence 

of the trait defines the power of the heritability analysis. A smaller heritability can be detected 

with larger sample sizes.  As the sample size increases towards the total number of available 

families the variance in heritability will decrease, but the estimate will be less robust to bias 

(Figure 3). This is because we are sampling without replacement. Based on our simulation studies 

we used sample sizes of 15 and 20% of the total number of families with at least one case. For 

those estimates that did not pass our quality control criteria at this level, we increased the number 

of families sampled to 45% The maximum sample size is defined by the limitations of SOLAR 

which can only handle a maximum of 32,000 individuals per pedigree file. For each sample size, 

we perform 200 samplings. For each of these, we build a custom pedigree and phenotype files 

and run SOLAR to estimate the heritability. We then aggregate the results and report the median 

heritability with the 95% confidence interval. 

 

3.2.2. Sample pedigree files. For each sampling, a set of N families is selected. To construct the 

sample pedigree file, we identify all lines from the master pedigree files that correspond to these 

families and create a new file from this subset. 

 

3.2.3. Sample phenotype files. Once the pedigree file is created, we iterate over every individual 

in the pedigree and use the reference trait data and demographic data to enter the phenotype status 

and age of the patient. If no phenotype data are available for the individual, we enter it as 

missing. For dichotomous traits, the trait values are either 0 (absence), 1 (presence), or missing 
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and a "proband" is randomly assigned by selected a single individual from each family that has 

the trait. See "Phenotyping in the EHR" for a description of how these traits are assigned. For 

quantitative traits, we enter the quantitative value or missing.  

 

3.2.2. Running SOLAR. We use SOLAR to estimate both quantitative and dichotomous trait 

heritability using a mixed linear model.  In both cases, sex and age are modeled as covariates. 

After the pedigree and phenotype files are loaded the heritability is estimated with the `polygenic 

-screen` command. We used the tdist command in SOLAR to adjust quantitative traits that are not 

normally distributed. For dichotomous traits one "proband" is chosen at random for each family. 

SOLAR will automatically detect the presence of a dichotomous trait and convert the estimate 

from the observed scale to the liability scale. The heritability, error on the heritability, and the p-

value are saved from each run for later analysis and aggregation. To investigate the relative 

contribution of the environment to the studied phenotype, we used SOLAR to compute household 

effects. For this analysis, we assigned the mother ID as the household ID.  

 

3.2.3. Quality Control of SOLAR heritability solutions. SOLAR does not converge on a solution 

for heritability for all samples. Errors in the pedigree or in the ascertainment of phenotypes are 

the most likely causes for these failures. First, we reject any runs of SOLAR that result in no 

solution for the heritability. We then consider two additional criteria that must be met for a 

solution to be considered legitimate: (i) edge epsilon (∊e), any estimate within ∊e of 1 or 0 is 

rejected; and (ii) noise epsilon (∊n), any estimate with implausibly low error is rejected (h2 error 

is less than ∊n of the h2 estimate). These hyperparameters are set using simulated heritability 

data. 

POSA. After filtering the SOLAR solutions for the basic criteria, we define an additional 

quality control metric called the Proportion Of Significant Attempts, or POSA. POSA is defined 
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as the number of solutions with a p value less than 𝛼POSA divided by the total number of 

converged solutions (a.k.a. attempts). The POSA is important because it is closely related to the 

power of the analysis. A fully powered analysis will have a POSA of 1, meaning that all 

converged estimates are statistically significant. A POSA of 0.5 means that only half of the 

converged estimates are statistically significant. When the families were sampled, the observed 

heritability was large enough to be detected with p < 𝛼POSA half of the time. Or, in other words, 

we were powered to detect a heritability in 50% of samplings. We show that the higher the 

POSA, the more accurate the heritability estimates are (Figure 3I). We chose a minimum POSA 

score, POSAlower and the 𝛼POSA using simulations. 

 

3.2.4. Aggregation of sampling results (computing ho
2). For each sampling that passes quality 

control and meets the minimum POSA score, we compute the ho
2 as the median. The median ho

2 

corresponds to a single run of SOLAR that has passed all quality control filters. We used the 95% 

confidence interval as the error of the ho
2. We found that this error is closely related to the 

standard error reported by SOLAR (Figure 3). All raw heritability estimates that pass the initial 

quality control are made publicly available for reanalysis. 

 

3.3. Preparation of data for analysis on external computing clusters 

 

Due to the high number of heritability estimates that need to be computed, external 

computing resources are used: The Open Science Grid (OSG) and Amazon Web Services (AWS). 

The Open Science Grid (OSG) is a massive computing resource funded by the Department of 

Energy and the National Science Foundation.  The OSG is comprised of over 100 individual sites 

throughout the United States, primarily located at universities and national laboratories.  The sites 

contain anywhere from hundreds to tens of thousands of CPU cores available for scientific 

research(35, 36). AWS is used to supplement this resource, which makes available on-demand 
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compute instances with high-performance capacity. Per institutional requirements, no protected 

health information or personally identifying information can be transferred to systems outside of 

our institutional networks. To leverage these resources for our computing task, we prepared a data 

subset according to the Safe Harbor guidance provided by the U.S. Department of Health and 

Human Services (http://www.hhs.gov/hipaa/for-professionals/privacy/special-topics/de-

identification/index.html). Here is a point-by-point account of how we processed the data for Safe 

Harbor for each of the 18 identifiers: (A) we removed first, middle, and last names for all 

patients, (B) all patient address information is removed, (C) all dates are removed and all ages 

over 89 are coded as “90”, (D) telephone numbers and (E) fax numbers are removed, (F) there are 

no email addresses in our subset of the clinical data, (G) there are no social security numbers in 

our subset of the clinical data, (H) medical record numbers are mapped to a 10 digit random 

number and the mapping is stored on a limited access PHI-certified server within the institutional 

firewall and will never be made available, (I) there are no health plan beneficiary numbers in our 

data subset, (J) there are no account numbers in our data subset, (K) there are no certificate or 

license numbers, (L) there are no vehicle numbers or serial numbers in our data subset, (M) there 

are no device identifiers or serial numbers, (N) there are no URLs in our data subset, (O) there are 

no IP addresses in our data subset, (P) there are no biometric identifiers in our data subset, (Q) 

there are no full-face or comparable images in our data subset, (R) there are no other uniquely 

identifying characteristics or numbers. All data were transferred using secure file transfer 

protocols using encryption and were destroyed immediately after retrieval of the results.  

 

3.4. Validation of accuracy and robustness of SOLARStrap using Simulated Traits 

 

The scripts and data used in the following simulations are available publicly at 

https://github.com/tatonetti-lab/h2o. 
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3.4.1. Simulation of quantitative and dichotomous traits. We constructed a set of 4,195 families 

containing 14,690 individuals chosen from the families extracted from the EHR using RIFTEHR. 

Relationships and pedigree structures are heterogeneous across these families. We used the simqtl 

command from SOLAR to simulate quantitative traits with heritability values of 5%, 10%, ..., 

90%, and 95% for this pedigree. Traits were simulated for 19 different heritability values in total. 

To generate quantitative traits, a threshold for the quantitative value was chosen for each of the 

19 simulations so that the prevalence of the dichotomous, or binary trait, was 15%. The result of 

each simulation was a phenotype file (.phn) containing the family id, the individual id, and the 

quantitative or binary trait value. 

 

3.4.2. Evaluation of simulated traits. We evaluated the quantitative and dichotomous traits by 

running SOLAR using the simulated phenotype files for each of the 19 different values for 

heritability. We summarize performance using the r-squared and run a test of significance. 

 

3.4.3. Creating trait files for SOLARStrap. SOLARStrap is designed to use trait files that are 

similar to the phenotype files used by SOLAR but can contain more than one type of trait and 

more than 32,000 individuals (SOLAR's limit). We used a python script to combine the 19 

heritability estimates into a single trait file.  

 

3.4.4. Evaluation of the accuracy of SOLARStrap on quantitative traits. We ran SOLARStrap on 

each of the 19 simulated datasets. We repeated these runs using a different sampling size 

(argument nfam in SOLARStrap) between 100 and 700 increasing by 100. We selected the 

largest sample size (nfam=700) and evaluated the accuracy of SOLARStrap using r-squared and 

tested significance using regression analysis. 
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3.4.5. Evaluation of the accuracy of SOLARStrap on dichotomous traits. There are two scenarios 

when working with dichotomous traits. Either (1) the cases and controls are equally known. 

Meaning that each individual in the pedigree can be assigned to either being a case or control or 

(2) the cases are higher confidence than the controls. This latter case more closely resembles the 

scenario present in the electronic health records. Documentation of a disease in the EHR can be 

very indicative of the patient having the disease, but the absence of this documentation does not 

mean the patient does not have the disease. We evaluated the accuracy of SOLARStrap in both 

cases. For the former, we included all individuals in the pedigree, and for the latter, we excluded 

any families where there were no cases. In the latter case, we must also then assign a proband so 

that the estimate of heritability is not biased. We did this by randomly selected a single individual 

in each family as the "proband." 

 

3.4.6. Evaluation of the robustness of SOLAR and SOLARStrap to missing data. To evaluate the 

robustness of SOLAR and SOLARStrap to missing data, we chose a single simulated trait 

(h2=50%) and randomly changed individual phenotypes to NA. We evaluated removing 5%, 

10%, ..., 55%, and 60% of the phenotype data. 

 

3.4.7. Evaluation of the robustness of SOLAR and SOLARStrap to biased data (non-random 

missingness). To evaluate the robustness of SOLAR and SOLARStrap to biases, specifically non-

random missingness, we used a beta distribution to assign a probability to each family of data 

being removed. By varying the beta distribution, we can control the amount of bias being 

introduced; higher beta values skew the distribution toward more extremes. We simulated non-

random missingness using beta values of 0.001, 0.01, 0.1, 1.0, 10.0, and 100.0.  

 

3.4.8. Evaluation of other measures of robustness and accuracy. Using the simulation results, we 

evaluated the effect of increasing the sample size (or the number of families being sampled in 
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each iteration when running SOLARStrap). We hypothesize that as the number of families 

approaches the number of available families the heritability estimate of SOLARStrap will 

converge to the heritability estimate of SOLAR. We expect that the number of families sampled 

would not have an effect on the heritability estimate produced by SOLAR or SOLARStrap. We 

evaluated this relationship using linear regression of the simulation results. One of the primary 

quality control metrics for SOLARStrap is the Proportion of Significant Attempts (or POSA). We 

evaluated the relationship between the POSA score (which ranges from 0 to 1) and the accuracy 

of the heritability estimates produced. 

 

4. Preparation of clinical data for release 

Due to institutional restrictions, we cannot release the exact data as it was used in our 

analysis. However, we are sensitive to issues regarding reproducibility and replicability. 

Therefore, we have modified the dataset according to the rules of Safe Harbor as provided by the 

U.S. Department of Health and Human Services. The processing of the data for release was 

performed as described in section 3.4. However, in this case, we took three additional precautions 

beyond what is required for Safe Harbor since these data will be made completely public. First, 

we do not release data for any conditions where there are less than 100 individuals. Second, we 

do not release data for families containing more than five members. This will protect against 

identification through unique familial relationships situations. Third, we generate a new random 

map of patient identifiers for every individual trait. This will protect against the identification of 

an individual by looking for unique combinations of diseases. Unfortunately, this also will 

preclude the possibility of comorbidity analysis. Even with these additional limitations, our 

dataset constitutes one of the largest public releases of clinical data in history. All aggregate data 

and their corresponding statistics are released without obfuscation.  

 

5. Computational and statistical software 
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Statistical analysis, data preparation, and figure creation were performed using Python 2.7. 

The python system environment is described fully in the supplemental materials. Relationship 

inferences were implemented in Julia 0.4.3. All correlations are reported as Pearson correlation 

coefficients unless otherwise noted. All code for RIFTEHR and SOLARStrap is available on the 

supporting website: http://riftehr.tatonettilab.org/. 

 

6. Literature review  

For validation purposes, we compared our heritability estimates to the ones reported in the 

most recent meta-analysis of twin correlations and heritability (MaTCH) (7). Using the ICD-10 

hierarchy, we grouped our ICD codes to match the main chapters and subchapters reported in the 

MaTCH database. Since the meta-analysis grouped all traits into higher level traits, losing a lot of 

granularity, we also performed a literature review on heritability estimates on 128 traits. We 

started by analyzing studies that were included in the table available at 

http://www.snpedia.com/index.php/Heritability (accessed on March 2016). We then downloaded 

all papers we had access to and extracted the described trait with the respective heritability 

estimates as well as the confidence intervals, when available.  
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Fig. S1. SOLAR error versus SOLARStrap variance. The error estimate from SOLAR is 

significantly correlated to the sampling variance of the heritability estimates (r=0.63, p=3.3e-10).  
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Table S1. Relationships by degree. 

 

  

Degree of relationship Relationship N Columbia N Cornell N Mount Sinai

First
Child 482,308 298,136 252,584
Parent 482,308 298,136 252,584
Sibling 424,242 218,378 293,272

Second
Aunt/Uncle 185,822 65,410 75,404
Nephew/Niece 185,822 65,410 75,404
Grandparent 117,139 47,488 46,313
Grandchild 117,139 47,488 46,313

Third

Cousin 148,806 37,370 27,994
Grandaunt/Granduncle 96,675 31,764 36,069
Grandnephew/Grandniece 96,675 31,764 36,069
Great-grandchild 45,053 18,407 18,402
Great-grandparent 45,053 18,407 18,402

Fourth

First cousin once removed 94,404 19,596 19,914
Great-grandaunt/Great-granduncle 42,594 13,664 12,945
Great-grandnephew/Great-grandniece 42,594 13,664 12,945
Great-great-grandchild 17,854 7,531 6,348
Great-great-grandparent 17,854 7,531 6,348

Other
Child-in-law 0 278 0

     None Parent-in-law 0 278 0
Spouse 172,158 127,192 571,250
Aunt/Uncle/Aunt-in-law/Uncle-in-law 13,220 5,234 45,950

     Unknown

Child/Child-in-law 52,186 24,733 62,804
Child/Nephew/Niece 31,818 8,078 96,925
Grandaunt/Granduncle/Grandaunt-in-law/Granduncle-in-law 12,035 4,278 36,242
Grandchild/Grandchild-in-law 12,876 4,578 32,781
Grandnephew/Grandniece/Grandnephew-in-law/Grandniece-in-law 12,035 4,278 36,242
Grandparent/Grandparent-in-law 12,876 4,578 32,781
Great-grandchild/Great-grandchild-in-law 5,799 2,346 18,343
Great-grandparent/Great-grandparent-in-law 5,799 2,346 18,343
Nephew/Niece/Nephew-in-law/Niece-in-law 13,220 5,234 45,950
Parent/Aunt/Uncle 31,818 8,078 96,925
Parent/Parent-in-law 52,186 24,733 62,804
Sibling/Cousin 41,270 9,142 88,956
Sibling/Sibling-in-law 132,742 59,232 138,166

�1
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Table S2. Performance by number of paths. 

 

  

Columbia Cornell

N of Paths True Positive False Positive PPV True Positive False Positive PPV

1 4340 1021 0.8096 2979 391 0.884

2 3911 355 0.9168 4114 95 0.9774

3 2438 55 0.9779 4753 53 0.989

4 2696 89 0.968 2089 63 0.9707

5 3075 16 0.9948 4219 29 0.9932

6 5840 30 0.9949 10170 19 0.9981

7 3892 10 0.9974 4100 12 0.9971

8 3105 13 0.9958 1739 19 0.9892

9 2575 6 0.9977 1451 3 0.9979

10 2460 8 0.9968 1217 5 0.9959

11 857 1 0.9988 532 3 0.9944

12 308 0 1 156 0 1

13 34 0 1 29 0 1

14 12 0 1 6 0 1
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Table S3. Performance by matched path. 
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Table S4. Relationship inference rules.

  

Person 1-2 Person 2-3 Person 1-3
Parent Aunt/Uncle Grandaunt/Granduncle
Parent Child Sibling
Parent Grandchild Child/Nephew/Niece
Parent Grandparent Great-grandparent
Parent Nephew/Niece Cousin
Parent Parent Grandparent
Parent Sibling Aunt/Uncle
Child Aunt/Uncle Sibling/Sibling-in-law
Child Child Grandchild
Child Grandchild Great-grandchild
Child Grandparent Parent/Parent-in-law
Child Nephew/Niece Grandchild/Grandchild-in-law
Child Parent Spouse
Child Sibling Child
Sibling Aunt/Uncle Aunt/Uncle
Sibling Child Nephew/Niece
Sibling Grandchild Grandnephew/Grandniece
Sibling Grandparent Grandparent
Sibling Nephew/Niece Child/Nephew/Niece
Sibling Parent Parent
Sibling Sibling Sibling
Aunt/Uncle Aunt/Uncle Grandaunt/Granduncle/Grandaunt-in-law/Granduncle-in-law
Aunt/Uncle Child Cousin
Aunt/Uncle Grandchild First cousin once removed
Aunt/Uncle Grandparent Great-grandparent/Great-grandparent-in-law
Aunt/Uncle Nephew/Niece Sibling/Cousin
Aunt/Uncle Parent Grandparent/Grandparent-in-law
Aunt/Uncle Sibling Parent/Aunt/Uncle
Grandchild Aunt/Uncle Child/Child-in-law
Grandchild Child Great-grandchild
Grandchild Grandchild Great-great-grandchild
Grandchild Grandparent Spouse
Grandchild Nephew/Niece Great-grandchild/Great-grandchild-in-law
Grandchild Parent Child/Child-in-law
Grandchild Sibling Grandchild
Grandparent Aunt/Uncle Great-grandaunt/Great-granduncle
Grandparent Child Parent/Aunt/Uncle
Grandparent Grandchild Sibling/Cousin
Grandparent Grandparent Great-great-grandparent
Grandparent Nephew/Niece First cousin once removed
Grandparent Parent Great-grandparent
Grandparent Sibling Grandaunt/Granduncle
Nephew/Niece Aunt/Uncle Sibling/Sibling-in-law
Nephew/Niece Child Grandnephew/Grandniece
Nephew/Niece Grandchild Great-grandnephew/Great-grandniece
Nephew/Niece Grandparent Parent/Parent-in-law
Nephew/Niece Nephew/Niece Grandnephew/Grandniece/Grandnephew-in-law/Grandniece-in-law
Nephew/Niece Parent Sibling/Sibling-in-law
Nephew/Niece Sibling Nephew/Niece/Nephew-in-law/Niece-in-law
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Table S5. 85 semi-manually created phenotypes. 
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