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Supplementary	Figures		83 

	84 

	85 

	86 

	87 

Supplemental	Figure	S1.	Edit	distance	of	lost	human	reads.	88 

Unmapped	reads	were	remapped	to	the	human	references	using	Megablast.	Edit	distance	89 

was	 calculated	 as	 the	 minimum	 number	 of	 operations	 required	 to	 transform	 a	 read	90 

sequence	 into	 the	 corresponding	 reference	 subsequence.	 Reads	 are	 grouped	 by	 edit	91 

distance	 with	 the	 transcriptome	 or	 the	 genome	 reference.	 The	 percentages	 are	 the	92 

averages	across	10641	samples.		93 
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	95 

Supplemental	 Figure	 S2.	 Profile	 of	 repeat	 elements	 across	 based	 on	 repeat	 sequences	96 

inferred	from	mapped	and	unmapped	reads	(lost	repeat	reads).		97 

ROP	identifies	and	categorizes	repetitive	sequences	among	the	mapped	and	unmapped	98 

reads.	Mapped	reads	were	categorized	based	on	 the	overlap	with	 the	repeat	 instances	99 

prepared	from	RepeatMasker	annotation	(Repeatmasker	v3.3,	Repeat	Library	20120124).		100 

Lost	 repeat	 reads	 are	 unmapped	 RNA-Seq	 reads	 aligned	 onto	 the	 reference	 repeat	101 

sequences	 (prepared	 from	Repbase	 v20.07).	 	 The	 percentages	 are	 the	 averages	 across	102 

10641	samples.		103 

	104 

	105 

	106 
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	107 

	108 

Supplemental	Figure	S3.	Profile	of	DNA	repeats	based	on	repeat	sequences	inferred	from	109 

mapped	and	unmapped	reads	(lost	repeat	reads).	110 

ROP	 identifies	 and	 categorizes	 DNA	 repetitive	 sequences	 among	 the	 mapped	 and	111 

unmapped	reads.	Mapped	reads	were	categorized	based	on	the	overlap	with	the	repeat	112 

instances	prepared	 from	RepeatMasker	annotation	 (Repeatmasker	 v3.3,	Repeat	 Library	113 

20120124).		Lost	repeat	reads	are	unmapped	RNA-Seq	reads	aligned	onto	the	reference	114 

repeat	 sequences	 (prepared	 from	Repbase	 v20.07).	 	 The	percentages	 are	 the	averages	115 

across	10641	samples.		116 
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	118 

	119 

Supplemental	 Figure	 S4.	 Profile	 of	 SVA	 retrotransposons	 based	 on	 repeat	 sequences	120 

inferred	 from	 mapped	 and	 unmapped	 reads	 (lost	 repeat	 reads).	 ROP	 identifies	 and	121 

categorizes	 SVA	 retrotransposons	 sequences	 among	 the	mapped	 and	 unmapped	 reads.	122 

Mapped	reads	were	categorized	based	on	the	overlap	with	the	repeat	instances	prepared	123 

from	 RepeatMasker	 annotation	 (Repeatmasker	 v3.3,	 Repeat	 Library	 20120124).	 	 Lost	124 

repeat	reads	are	unmapped	RNA-Seq	reads	aligned	onto	the	reference	repeat	sequences	125 

(prepared	from	Repbase	v20.07).		The	percentages	are	the	averages	across	10641	samples.		126 
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	128 

Supplemental	 Figure	S5.	Profile	of	 repeat	elements	across	poly(A)	enrichment	and	 ribo-129 

depletion	 libraries.	 ROP	 identifies	 and	 categorizes	 repetitive	 sequences	 among	 the	130 

mapped	and	unmapped	 reads.	RNA-Seq	samples	were	prepared	by	poly(A)	enrichment	131 

protocol	(n=38)	and	ribo-depletion	protocol	(n=49).	Mapped	reads	were	categorized	based	132 

on	 the	 overlap	 with	 the	 repeat	 instances	 prepared	 from	 RepeatMasker	 annotation	133 

(Repeatmasker	v3.3,	Repeat	Library	20120124).		Lost	repeat	reads	are	unmapped	RNA-Seq	134 

reads	aligned	onto	the	reference	repeat	sequences	(prepared	from	Repbase	v20.07).		135 
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	138 

	139 

	140 

Supplemental	Figure	6.		Average	number	of	SVA-F	reads	across	GTEx	tissues.		ROP	identifies	141 

and	 categorizes	 SVA	 retrotransposons	 sequences	 among	 the	 mapped	 and	 unmapped	142 

reads.	Mapped	reads	were	categorized	based	on	 the	overlap	with	 the	repeat	 instances	143 

prepared	from	RepeatMasker	annotation	(Repeatmasker	v3.3,	Repeat	Library	20120124).		144 

Lost	 repeat	 reads	 are	 unmapped	 RNA-Seq	 reads	 aligned	 onto	 the	 reference	 repeat	145 

sequences	 (prepared	 from	 Repbase	 v20.07).	 Among	 the	 GTEx	 tissues,	 testis	 showed	146 

significantly	higher	expression	of	SVA	F	retrotransposons	compared	to	other	tissues	(𝐩 =147 

𝟐. 𝟒𝟔×𝟏𝟎*𝟑𝟑)	148 
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	149 

	150 

Supplemental	 Figure	7.	Co-expression	of	Alu	 and	 L1	elements	across	GTEx	 tissues.	ROP	151 

identifies	and	categorizes	repetitive	sequences	among	the	mapped	and	unmapped	reads.	152 

Mapped	reads	were	categorized	based	on	the	overlap	with	the	repeat	instances	prepared	153 

from	 RepeatMasker	 annotation	 (Repeatmasker	 v3.3,	 Repeat	 Library	 20120124).	 	 Lost	154 

repeat	reads	are	unmapped	RNA-Seq	reads	aligned	onto	the	reference	repeat	sequences	155 

(prepared	from	Repbase	v20.07).		156 

	157 
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Supplemental	Figure	S8.	Distribution	of	hyper-edited	reads.		161 

A.	Hyper-editing	identified	in	the	in-house	data.	Results	showed	that	96%	of	the	reads	were	162 

A-to-G,	 indicating	a	high	 level	of	 specificity	 for	 the	hyper-editing	screen.	The	1,613,213	163 

detected	A-to-G	reads	contain	10,666,458	editing	events	(3,157,685	unique	editing-sites).	164 

B.	Hyper-editing	identified	in	the	GTEx	RNA-Seq	data.	Results	showed	that	80%	of	the	reads	165 

were	 A-to-G,	 indicating	 a	 high	 level	 of	 specificity	 for	 the	 hyper-editing	 screen.	 The	166 

201,676,069	 detected	A-to-G	 reads	 contain	 1,130,591,911	 editing	 events	 (690,386,562	167 

unique	editing-sites).	168 
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Supplemental	Figure	S9.	The	sequence	context	of	the	Figure	S8.	The	sequence	context	of	175 

the	detected	hyper-edited	A-to-G	sites.		176 

The	 sequence	 near	 the	 detected	 hyper-editing	 sites	 is	 depleted	 of	 Gs	 upstream	 and	177 

enriched	with	Gs	downstream,	in	agreement	with	previously	known	data	about	the	ADAR	178 

motif.	The	bars	correspond	to	the	fraction	of	editing	sites	with	each	type	of	nucleotide	one	179 

base	upstream	and	downstream	of	the	site.	Results	are	shown	for	sites	detected	in-house	180 

RNA-Seq	data	(A)	and	GTEx	RNA-Seq	data	(B)	using	the	hyper-editing	pipeline	and	human	181 

editing-sites	from	the	RADAR	database.			182 
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	184 

	185 
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	186 

Supplemental	Figure	S10.	Distribution	of	non-co-linear	(NCL)	events	across	across	10641	187 

samples.	.	188 

Reads	 arising	 from	 trans-splicing,	 gene	 fusion	 and	 circRNA	 events	 are	 captured	 by	 a	189 

TopHat-Fusion	 and	CIRCexplorer2	 tools.	 Trans-splicing	 events	 are	 identified	 from	 reads	190 

that	are	spliced	distantly	on	the	same	chromosome.	Gene	fusion	events	are	identified	from	191 

reads	spliced	across	different	chromosomes.	CircRNAs	are	identified	from	reads	spliced	in	192 

a	head-to-tail	configuration.	193 
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	194 

Supplemental	 Figure	 S11.	 Number	 of	 NCL	 events	 across	 in-house	 tissues	 and	 library	195 

preparation	protocols.		196 

NCL	events	per	sample	are	detected	by	TopHat-Fusion	and	CIRCexplorer	tools.	Samples	197 

were	 prepared	 with	 poly(A)	 selection	 (whole	 blood	 and	 nasal	 epithelium)	 and	 ribo-198 

depletion	 (lung	 epithelium)	 protocols.	 Trans-splicing	 events	 are	 identified	 from	 reads	199 

spliced	distantly	on	the	same	chromosome.	Gene	fusion	events	are	identified	from	reads	200 

spliced	across	different	chromosomes.	201 
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Supplemental	Figure	S12.	Percentage	of	NCL	reads	across	GTEx	tissues	(n=54).	Percentages	212 

are	 calculated	 from	 the	 total	 number	 of	 reads.	 Reads	 arising	 from	 trans-splicing,	 gene	213 

fusion	and	circRNA	events	are	captured	by	a	TopHat-Fusion	and	CIRCexplorer2	tools	and	214 

reported	a	NCL	reads.			215 
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	220 

	221 

	222 

Supplemental	 Figure	 S13.	 An	 example	 of	 coverage	 plot	 of	 EBV	 virus.	 Viral	 reads	 were	223 

obtained	by	ROP	protocol	from	GTEx	RNA-Seq	sample	of	EBV-transformed	lymphoblastoid	224 

cell	lines	(LCLs).			225 
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Supplemental	Figure	S14.	Number	of	VJ	recombinations	across	GTEx	human	tissues	for	IGK	230 

chain.	231 
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Supplemental	Figure	S15.	Number	of	VJ	recombinations	across	GTEx	human	tissues	for	IGL	235 

chain.	236 
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	257 

Supplemental	 Figure	 S16.	 Combinatorial	 diversity	 of	 immunoglobulin	 kappa	 locus	 (IGK)	258 

locus	across	in-house	tissues.		259 

Samples	were	prepared	by	poly(A)	selection	(whole	blood	and	nasal	epithelium)	and	ribo-260 

depletion	 (lung	 epithelium)	 protocols.	 The	 combinatorial	 diversity	 of	 IGK	 locus	 is	261 

determined	 based	 on	 the	 recombinations	 of	 the	 VJ	 gene	 segments.	 Shannon	 entropy	262 

measures	the	alpha	diversity	by	 incorporating	the	total	number	of	VJ	combinations	and	263 

their	 relative	 proportions.	 	 Mean	 alpha	 diversity	 for	 blood	 samples	 was	 4.2,	 for	 nasal	264 

samples,	was	2.5,	and	for	lung,	was	1.0.	265 
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	 		266 

Supplemental	Figure	S17.		Association	between	microbial	load	and	immune	diversity.		267 

(a)	Scatterplot	of	the	viral	load	and	combinatorial	immune	diversity	of	IGK	locus.	Pearson	268 

correlation	coefficient	(r)	and	p	-value	are	reported.	(b)	Scatterplot	of	the	eukaryotic	load	269 

and	combinatorial	immune	diversity	of	IGK	locus.	Pearson	correlation	coefficient	(r)	and	p	270 

-value	 are	 reported.	 (c)	 Scatterplot	 of	 the	 bacterial	 load	 and	 combinatorial	 immune	271 

diversity	of	IGK	locus.	Pearson	correlation	coefficient	(r)	and	p	-value	are	reported.	272 
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	273 

Supplemental	Figure	S18.	Combinatorial	diversity	of	 immunoglobulin	 lambda	locus	(IGL)	274 

locus	differentiates	disease	status.		275 

(a)	 Heat	 map	 depicting	 the	 percentage	 of	 RNA-Seq	 samples	 supporting	 particular	 VJ	276 

combination	 for	 whole	 blood,	 nasal	 epithelium	 of	 healthy	 controls	 and	 asthmatic	277 

individuals.	Each	row	corresponds	to	a	V	gene	and	each	column	corresponds	to	a	J	gene.			278 

(b)	Alpha	diversity	is	measured	using	the	Shannon	entropy	incorporating	the	total	number	279 

of	 VJ	 combinations	 and	 their	 relative	 proportions.	 	 Nasal	 epithelium	 of	 asthmatic	280 

individuals	 exhibits	 decreased	 combinatorial	 diversity	of	 IGK	 locus	 compared	 to	 that	of	281 

healthy	controls	(p-value=5.9x10-3)	(c)	Compositional	similarities	between	the	samples	in	282 

terms	of	gain	or	loss	of	VJ	combinations	of	IGK	locus	are	measured	using	the	Sørensen–283 
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Dice	index	across	pairs	of	samples	from	the	same	group	(Asthma,	Controls)	and	pairs	of	284 

sample	 from	 different	 groups	 (Asthma	 versus	 Controls).	 	 Lower	 level	 of	 similarity	 is	285 

observed	between	nasal	samples	of	the	asthmatic	individuals	compared	to	the	unaffected	286 

controls	(p-value<9.2	x	10-11).		Nasal	samples	of	the	unaffected	controls	are	more	similar	287 

to	each	other	than	to	the	asthmatic	individuals	(p-value<2.3	x	10-6).		288 

	289 

	290 

	291 

	292 

	293 
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Supplemental	 Figure	 S19.	 Combinatorial	 diversity	 of	 T	 cell	 receptor	 beta	 (TCRB)	 locus	294 

differentiates	disease	status.		295 

(a)	Heat	map	depicting	 the	percentage	of	RNA-Seq	 samples	 supporting	of	particular	VJ	296 

combination	 for	 whole	 blood,	 nasal	 epithelium	 of	 healthy	 controls	 and	 of	 asthmatic	297 

individuals.	Each	row	corresponds	to	a	V	gene	and	each	column	corresponds	to	a	J	gene.	298 

(b)	Alpha	diversity	is	measured	using	the	Shannon	entropy	incorporating	the	total	number	299 

of	 VJ	 combinations	 and	 their	 relative	 proportions.	 	 The	 nasal	 epithelium	 of	 asthmatic	300 

individuals	exhibits	a	decrease	in	combinatorial	diversity	of	IGK	locus	compared	to	that	of	301 

healthy	controls	(p-value	=	4.0	x	10-2)	(c)	Compositional	similarities	between	the	samples	302 

in	terms	of	gain	or	loss	of	VJ	combinations	of	IGK	locus	are	measured	using	the	Sørensen–303 

Dice	 index	across	pairs	of	sample	 from	the	same	group	(Asthma,	Controls)	and	pairs	of	304 

sample	 from	 different	 groups	 (Asthma	 versus	 Controls).	 	 Lower	 level	 of	 similarity	 is	305 

observed	between	nasal	samples	of	asthmatic	individuals	compared	to	unaffected	controls	306 

(p-value	<	9.4	x	10-5).		Nasal	samples	of	unaffected	controls	are	more	similar	to	each	other	307 

than	to	the	asthmatic	individuals	(p-value	<	7.4	x	10-4).		308 

	309 

	310 

	311 

	312 

	313 
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	314 

Supplemental	Figure	S20.	Combinatorial	diversity	of	T	cell	receptor	gamma	(TCRG)	locus	315 

differentiates	disease	status.		316 

(a)	Heat	map	depicting	the	percentage	of	RNA-Seq	samples	supporting	of	a	particular	VJ	317 

combination	 for	 whole	 blood,	 nasal	 epithelium	 of	 healthy	 controls	 and	 asthmatic	318 

individuals.	Each	row	corresponds	to	a	V	gene	and	each	column	corresponds	to	a	J	gene.	319 

(b)	Alpha	diversity	is	measured	using	the	Shannon	entropy	incorporating	the	total	number	320 

of	 VJ	 combinations	 and	 their	 relative	 proportions.	 	 Nasal	 epithelium	 of	 asthmatic	321 

individuals	 exhibits	 decreased	 combinatorial	 diversity	of	 IGK	 locus	 compared	 to	 that	of	322 

healthy	controls	(p-value	=	1.2	x	10-2,	ANOVA).	(c)	Compositional	similarities	between	the	323 

samples	in	terms	of	gain	or	loss	of	VJ	combinations	of	IGK	locus	are	measured	using	the	324 
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Sørensen–Dice	index	across	pairs	of	sample	from	the	same	group	(Asthma,	Controls)	and	325 

pairs	of	sample	from	different	groups	(Asthma	versus	Controls).	Lower	level	of	similarity	is	326 

observed	between	nasal	samples	of	asthmatic	individuals	compared	to	unaffected	controls	327 

(p-value	<	1.3	x	10-8,).		Nasal	samples	of	unaffected	controls	are	more	similar	to	each	other	328 

than	to	the	asthmatic	individuals	(p-value	<	8.2	x	10-6).	 329 

	330 

	331 

	332 

	333 

	334 
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	339 

	340 
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Supplemental	Tables	341 

Supplemental	Table	S1.	RNA-Seq	datasets		overview.	in-house	RNA-Seq	data	(n=86)	342 

from	 the	peripheral	blood,	nasal,	 and	 large	airway	epithelium	of	asthmatic	and	control	343 

individuals	(S1);	(2)	multi-tissue	RNA-Seq	data	from	Genotype-Tissue	Expression	(GTEx	v6)	344 

from	 53	 human	 body	 sites	 (Consortium	 &	 others,	 2015)	 (n=8555)	 (S2);	 (3)	 randomly	345 

selected	RNA-Seq	samples	from	the	Sequence	Read	Archive	(SRA)	(n=2000)	(S3).	Unless	346 

otherwise	 noted,	 we	 reported	 percentage	 of	 reads	 averaged	 across	 3	 datasets.	 For	347 

counting	purposes,	the	pairing	information	of	the	reads	is	disregarded,	and	each	read	from	348 

a	pair	is	counted	separately.		349 

	350 

	351 

	352 

Datasets	 S1	 S2	 S3	

Number	of	samples	 87	 8555	 1000	

Read	length		 100bp	 76bp	 25-100bp	

Average	number	of		reads	per	sample,	(million	reads)	 88.8	 54.6	 90.2	

Percentage	of	mapped	reads	(%)	 83.8%	 88.2%	 77.2%	

	353 

	354 

	355 

	356 
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	357 

Supplemental	Table	S2.	Genomic	profile	of	unmapped	reads	reported	for	each	dataset	(S1,	358 

S2,	S3).	Percentage	of	unmapped	reads	for	each	category	is	calculated	as	a	fraction	from	359 

the	 total	 number	of	 reads.	Bars	of	 the	plot	 are	not	 scaled.	 	Human	 reads	 (black	 color)	360 

mapped	 to	 reference	 genome	 and	 transcriptome	 via	 TopHat2.	 (a)	 Low	 quality/low-361 

complexity	 (light	 brown)	 and	 reads	 matching	 rRNA	 repeating	 unit	 (dark	 brown)	 were	362 

excluded.	 (b)	 	 Hyper-edited	 reads	 are	 captured	 by	 hyper-editing	 pipeline	 proposed	 in	363 

(Porath	et	al.,	2014).	(c)	ROP	identifies	lost	human	reads	(red	color)	from	unmapped	reads	364 

using	a	more	sensitive	alignment.	(d)	ROP	identifies	lost	repeat	sequences	(green	color)	by	365 

mapping	unmapped	reads	onto	the	reference	repeat	sequences.	 (e)	Reads	arising	 from	366 

trans-spicing,	gene	fusion	and	circRNA	events	(orange	color)	are	captured	by	a	TopHat-367 

Fusion	and	CIRCexplorer2	tools.	(f)	IgBlast	is	used	to	identify	reads	spanning	B	and	T	cell		368 

receptor	gene	rearrangement	in	the	variable	domain	(V(D)J	recombinations)	(violet	color).	369 

(g)	Microbial	 reads	 (blue	 color)	 are	 captured	by	mapping	 the	 reads	 onto	 the	microbial	370 

reference	genomes.		371 

	372 

	373 

	374 

	375 

	376 

	377 

	378 
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		 S1	 S2	 S3	 Averaged	across	3	datasets	

Mapped		 83.2%	 88.2%	 77.2%	 82.9%	

Unmapped		 17%	 11.8%	 23%	 17.1%	

Low	quality	reads		 4.8%	 7.0%	 9%	 7.0%	

	rRNA	repeat	 3.8%	 0.1%	 3%	 2.4%	

Lost	human	reads	 6.0%	 3.7%	 8%	 5.7%	

Hyper-edited	reads	 0.02%	 0.1%	 0.1%	 0.1%	

Lost	repeat	reads	 0.3%	 0.1%	 0.1%	 0.2%	

NCL	RNA	 0.3%	 0.3%	 0.4%	 0.3%	

V(D)J	recombinations	 0.01%	 0.03%	 0.01%	 0.02%	

Microbial	reads	 1.5%	 0.5%	 2.3%	 1.4%	

Unaccounted	reads	 0.18%	 0.09%	 0.10%	 0.12%	

	379 
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Supplemental	Table	S3.	Relative	genomic	abundance	of	microbial	taxa	at	different	levels	384 

of	 taxonomic	 classification	 after	 removal	 of	 reads	with	 human	 origin	 (average	 over	 all	385 

samples	of	tissues).		386 

Taxonomic	 classification	 is	 performed	 using	 MetaPhlAn2,	 which	 is	 able	 to	 assign	 the	387 

filtered	unmapped	reads	to	the	microbial	marker	genes.	388 

	389 

Tissue Whole	blood Nasal	epithelium Lung	epithelium
N	 19 19 49
Library	preparation	method poly(A)	enrichment	 poly(A)	enrichment	 ribo-depletion

Proteobacteria 0.0% 0.9% 100.0%
Actinobacteria 0.0% 99.1% 0.0%

Betaproteobacteria 0.0% 0.5% 86.7%
Gammaproteobacteria 0.0% 0.5% 13.3%

Actinobacteria 0.0% 98.9% 0.0%

Burkholderiales 0.0% 0.0% 87.0%
Enterobacteriales 0.0% 0.0% 12.0%
Actinomycetales 0.0% 99.5% 0.0%
Pseudomonadales 0.0% 0.5% 1.0%

Supplementary	Table	4.		Relative	genomic	abundance	of	microbial	taxa	at	different	levels	of	taxonomic	
classification	after	removal	of	reads	with	human	origin		(average	over	all	samples	of	the	tissue).	Taxonomic	
classification	is	performed	using	Metaphlan2,	which	is	able	to	assign	the	filtered	unmapped	reads	to	the	microbial	
marker	genes.

Phylum

Class

Order
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Supplementary	Table	S4.	Parameters	for	each	RNA-Seq	aligner	for	default,	sensitive,	and	390 

very	sensitive	settings.		391 

Sensitive	setting	has	more	relaxed	parameters	for	filtering.		392 

	 Default	 Sensitive	 Very	Sensitive	

Topha

t	

-D	 10	 -R	 2	 -N	 0	 -L	 22	 -i	

S,0,2.50	

-D	 15	 -R	 2	 -L	 22	 -i	

S,1,1.15		

-D	 20	 -R	 3	 -N	 0	 -L	 20	 -i	

S,1,0.50	

STAR	 --

seedNoneLociPerWindo

w	 10	 –

outFilterMismatchNmax	

10	 –	 seedPerReadMax	

1000	

--

seedNoneLociPerWindo

w	 15	 --

outFilterMismatchNmax	

15	 --seedPerReadNmax	

1500	

--

seedNoneLociPerWindo

w	 15	 --

outFilterMismatchNmax	

15	 --seedPerReadNmax	

1500	 --twopassMode	

Basic	

	393 

Supplementary	 Table	 S5.	 Average	 mapping	 rate	 for	 different	 aligners	 with	 different	394 

mapping	settings.		395 

The	average	rate	is	noted,	and	the	standard	deviation	is	noted	within	parenthesis.		396 

	 Default/Fast		 Sensitive		 Very	Sensitive	

Tophat	 89.06%	(3.84)	 89.22%	(3.51)	 89.18%	(3.62)	

STAR	 80.86%	(9.22)	 81.70%	(9.25)	 81.74%	(9.35)	

	397 
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Supplemental	Methods	398 

In-house	RNA-Seq	data	399 

Subject	Recruitment	400 

Poly(A)	selected	RNA-Seq	samples	(n=38).	In	this	analysis,	we	used	a	subset	of	Puerto	Rican	401 

Islanders	 recruited	 as	 part	 of	 the	 on-going	Genes-environments	&	Admixture	 in	 Latino	402 

Americans	study	(GALA	 II)	 (Anders,	Pyl,	&	Huber,	2014;	Jin,	Tam,	Paniagua,	&	Hammell,	403 

2015;	Melé	et	al.,	2015;	Tarailo-Graovac	&	Chen,	2009).	We	classified	asthma	by	physician	404 

diagnosis	and	the	presence	of	at	least	two	symptoms	(wheezing,	coughing,	or	shortness	of	405 

breath)	during	2	years	prior	to	the	enrollment.	All	study	subjects	had	no	history	of	smoking	406 

or	recent	(within	4	weeks	of	recruitment)	nasal	steroid	use.	The	study	was	approved	by	407 

local	institutional	review	boards,	and	written	assent/consent	was	received	from	all	subjects	408 

and,	if	applicable,	parents	of	subjects	under	the	age	of	legal	consent.		409 

Ribo-Zero	RNA-Seq	samples	(n=49).		Via	community-based	advertising,	we	recruited	adults	410 

aged	 18-70	 years	 to	 participate	 in	 a	 study,	 in	 which	 they	 underwent	 research	411 

bronchoscopy.	 	The	study	was	approved	by	the	University	of	California	at	San	Francisco	412 

Committee	on	Human	Research.	Written	informed	consent	was	obtained	from	all	subjects,	413 

and	 all	 studies	 were	 performed	 in	 accordance	 with	 the	 principles	 expressed	 in	 the	414 

Declaration	of	Helsinki.	415 

	416 
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Sample	Collection	417 

Poly(A)	selected	RNA-Seq	samples	(n=38).		Methods	for	nasal	epithelial	cell	collection	and	418 

processing	 are	 described	 in	 Poole	 et	 al.	 (Tarailo-Graovac	 &	 Chen,	 2009).	 Briefly,	 nasal	419 

epithelial	 cells	were	 collected	 from	behind	 the	 inferior	 turbinate	with	 a	 cytology	brush	420 

using	a	nasal	illuminator.	The	collected	brush	was	submerged	in	a	mixture	of	RLT	Plus	lysis	421 

buffer	and	beta-mercaptoethanol,	and	frozen	at	-80	C	until	extraction	was	performed	with	422 

a	Qiagen	Allprep	 RNA/DNA	 extraction	 kit	 (Qiagen,	 Valencia,	 CA).	We	 collected	 10ml	 of	423 

whole	blood	using	PAXgene	RNA	blood	tubes	(PreAnalytiX,	Valencia,	CA)	and	isolated	RNA	424 

using	 PAXgene	 RNA	 blood	 extraction	 kits,	 according	 to	 the	 manufacturers’	 protocol.	425 

Portions	 of	 the	 nasal	 airway	 epithelial	 whole	 transcriptome	 data	 were	 published	 in	 a	426 

previous	manuscript	(Tarailo-Graovac	&	Chen,	2009).	427 

Ribo-Zero	 RNA-Seq	 samples	 (n=49).	 	 	 During	 bronchoscopy	 airway	 epithelial	 brushings,	428 

samples	 were	 obtained	 from	 3rd-4th	 generation	 bronchi.	 RNA	 was	 extracted	 from	 the	429 

epithelial	 brushing	 samples	 using	 the	 Qiagen	 RNeasy	 mini-kit	 (Qiagen,	 Valencia,	 CA),	430 

according	to	manufacturer’s	protocol.			431 

	432 

Whole	Transcriptome	Sequencing	433 

Poly(A)	selected	RNA-Seq	samples	(n=38).	We	constructed	Poly-A	RNA-seq	libraries	using	434 

500	ng	of	blood	and	nasal	airway	epithelial	total	RNA	from	9	atopic	asthmatics	and	10	non-435 

atopic	controls.	Libraries	were	constructed	and	barcoded	with	the	 Illumina	TruSeq	RNA	436 

Sample	Preparation	v2	protocol.	Barcoded	nasal	airway	RNA-seq	libraries	from	each	of	the	437 

19	subjects	were	pooled	and	sequenced	as	2	x	100bp	paired-end	reads	across	two	flow	438 
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cells	of	 an	 Illumina	HiSeq	2000.	Barcoded	blood	RNA-seq	 libraries	 from	each	of	 the	19	439 

subjects	were	pooled	and	sequenced	as	2	x	100bp	paired	end	reads	across	4	lanes	of	an	440 

Illumina	Hiseq	2000	flow	cell.		441 

Ribo-Zero	RNA-Seq	samples	(n=49).		 	We	used	100ng	of	isolated	RNA	from	a	total	of	61	442 

samples	to	construct	ribo-depleted	RNA-seq	libraries	using	the	TruSeq	Stranded	Total	RNA	443 

with	Ribo-Zero	Human/Mouse/Rat	 library	 preparation	 kit,	 per	manufacturer’s	 protocol.	444 

Barcoded	bronchial	epithelial	RNA-seq	 libraries	were	multiplexed	and	sequenced	as	2	x	445 

100bp	paired	end	 reads	on	an	 Illumina	HiSeq	2500.	On	average,	37	million	 reads	were	446 

generated	 per	 sample.	 We	 excluded	 12	 samples	 from	 further	 analyses	 due	 to	 high	447 

ribosomal	 RNA	 read	 counts	 (library	 preparation	 failure),	 leaving	 a	 total	 of	 49	 samples	448 

suitable	for	further	analyses.	449 

	450 

GTEx	RNA-Seq	data	451 

We	used	RNA-Sequencing	data	from	Genotype-Tissue	Expression	study	(GTEx	Consortium	452 

v.6)	 corresponding	 to	 8,555	 samples	 collected	 from	 544	 individuals	 from	 53	 tissues	453 

obtained	from	Genotype-Tissue	Expression	study	(GTEx	v6).	RNA-Seq	data	is	from	Illumina	454 

HiSeq	sequencing	of	75	bp	paired-end	reads.	The	data	was	derived	from	38	solid	organ	455 

tissues,	11	brain	subregions,	whole	blood,	and	three	cell	lines	of	postmortem	donors.	The	456 

collected	 samples	 are	 from	 adults	 matched	 for	 age	 across	 males	 and	 females.	 	 We	457 

downloaded	 the	 mapped	 and	 unmapped	 reads	 in	 BAM	 format	 from	 dbGap	458 

(http://www.ncbi.nlm.nih.gov/gap).	459 

	460 
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SRA	RNA-Seq	data	461 

	462 

Samples	 (n=2000)	were	 randomly	 selected	using	 SQLite	 database	 from	R/Bioconductor	463 

package	 SRAdb	(https://bioconductor.org/packages/release/bioc/html/SRAdb.html).	 We	464 

have	 used	 a	 script	 from	465 

https://github.com/nellore/runs/blob/master/sra/define_and_get_fields_SRA.R	 to	 select	466 

run_accessions	 from	 the	sra	table	 with	platform	 =	 ’ILLUMINA’,	library_strategy	 =	 ’RNA-467 

Seq’,	and	taxon_id	=	9606	(human).		468 

	469 

Workflow	to	categorize	the	mapped	reads	470 

Map	reads	onto	human	genome	and	transcriptome			471 

We	 mapped	 reads	 onto	 the	 human	 transcriptome	 (Ensembl	 GRCh37)	 and	 genome	472 

reference	(Ensembl	hg19)	using	tophat2	(v	2.0.13)	with	the	default	parameters.	Tophat2	473 

was	supplied	with	a	set	of	known	transcripts	(as	a	GTF	formatted	file,	Ensembl	GRCh37)	474 

using	–G	option.		The	mapped	reads	of	each	sample	are	stored	in	a	binary	format	(.bam).			475 

	476 

Categorize	mapped	reads	into	genomic	categories	477 

ROP	categorizes	the	reads	into	genomic	categories	based	on	the	compatibility	of	each	read	478 

from	the	pair	with	the	features	defined	by	Ensembl	(GRCh37)	gene	annotations.	First,	we	479 

determined	CDS,	UTR3,	UTR5	coordinates.	We	downloaded	annotations	 for	CDS,	UTR3,	480 

UTR5	 from	 UCSC	 Genome	 Browser	 (http://genome.ucsc.edu/cgi-bin/hgTables)	 in	 BED	481 
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(browser	extensible	data)	format.	Next,	we	used	gene	annotations	(a	GTF	formatted	file,	482 

Ensembl	GRCh37)	 to	determine	 intron	coordinates	and	 inter-genic	 regions.	We	defined	483 

two	 types	 of	 inter-genic	 regions:	 ‘(proximate)	 inter-genic’	 region	 (1Kb	 from	 the	 gene	484 

boundaries)	and	‘deep	inter-genic’	(beyond	a	proximity	of	1Kb	from	the	gene	boundaries).		485 

	486 

Next,	 we	 checked	 the	 compatibility	 of	 the	 mapped	 reads	 with	 the	 defined	 genomic	487 

features,	as	follows:			488 

	489 

a. Read	mapped	to	multiple	locations	on	the	reference	genome	is	categorized	490 

as	a	multi-mapped	read.	491 

b. Read	fully	contained	within	the	CDS,	intron,	UTR3,	or	UTR5	boundaries	of	a	492 

least	 one	 transcript	 is	 classified	 as	 a	 CDS,	 intronic,	 UTR3,	 or	 UTR5,	493 

respectively.	494 

c. Read	simultaneously	overlapping	UTR3	and	UTR5	regions	is	classified	as	a	495 

UTR	read.	496 

d. Read	spanning	exon-exon	boundary	is	defined	as	a	junction	read.	497 

e. Read	mapped	outside	of	gene	boundaries	and	within	a	proximity	of	1Kb	is	498 

defined	as	a	(proximal)	inter-genic	read.	499 

f. Read	mapped	outside	of	gene	boundaries	and	beyond	the	proximity	of	1Kb	500 

is	defined	as	a	deep	inter-genic	read.	501 

g. Read	 mapped	 to	 mitochondrial	 DNA	 (MT	 tag	 in	 hg19)	 is	 classified	 as	 a	502 

mitochondrial	read.	503 
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h. 	Reads	 from	a	pair	mapped	 to	different	 chromosomes	are	classified	as	a	504 

fusion	read.	505 

Scripts	 to	 categorize	 mapped	 reads	 into	 genomic	 categories	 are	 distributed	 with	 ROP	506 

protocol.		507 

	508 

Categorize	mapped	reads	overlapping	repeat	instances		509 

Mapped	reads	were	categorized	based	on	the	overlap	with	the	repeat	instances	defined	510 

by	 RepeatMasker	 annotation	 (Repeatmasker	 v3.3,	 Repeat	 Library	 20120124).	511 

RepeatMasker	 masks	 the	 repeats	 using	 the	 RepBase	 library:	512 

(http://www.girinst.org/repbase/update/index.html),	 which	 contains	 prototypic	513 

sequences	representing	repetitive	DNA	from	different	eukaryotic	species.	We	use	GTF	files	514 

generated	 from	 the	RepeatMasker	 annotations	by	 Jin,	 Ying,	 et	 al.	 (Jin	 et	 al.,	 2015)	and	515 

downloaded	from:		516 

http://labshare.cshl.edu/shares/mhammelllab/www-517 

data/TEToolkit/TE_GTF/hg19_rmsk_TE.gtf.gz		518 

	519 

Following		Melé,	Marta,	et	al.	(Melé	et	al.,	2015),	repeat	elements	overlapping	CDS	regions	520 

are	excluded	from	the	analysis.	We	filtered	out	6,873	repeat	elements	overlapping	CDS	521 

regions.	 Prepared	 repeat	 annotations	 (bed	 formatted	 file)	 are	 available	 at	522 

https://drive.google.com/file/d/0Bx1fyWeQo3cORi1UNWhxOW9kYUk/view?pref=2&pli=523 

1		524 

	525 
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The	prepared	repeat	annotations	contain	8	Classes	and	43	Families.		Number	of	elements	526 

per	family	and	class	represented	below	(Supplemental	Methods	Table	SM1):		527 

	528 

classID	

DNA	

N	

458223	

LINE	 1478382	

LTR	 707384	

RC	 2226	

SVA	 3582	

RNA	 717	

Satellite	 8950	

SINE	 1765403	

	529 

Supplemental	Methods	Table	SM1.	Number	of	repeat	elements	per	class.	Repeat	instances	530 

are	defined	by	RepeatMasker	 (RepeatMasker	 v3.3,	Repeat	 Library	20120124)	based	on	531 

RepBase	 library.	 RepBase	 library	 contains	 prototypic	 sequences	 representing	 repetitive	532 

DNA	from	different	eukaryotic	species.	533 

	534 

familyID	 n	

acro	 44	

Alu	 1173282	
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centr	 2272	

CR1	 60577	

Deu	 1262	

DNA	 4609	

Dong-R4	 554	

ERV	 579	

ERV1	 172612	

ERVK	 10446	

ERVL	 159606	

ERVL-MaLR	 343266	

Gypsy	 18553	

hAT	 15418	

hAT-Blackjack	 19578	

hAT-Charlie	 251618	

hAT-Tip100	 30204	

Helitron	 2226	

L1	 937636	

L2	 461296	

LTR	 2322	

Merlin	 55	

MIR	 589496	

MuDR	 1978	
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Penelope	 51	

PiggyBac	 2352	

RNA	 717	

RTE	 17617	

RTE-BovB	 651	

Satellite	 6247	

SINE	 1363	

SVA_A	 257	

SVA_B	 465	

SVA_C	 279	

SVA_D	 1358	

SVA_E	 232	

SVA_F	 991	

TcMar	 5354	

TcMar-Mariner	 16253	

TcMar-Tc2	 8098	

TcMar-Tigger	 102706	

telo	 387	

	535 

Supplemental	 Methods	 Table	 SM2.	 Number	 of	 repeat	 elements	 per	 family.	 Repeat	536 

instances	are	defined	by	RepeatMasker	 (RepeatMasker	 v3.3,	Repeat	 Library	20120124)	537 

based	on	RepBase	library.		538 
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	539 

We	determined	the	coordinates	of	repeat	elements	(class_id	and	family_id	attributes	from	540 

the	 GTF	 file)	 from	 the	 repeat	 annotations.	 Next,	 we	 checked	 the	 compatibility	 of	 the	541 

mapped	reads	with	the	repeat	instances.	We	disregarded	the	pairing	information	for	the	542 

unmapped	reads	and	count	each	end	as	a	separate	read.	Reads	entirely	mapped	to	the	543 

corresponding	repeat	instance	are	counted.	Scripts	to	categorize	mapped	reads	based	on	544 

the	overlap	with	the	repeat	instances	are	distribuited	with	ROP	protocol.		545 

	546 

Categorize	mapped	reads	overlapping	B	cell	receptor	(BCR)	and	T	cell	receptor	(TCR)	loci	547 

We	 used	 the	 gene	 annotations	 (Ensembl	 GRCh37)	 to	 extract	 BCR	 and	 TCR	 genes.	We	548 

extracted	gene	annotations	of	 the	 ‘constant’	 (labeled	as	 IG_C_gene,	Ensembl	GRCh37),	549 

‘variable’	 (labeled	 as	 IG_V_gene,	 Ensembl	 GRCh37),	 ‘diversity’	 (labeled	 as	 IG_D_gene,	550 

Ensembl	GRCh37),	and	‘joining’	genes	(labeled	as	IG_J_gene,	Ensembl	GRCh37)	of	BCR	and	551 

TCR	 loci.	 	 We	 excluded	 the	 BCR	 and	 TCR	 pseudogenes	 (labeled	 as	 IG_C_pseudogene,	552 

IG_V_pseudogene,	 IG_D_pseudogene,	 IG_J_pseudogene,	 TR_C_pseudogene,	553 

TR_V_pseudogene,	TR_D_pseudogene,	and	TR_J_pseudogene).	In	addition,	we	excluded	554 

the	patch	contigs	HG1592_PATCH	and	HG7_PATCH,	as	they	are	not	part	of	the	Ensembl	555 

hg19	 reference,	 and	 reads	 are	 not	 mapped	 on	 the	 patch	 contigs	 by	 high	 throughput	556 

aligners.		After	following	the	filtering	steps	described	above,	we	extracted	a	total	of	386	557 

immune	genes:	207	BCR	genes	and	179	TCR	genes.	 	The	gene	annotations	for	antibody	558 

genes	 (GTF	 formatted	 file)	 are	 available	 at	559 

https://drive.google.com/file/d/0Bx1fyWeQo3cObFZNT3kyQlZUS1E/view?pref=2&pli=1		560 
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	561 

The	number	of	VDJ	genes	per	locus	is	reported	in	the	Table	3.	562 

	563 

	 C	domain	 V	domain	 D	domain	 J	domain	

IGH	locus	 8	 55	 38	 6	

IGK	locus	 1	 46	 -	 5	

IGL	locus	 4	 37	 -	 7	

TCRA	locus	 1	 46	 -	 57	

TCRB	locus	 1	 39	 0	 8	

TRG	locus	 2	 9	 -	 5	

TRD	locus	 1	 3	 11	 4	

	564 

Supplemental	Methods	Table	SM3.	The	number	of	VDJ	genes	 for	each	antibody	chains.	565 

Antibody	genes	were	extracted	from	the	gene	annotations	(Ensembl	GRCh37).		566 

	567 

The	 list	of	 the	genes	encoding	 the	C	 region	of	 the	BCR	and	TCR	 chains	 is	presented	 in	568 

Supplemental	Methods	Table	SM4.		569 

	570 

Name	of	the	chain		 Genes	encoding	for	the	C	region	of	the	chain	

IG@	locus	

α	heavy	IG	chain	 IGHA1,	IGHA2	
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δ	heavy	IG	chain		 IGHD	

γ		heavy	IG	chain	 IGHG1,	IGHG2,	IGHG3,	IGHG4	

ε	heavy	IG	chain	 IGHE	

μ	heavy	IG	chain	 IGHM	

κ	light	IG	chain	 IGKC	

λ	light	IG	chain	 IGLC1,	IGLC2,	IGLC3,	IGLC7	

TCR@	locus	

α	TCR	chain	 TRAC	

Β	TCR	chain	 TRBC2	

γ	TCR	chain	 TRGC1,	TRGC2	

	δ	TCR	chain	 TRDC	

	571 

Supplemental	Methods	Table	SM4.	List	of	the	genes	encoding	the	C	region	of	the	BCR	and	572 

TCR	chains.	Genes	were	extracted	from	the	gene	annotations	(Ensembl	GRCh37).	573 

	574 

The	number	of	reads	mapping	to	each	C-V-D-J	genes	was	obtained	by	counting	the	number	575 

of	sequencing	reads	that	align,	with	high	confidence,	to	each	of	the	genes	(HTSeq	v0.6.1)	576 

(Anders	et	al.,	2014).	Script	“htseq-count”	is	supplied	with	the	gene	annotations	for	BCR	577 

and	 TCR	 genes	 (genes_Ensembl_GRCh37_BCR_TCR.gtf)	 and	 a	 bam	 file.	 The	 bam	 file	578 

contains	 reads	 mapped	 to	 the	 human	 genome	 and	 transcriptome	 using	 tophat2	 (See	579 

Section	 “Map	 reads	 onto	 human	 genome	 and	 transcriptome”	 for	 details).	 The	 script	580 

generates	individual	gene	counts	by	examining	the	read	compatibility	with	BCR	and	TCR	581 
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genes.	 We	 chose	 a	 conservative	 setting	 (--mode=intersection-strict)	 to	 handle	 reads	582 

overlapping	more	than	one	feature.	Thus,	a	read	overlapping	several	genes	simultaneously	583 

is	marked	as	a	read	with	no	feature	and	is	excluded	from	the	consideration.		584 

	585 

Workflow	for	categorizing	the	unmapped	reads	586 

We	first	converted	the	unmapped	reads	saved	by	tophat2	from	a	BAM	file	into	a	FASTQ	587 

file	(using	bamtools).	The	FASTQ	file	of	unmapped	contain	full	read	pairs	(both	ends	of	a	588 

read	pair	were	unmapped)	and	discordant	read	pairs	(one	read	end	was	mapped	while	the	589 

other	end	was	unmapped).	We	disregarded	the	pairing	information	of	the	unmapped	reads	590 

and	categorize	unmapped	reads	using	the	following	steps:	591 

	592 

A.	Quality	Control	593 

Low	quality	reads,	defined	as	reads	that	have	quality	lower	than	30	in	at	least	75%	of	their	594 

base	pairs,	were	identified	by	FASTX	(v	0.0.13).	 	Low	complexity	reads,	defined	as	reads	595 

with	sequences	of	consecutive	repetitive	nucleotides,	are	identified	by	SEQCLEAN.		As	a	596 

part	 of	 the	 quality	 control,	we	 also	 excluded	 unmapped	 reads	mapped	 onto	 the	 rRNA	597 

repeat	 sequence	 (HSU13369	 Human	 ribosomal	 DNA	 complete	 repeating	 unit)	 (BLAST+	598 

2.2.30).	 We	 prepared	 the	 index	 from	 rRNA	 repeat	 sequence	 using	 makeblastdb	 and	599 

makembindex	from	BLAST+.		We	used	the	following	command	for	makeblastdb:		600 

Ø makeblastdb	-parse_seqids	-dbtype	nucl	-in	<fasta	file>.		601 

We	used	the	following	command	for	makembindex:		602 

Ø makembindex	-input	<fasta	file>	-output	<index>	-iformat	blastdb	603 
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	604 

B.	Mapping	unmapped	reads	onto	the	human	references.		605 

We	remapped	the	unmapped	reads	to	the	human	reference	sequences	using	Megablast	606 

(BLAST+	2.2.30).	We	mapped	reads	onto	the	following	references:	607 

• Reference	transcriptome	(known	transcripts),	Ensembl	GRCh37	608 

• Reference	genome,	hg19	Ensembl	609 

We	 prepared	 the	 index	 from	 each	 reference	 sequence	 using	 makeblastdb	 and	610 

makembindex.	We	mapped	the	reads	separately	onto	each	reference	in	the	order	listed	611 

above.	Reads	mapped	to	the	reference	genome	and	transcriptome	were	merged	 into	a	612 

‘lost	 human	 reads’	 category.	 The	 following	 options	were	 used	 to	map	 the	 reads	 using	613 

Megablast:	 for	 each	 reference:	 task	=	megablast,	 use_index	=	 true,	perc_identity	=	90,	614 

outfmt	=	6,	max_target_seqs	=1,	e-value	=	1e-05.		615 

	616 

C.	Identification	of	hyper-edited	reads		617 

We	 have	 used	 hyper-editing	 pipeline	 (HE-pipeline	618 

http://levanonlab.ls.biu.ac.il/resources/zip),	which	is	capable	of	identifying	hyper-edited	619 

reads.		When	running	HE-pipeline,	additional	changes	can	be	made	to	parallelize	the	scripts	620 

for	 use	 with	 UCLA's	 Hoffman2	 cluster.	 Before	 proceeding,	 follow	 the	 instructions	 in	621 

the	README	that	 is	 included	with	 the	 scripts	 to	prepare	 the	 reference	and	provide	 the	622 

necessary	 third-party	 tools.	 Ensure	 that	 the	 output	 directory	 is	 set	 correctly	623 

in	config_file.sh	(it	is	acceptable	to	use	a	single	output	directory),	and	check	that	the	list	of	624 

input	files	has	been	prepared	correctly.	625 
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	626 

Details	on	how	to	run	HE-pipeline	are	available	here:		627 

https://github.com/smangul1/rop/wiki/How-to-run-hyper-editing-pipeline		628 

	629 

D.	Mapping	unmapped	reads	onto	the	repeat	sequences	630 

We	filtered	out	the	reads	that	failed	QC	and	lost	human	reads.	The	remaining	reads	were	631 

mapped	 to	 the	 reference	 repeat	 sequences.	 	 The	 reference	 repeat	 sequences	 were	632 

downloaded	 from	 Repbase	 v20.07	 (http://www.girinst.org/repbase/).	 Human	 repeat	633 

elements	(humrep.ref	and		humsub.ref)	were	merged	into	a	single	reference.	We	prepared	634 

the	index	from	the	merged	repeat	reference	using	makeblastdb	and	makembindex	from	635 

BLAST+.	In	total,	we	obtained	sequences	for	1,117	repeat	elements.	The	following	options	636 

were	used	 to	map	 the	 reads	using	 the	Megablast:	 task	 =	megablast,	 use_index	=	 true,		637 

perc_identity	 =	 90,	 outfmt	 =	 6,	 max_target_seqs	 =	 1,	 e-value	 =	 1e-05.	 Blast	 hits	 with	638 

alignment	length	shorter	than	80%	of	the	read	length	were	discarded	(corresponding	to	639 

80bp	of	the	100bp	read).		640 

	641 

The	repeat	elements	 from	humrep.ref	and	humsub.ref	were	classified	 into	 families	and	642 

classes	 using	 RepeatMasker	 annotations	 (hg19_rmsk_TE_prepared_noCDS.bed).	643 

Repetitive	reads	identified	from	the	unmapped	reads	were	confirmed	by	directly	applying	644 

Repeatmasker	(Tarailo-Graovac	&	Chen,	2009).	645 

	646 
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E.	Workflow	to	detect	‘non-co-linear’	reads	(trans-splicing,	gene	fusions,	and	circRNAs)	647 

	648 

We	divide	non-co-linear	reads	into	three	categories:		649 

	650 

1) gene	fusion	characterized	by	reads	that	map	on	different	chromosomes	651 

2) trans-splicing	events	characterized	by	reads	that	map	on	the	same	chromosome,	652 

but	are	at	least	1	Mb	apart	from	each	other		653 

3) circRNAs	characterized	by	 reads	 that	map	 in	a	head-to-tail	 configuration	on	 the	654 

same	chromosome	655 

	656 

To	distinguish	between	these	three	categories,	we	make	use	of	circExplorer2	(Zhang	et	al.,	657 

2016),	which	was	recently	identified	as	one	of	the	best	tools	to	detect	circRNAs	(Hansen	658 

et	al.,	2015).	CircExplorer2	relies	on	Tophat-Fusion	and	thus	allows	also	the	monitoring	659 

NCL	events	in	the	same	run.	TopHat-Fusion	(v2.0.13,	bowtie1	v0.12.9)	and	circExplorer2	660 

(v2.2.4)	were	invoked	with	the	following	commands:	661 

	662 

$	tophat2	-o	tophat-output-directory	-p	4	--fusion-search	--keep-fasta-order	--bowtie1	--663 

no-coverage-search	bowtie1-index	fastq-file	664 

	665 

$	python	CIRCexplorer2	parse	-t	TopHat-Fusion	-o	circrna-output-folder	 	tophat-output-666 

directory/accepted_hits.bam	 	 	667 

	668 
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$	python	CIRCexplorer2	annotate	-r	ensemble-reference.txt	-g	genome.fa	circrna-output-669 

folder			670 

	671 

To	separate	potential	gene	and	 trans-fusions	 from	the	TopHat-Fusion	output,	we	 ran	a	672 

ruby	custom	script,	which	is	part	of	the	ROP	pipeline.	673 

F.	Mapping	unmapped	reads	onto	the	V(D)J	recombinations	of	B	and	T	cell	receptors	674 

Gene	segments	of	B	cell	receptors	(BCR)	and	T	cell	receptors	(TCR)	were	imported	from	675 

IMGT	 (International	 ImMunoGeneTics	 information	 system):	676 

(http://www.imgt.org/vquest/refseqh.html#V-D-J-C-sets).		677 

IMGT	database	contains:	678 

• Variable	(V)	gene	segments	679 

• Diversity	(D)	gene	segments	680 

• Joining	(J)	gene	segments		681 

Unmapped	reads	categorized	by	step	(A)-(D)	were	filtered	out.	We	used	IgBLAST	(v.	1.4.0)	682 

with	 stringent	 e-value	 threshold	 (e-value	 <	 10-20)	 to	 map	 the	 remaining	 high-quality	683 

unmapped	reads	onto	the	V(D)J	regions	of	the	of	the	BCR	and	TCR	loci.	 	Reference	files	684 

with	BCR	and	TCR	VDJ	gene	segments	are	distributed	with	ROP	protocol	and	available	at	685 

https://drive.google.com/folderview?id=0Bx1fyWeQo3cOTkhKdHFDb3c5MjA&usp=shari686 
ng 687 
		688 

The	complete	list	of	the	references	is	presented	in	Supplemental	Methods	Table	SM5.		689 

Name	of	the	reference	file	 Description	of	the	gene	
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BCR	heavy	chain	

IGHV.fa	 V	genes	of	BCR	heavy	chain	

IGHD.fa	 D	genes	of	BCR	heavy	chain	

IGHJ.fa			 J	genes	of	BCR	heavy	chain	

BCR	light	chains	

IGLV.fa	 V	genes	of	BCR	lambda	chain	

IGLJ.fa	 J	genes	of	BCR	lambda	chain	

IGKV.fa	 V	genes	of	BCR	kappa	chain	

IGKJ.fa	 J	genes	of	BCR	kappa	chain	

TCR	chains	

TCRAV.fa	 V	genes	of	TCR	alpha	chain	

TCRAJ.fa	 J	genes	of	TCR	alpha	chain	

TCRBV.fa	 V	genes	of	TCR	beta	chain	

TCRBD.fa	 D	genes	of	TCR	beta	chain	

TCRBJ.fa	 J	genes	of	TCR	beta	chain	

TCRGV.fa	 V	genes	of	TCR	gamma	chain	

TCRGJ.fa	 J	genes	of	TCR	gamma	chain	

TCRDV.fa	 V	genes	of	TCR	delta	chain	

TCRDD.fa	 D	genes	of	TCR	delta	chain	

TCRDJ.fa	 J	genes	of	TCR	delta	chain	

	690 
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Supplemental	Methods	Table	SM5.		List	of	the	references	files	prepare	for	V-D-J	from	BCR	691 

and	TCR	loci.	692 

	693 

We	 prepared	 the	 index	 from	 each	 reference	 sequence	 using	 makeblastdb	 and	694 

makembindex	 from	 BLAST+.	 The	 following	 options	 were	 used	 to	map	 the	 reads	 using	695 

IgBLAST:	-germline_db_V;	germline_db_D;	-germline_db_J;	-organism=human;	-outfmt	=	696 

7;	–evalue	=	1e-20.		697 

	698 

The	number	of	genes	and	gene	alleles	per	antibody	 locus	 is	presented	 in	Supplemental	699 

Methods	Table	SM6.		700 

	701 

	 V	domain	 D	domain	 J	domain	

IGH	locus	 136(370)	 27(34)	 9(16)	

IGK	locus	 100(124)	 -	 5(9)	

IGL	locus	 70(111)	 -	 7(10)	

TCRA	locus	 54(112)	 -	 61(68)	

TCRB	locus	 77(160)	 2(3)	 14(16)	

TRG	locus	 14(26)	 -	 5(6)	

TRD	locus	 8(22)	 0(0)	 1(4)	

	702 

Supplemental	 Methods	 Table	 SM6.	 The	 number	 of	 V-D-J	 genes	 and	 gene	 alleles	 per	703 

antibody	 locus.	 	 Number	 of	 genes	 is	 presented	 in	 bold	 and	 number	 of	 gene	 alleles	 is	704 



	 61	

presented	 in	parenthesis.	Gene	and	gene	alleles	of	B	 cell	 receptors	 (BCR/IG)	and	T	 cell	705 

receptors	(TCR)	were	imported	from	IMGT.		706 

	707 

We	 assessed	 combinatorial	 diversity	 of	 the	 antibody	 repertoire	 by	 looking	 at	 the	708 

recombinations	 of	 the	VJ	 gene	 segments	 of	 BCR	 and	 TCR	 loci.	We	extracted	 the	 reads	709 

spanning	the	V-J	gene	boundaries.		710 

	711 

G.	Identification	of	microbial	reads	712 

Unmapped	reads	mapping	in	step	(A	-(E)	were	filtered	out.	The	remaining	reads	were	high-713 

quality	 non-human	 reads	 used	 to	 profile	 the	 taxonomic	 composition	 of	 the	 microbial	714 

communities.	We	used	MetaPhlAn2	(Metagenomic	Phylogenetic	Analysis,	v	2.0)	to	assign	715 

reads	on	microbial	genes	and	to	obtain	a	taxonomic	profile.	The	database	of	the	microbial	716 

marker	genes	is	provided	by	MetaPhlAn.	We	run	MetaPhlAn	in	two	stages	as	follow:	the	717 

first	stage	identifies	the	candidate	microbial	reads	(i.e.	reads	hitting	a	marker),	while	the	718 

second	stage	profiles	metagenomes	in	terms	of	relative	abundances	–	the	commands	used	719 

are	as	follow:	720 

Ø metaphlan.py	 <fastq>	 <map>	 --input_type	 multifastq	 --bowtie2db	721 

bowtie2db/mpa	-t	reads_map	--nproc	8	--bowtie2out		722 

Ø metaphlan.py	--input_type	blastout	<bowtie2out.txt>	-t	rel_ab	<tsv>	723 

	724 

The	output	of	the	first	stage	is	a	file	containing	a	list	of	candidate	microbial	reads	with	the	725 

microbial	taxa	assigned	(.map	file).	The	second	stage	outputs	the	taxonomic	profile	(taxa	726 
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detected	 and	 its	 relative	 abundance,	 in	 tab	 separated	 format	 (.tsv	 file).	We	 used	 taxa	727 

detected	from	stage	2	to	extract	the	reads	associated	with	it	in	stage	1.			728 

In	addition	to	MetaPhlAn2	we	used	to	create	the	curated	database	of	taxa-specific	genes,	729 

we	mapped	the	reads	onto	the	entire	reference	genomes	of	microbial	organisms.	We	used	730 

Megablast	 (BLAST+	 2.2.30)	 to	 align	 reads	 onto	 the	 collection	 of	 bacterial,	 viral,	 and	731 

eukaryotic	pathogens	reference	genomes.	Bacterial	and	viral	genomes	were	downloaded	732 

from	NCBI	ftp://ftp.ncbi.nih.gov/	on	February	1,	2015.		Genomes	of	eukaryotic	pathogens	733 

were	 downloaded	 from	 EuPathDB	 database,	 which	 is	 available	 at:	734 

http://eupathdb.org/eupathdb/.		735 

The	 following	 parameters	 were	 used	 for	 the	 megablast	 alignment:	 	 e-value	 =	 10-5,	736 

perc_identity	=	90.		The	Megablast	hits	shorter	than	80%	of	the	input	read	sequence	were	737 

removed	(corresponding	to	80bp	of	the	100bp	read).		738 

	739 

Comparing	diversity	across	groups	740 

First,	we	sub-sampled	unmapped	reads	to	the	number	of	reads	corresponding	to	a	sample	741 

with	 the	smallest	number	of	unmapped	 reads.	 	Diversity	within	a	 sample	was	assessed	742 

using	the	richness	and	alpha	diversity	indices.		Richness	was	defined	as	a	total	number	of	743 

distinct	 events	 in	 a	 sample.	 We	 used	 Shannon	 Index	 (SI),	 incorporating	 richness	 and	744 

evenness	components,	to	compute	alpha	diversity,	which	is	calculated	as	follows:	745 

SI = 	− 𝑝× log4 𝑝 	746 
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We	 used	 beta	 diversity	 (Sørensen–Dice	 index)	 to	 measure	 compositional	 similarities	747 

between	 the	 samples	 in	 terms	 of	 gain	 or	 loss	 in	 the	 events.	 	We	 calculated	 the	 beta	748 

diversity	for	each	combination	of	the	samples,	and	we	produced	a	matrix	of	all	pairwise	749 

sample	 dissimilarities.	 The	 Sørensen–Dice	 beta	 diversity	 index	 is	measured	 as	1 − 46
789

,	750 

where	J	is	the	number	of	shared	events,	while	A	and	B	are	the	total	number	of	events	for	751 

each	sample,	respectively.		752 

	753 

Percentage	of	unmapped	reads	calculation	754 

We	calculated	the	percentage	of	unmapped	reads	using	the	following	formula:	755 

P;<=>??@A =
N;A + (N;E×2 )
(NHIH>J×2	)

	756 

where,		757 

Nud	–	number	of	discordant	unmapped	reads	(one	end	is	mapped,	while	the	other	end	is	758 

unmapped);		759 

Nuc	–	number	of	unmapped	read	pairs	(both	ends	are	unmapped);	760 

Ntotal	–	total	number	of	read	pairs	(fragments).	761 

	762 

The	robustness	of	 the	ROP	results	against	changing	 the	thresholds	 for	each	of	 the	ROP	763 

steps		764 

	765 

We	have	performed	the	robustness	analysis	to	 investigate	the	 impact	of	the	thresholds	766 

used	in	each	step	of	the	ROP	approach.		For	each	ROP	step,	we	have	reported	number	of	767 
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reads	 identified	 under	 different	 thresholds.	 	 The	 results	 are	 presented	 as	 cumulative	768 

frequency	plots.		769 

	770 
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	776 

	777 

Supplemental	 Methods	 Figure	 SM1.	 	 Percentage	 of	 reads	 identified	 under	 different	778 

threshold	values.	Results	are	presented	as	cumulative	frequency	plots	for	each	step	of	ROP.	779 

ROP	threshold	is	highlighted	with	red	line.		780 

The	 percentages	 are	 the	 averages	 across	 87	 samples.	 	 (a)	 	 Step	 2	 (Remap	 to	 human	781 

references).	 	 Cumulative	 frequency	 plot	 reporting	 the	 percentage	 of	 lost	 human	 reads	782 

averaged	across	all	samples	(y-axis)	identified	under	different	threshold	(edit	distance)	(x-783 

axis).	 Edit	 distance	 was	 calculated	 as	 the	minimum	 number	 of	 operations	 required	 to	784 

transform	 a	 read	 sequence	 into	 the	 corresponding	 reference	 subsequence.	 Reads	 are	785 

grouped	by	edit	distance	with	the	transcriptome	or	the	genome	reference.		(b)	Step	3	(Map	786 

to	repeat	sequences).	Cumulative	frequency	plot	reporting	the	percentage	of	lost	repeat	787 

reads	(y-axis)	identified	under	different	threshold	averaged	across	(percentage	identity)	(x-788 

axis).		(c)	Step	4	(NCl	RNA	profiling).	Cumulative	frequency	plot	of	the	percentage	of	NCL	789 

reads	averaged	across	all	samples	(y-axis)	identified	under	different	thresholds	(number	of	790 
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reads	supporting	NCL	event)	(x-axis).	Results	are	reported	separately	for	circRNAs,	gene	791 

fusions	and	trans-splicing	events.		(d)				Step	5	(B	and	T	cell	receptors	profiling).	Cumulative	792 

frequency	plot	reporting	the	percentage	of	immune	reads	averaged	across	all	samples	(y-793 

axis)	 identified	 under	 different	 threshold	 (e-value)	 (x-axis).	 	 (e)	 Step	 6	 (Microbiome	794 

profiling).	Cumulative	frequency	plot	reporting	the	percentage	of	microbial	reads	averaged	795 

across	 all	 samples	 (y-axis)	 identified	 under	 different	 threshold	 (percentage	 identity)	 (x-796 

axis).		Results	are	reported	separately	for	viral,	bacterial	and	eukaryotic	reads.		797 

	798 

	799 

The	impact	of	ROP	step	ordering	on	the	read	classification	800 

We	have	 investigated	the	effect	of	 the	ordering	on	read	classification.	Ordering	of	ROP	801 

steps	will	have	an	effect	only	when	references	of	each	step	share	homologous	sequences.	802 

For	each	ROP	step,	we	have	swapped	its	order	with	another	ROP	step.	For	example,	we	803 

considered	 swapping	 ‘Remapping	 to	 human	 references’	 reads	 and	 ‘QC’	 steps.	 Before	804 

swapping,	‘Remapping	to	human	references’	was	number	2	in	the	queue.	After	swapping,	805 

it	became	number	1.		806 

	807 

We	observed	a	major	effect	of	swapping	‘Remapping	to	human	references’	with	all	other	808 

steps.	For	example,	swapping	‘Remapping	to	human	references’	and	‘QC’	steps	results	in	809 

classifying	79.6%	of	rRNA	reads	as	 lost	human	reads.	Similarly,	swapping	‘Remapping	to	810 

human	references’	and	‘Microbiome	profiling’	steps	results	in	classifying	0.2%	of	the	lost	811 

human	reads	as	microbiome	reads.	In	other	words,	this	swap	produces	a	27.8%	increase	812 
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of	 microbiome	 reads.	 Similarly,	 considering	 ‘B	 and	 T	 lymphocytes	 profiling’	 prior	 to	813 

‘Remapping	to	human	references’	produces	a	50.8%	increase	of	identified	immune	reads.			814 

Considering	 partial	mapping	 of	 BCR	 and	 TCR	 reads	 prior	 to	 the	 ‘Remapping	 to	 human	815 

references’	step	may	produce	many	false	positives.	Swapping	other	steps	of	ROP	resulted	816 

in	minor	effects	(i.e.	<1%	of	reads	from	each	category	were	effected).			817 

	818 

	819 

	820 

The	 impact	of	mapping	parameters	and	RNA-Seq	aligners	on	 the	number	of	unmapped	821 

reads	822 

Five	samples	were	randomly	selected	among	each	library	preparation	protocol.	 In	total,	823 

we	obtained	 ten	 samples	 for	 the	mapping	 rate	 comparison.	 All	 selected	 samples	were	824 

aligned	 to	 the	 human	 genome	 (hg19)	 using	 two	 tools,	 Tophat2	 and	 STAR,	 and	 three	825 

different	sensitivities	for	each	tool	–	default,	sensitive	setting,	and	very	sensitive	setting	–	826 

as	noted	below	in	Supplemental	Table	S5.	The	average	runtime	for	Tophat	per	million	reads	827 

was	2.5	hours;	STAR,	0.13	hours;	and	Novoalign,	9.1	hours.	Novoalign	was	not	considered	828 

in	the	analysis	due	to	its	substantially	longer	running	time	that	made	it	infeasible	for	the	829 

protocol.		830 

The	mapping	rate	for	each	tool	and	each	setting	is	shown	in	Supplemental	Table	S6.	The	831 

mapping	rate	was	significantly	higher	in	Tophat	when	compared	with	STAR	and	using	the	832 

default	 option	 for	 each	 tool	 (p	 <	 0.03).	 However,	 there	 is	 no	 significant	 difference	 in	833 

mapping	 rate	when	comparing	different	mapping	settings	 (p	>	0.92	under	 two-tailed	 t-834 
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tests	for	Tophat,	p	>	0.86	for	STAR).			835 

	836 

	837 

		838 

	839 

Complexity	analysis	using	Capture	Recapture	Model	840 

Given	a	sequencing	experiment,	the	Read	Origin	Protocol	(ROP)	attempts	to	classify	every	841 

sequenced	read	in	the	experiment	to	an	“origin”	class.	These	origins	can	be	considered	to	842 

be	features	of	 interest	 (e.g.	exons,	retroviral,	 immune,	or	bacterial).	Since	every	read	 is	843 

assigned	to	only	one	class,	we	can	consider	the	reads	assigned	to	a	specific	class	to	be	a	844 

random	 sample	 from	 the	 population	 of	 possibilities	 within	 that	 class.	 This	 leads	 us	 to	845 

consider	 statistical	 models	 for	 population	 sampling,	 which	 are	 known	 as	 “capture-846 

recapture”	models	(Bunge	&	Fitzpatrick,	1993).	847 

Using	 capture-recapture	 models	 allows	 us	 to	 make	 statistical	 inferences	 on	 several	848 

quantities	of	interest.	Of	primary	interest	is	the	total	number	of	possibilities	in	the	feature.	849 

We	shall	refer	to	this	as	the	feature	size	but	is	commonly	known	in	the	statistics	literature	850 

as	 species	 richness	 (Bunge	 &	 Fitzpatrick,	 1993;	 Deng,	 Daley,	 &	 Smith,	 n.d.).	 We	 also	851 

consider	the	number	of	identified	possibilities	within	a	feature	as	a	function	of	the	number	852 

of	reads.	We	call	this	the	complexity	of	the	feature,	in	line	with	the	notation	of	Daley	and	853 

Smith	(T.	Daley	&	Smith,	2013).	The	rate	of	change	in	the	complexity	curve	is	proportional	854 

to	the	probability	the	next	read	in	a	previously	unobserved	class	(T.	P.	Daley,	2014).	This	855 

quantity	is	commonly	known	in	statistics	literature	as	the	mathematical	coverage	(Good,	856 
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1953),	 but	 to	 avoid	 confusion	 with	 sequencing	 coverage,	 we	 call	 this	 the	 discovery	857 

probability	(Favaro,	Lijoi,	&	Prünster,	2012).	One	minus	the	discovery	probability	will	be	858 

called	the	saturation	of	the	feature.	859 

Statistical	Model	860 

Suppose	 we	 sequence	 N	 reads	 from	 an	 experiment.	 There	 are	 C	 feature	 classes,	861 

represented	in	the	sequencing	library	with	proportions	πL, … , 𝜋P .	Features	may	overlap,	862 

so	 it	 is	not	necessary	 that	 the	proportions	sum	to	one.	The	 features	are	all	 known	and	863 

defined	beforehand.	This	trait	is	in	contrast	to	the	number	of	classes	within	each	feature.	864 

Within	each	feature	c,	there	are	a	fixed	but	unknown	number	of	classes;	Sc	represented	in	865 

the	experiment.	Within	the	feature,	these	are	represented	with	relative	proportions	866 

pL, … , pRS, pT

RS

TUL

= 1	867 

If	we	are	 interested	 in	 the	 relative	proportions	within	 the	experiment,	we	multiply	 the	868 

relative	proportion	within	the	feature	by	the	relative	abundance	of	the	feature	within	the	869 

experiment.	870 

The	problem	is	that	we	only	have	information	on	the	classes	that	were	sequenced	in	the	871 

experiment.	We	observed	𝐷P ≤ 𝑆P	classes	with	observed	 frequencies	xT	=	#	 reads	 from	872 

class	i	with	 𝑥[
\]
[UL = 𝑁P 	and	 𝑁_ = 𝑁P

_UL .		873 

The	problem	of	estimating	the	complexity	is	to	estimate	the	number	of	expected	distinct	874 

classes	observed	as	a	function	of	reads	sequenced.	We	use	the	non-parametric	empirical	875 

Bayesian?	approach	of	Daley	and	Smith	(T.	Daley	&	Smith,	2013)	to	estimate	the	feature	876 

complexity	curve.	The	limit	of	the	feature	complexity	curve	can	be	regarded	as	an	estimate	877 
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of	the	feature	size	(Colwell	&	Coddington,	1994).	878 

The	discovery	probability	of	the	observed	experiment	is	the	sum	of	the	relative	proportions	879 

of	the	unobserved	classes,	880 

𝒑𝒊𝟏(𝒙𝒊 = 𝟎)
𝑺𝒄

𝒊U𝟏

.	881 

The	non-parametric	empirical	Bayes	estimator	for	this	quantity	is	given	by	the	Good	Turing	882 

formula,	( L efUL
g]

\h
[UL ).	883 

Read	Complexity	Analysis	884 

We	first	examine	the	read	complexity	as	determined	by	the	mapped	start	position	of	the	885 

first	end	in	the	read	pair.	We	observe	little	difference	between	the	two	libraries	for	the	886 

single	end	complexity	(Supplemental	Methods	Figure	SM3).	We	observe	only	an	average	887 

of	20%	and	29%	of	the	mappable	reads	at	the	sequenced	read	depth.	We	estimate	that	all	888 

libraries	are	an	average	of	58%	saturated;	that	is,	we	observed	58%	of	the	abundance.	This	889 

is	natural	since	one	would	naturally	sequence	the	most	abundant	reads	first.	890 
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	891 

Supplemental	Methods	Figure	SM3.	Single	end	read	complexity	medians	and	interquartile	892 

ranges	across	the	two	library	preparations.	893 

	894 

Annotated	Feature	Complexity	Analysis	895 

The	mapped	reads	can	be	assigned	to	features	within	the	genome.	These	include	exons,	896 

introns,	coding	sequences	(CDS),	and	untranslated	regions	(UTR).	In	this	section	we	shall	897 

investigate	the	complexity	of	these	features,	which	can	be	interpreted	as	estimating	the	898 
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transcriptional	diversity	within	these	libraries.		899 

As	expected,	more	exons,	CDSs,	and	UTRs	were	observed	per	sequenced	fragment	for	the	900 

polyA	libraries	than	for	the	totalRNA	libraries.	Yet	all	libraries	are	very	saturated.	Most	of	901 

the	 abundant	 classes	 within	 these	 features	 have	 already	 been	 observed,	 and	 the	902 

unobserved	 features	 are	 extremely	 rare.	 This	 is	 in	 line	 with	 the	 common	 practice	 of	903 

sequencing	a	few	tens	of	millions	of	reads	for	inferring	differential	expression.		904 

		905 

To	compare	the	saturation	across	libraries,	we	extrapolated	the	saturation	to	a	common	906 

value.	The	saturation	is	asymptotically	normal	(Mao,	2004),	and	the	sequencing	depth	is	907 

sufficiently	high	 that	we	can	use	a	 standard	 t-test	 to	 investigate	differences.	The	polyA	908 

libraries	are	more	saturated	when	all	the	features	for	all	libraries	are	extrapolated	out	to	909 

100	million	observations	(exons:	p	=	3.764E-16;	CDS:	p	=	1.036E-14;	UTR:	p	=	5.183E-14;	910 

more	significant	differences	were	observed	at	lower	depths,	indicating	that	the	differences	911 

are	not	artifacts	of	the	sampling	depth).		912 

	913 

Despite	 the	 large	 saturation	 for	all	 features	across	 libraries,	 a	multitude	of	unobserved	914 

classes	 remain	 (Supplemental	 Methods	 Table	 SM7).	 This	 means	 that	 most	 of	 the	915 

unobserved	 classes	 are	 exceedingly	 rare.	 For	 example,	 we	 estimate	 that	 there	 are	 an	916 

average	of	41,990	unobserved	exons	in	the	polyA	libraries.	There	is	an	average	remaining	917 

abundance	 of	 1 − 0.9988 = 0.0012 ,	 implying	 that	 the	 average	 abundance	 of	 the	918 

unobserved	exons	is	l.llL4
mLnnl

= 2.86	𝐸 − 8.	Since,	on	average,	a	read	has	2 ∙ 0.176 = 0.352	919 

probability	of	overlapping	an	exon,	the	average	abundance	of	the	unobserved	exons	is	1E-920 
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8	and	the	total	abundance,	0.00042,	gives	the	marginal	probability	that	the	next	sequenced	921 

read	is	a	new	exon.	For	the	totalRNA	libraries,	the	average	abundance	of	the	unobserved	922 

exons	is	3.2E-8.	Similarly,	we	calculated	the	average	abundance	of	the	unobserved	CDS	for	923 

polyA	and	totalRNA	libraries	as	1.84E-8	and	7.78E-8,	respectively,	and	for	UTRs	it	was	1.1E-924 

8	and	6.48E-8.	925 

	926 

Featur

e	

Mean	hits	 Mean	observed	 Mean	saturation	
Mean	 estimated	

total	

polyA	
totalRN

A	
polyA	

totalRN

A	
polyA	

totalRN

A	
polyA	

totalRN

A	

Exons	

10310521	 110553	 0.9969	 145950	

1771336

2	

574543

6	

11550

7	
107498	 0.9988	 0.9956	

15749

7	
138829	

CDS	

4791394	 105820	 0.984	 131521	

8804113	
231688

4	

11606

8	
99500	 0.9977	 0.9756	

14406

2	
123788	

UTR	

4359596	 33165	 0.9948	 43136	

8035082	
209304

7	
37448	 30524	

0.9991

3	

0.9920

9	
49849	 38997	

	927 

Supplemental	 Methods	 Table	 SM7.	 Mean	 number	 of	 observations,	 distinct	 observed	928 

classes,	observed	saturation,	and	estimated	total	number	of	classes	for	exons,	CDS,	and	929 
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UTR	Features.		930 

	931 

Finally,	we	examined	differences	of	diversity	between	case	and	controls	for	a	fixed	tissue	932 

type	and	 library	 type.	 The	 results	 are	quite	 anticlimactic,	 as	we	 found	 little	differences	933 

between	 cases	 and	 controls	 for	 extrapolated	 saturation	 and	 feature	 diversity.	 This	934 

indicates	 that	 there	 are	 little	 differences	 in	 transcriptome	 diversity	 between	 the	 two	935 

groups	of	case	and	controls.	Alternateively,	it	may	indicate	that	the	differences	between	936 

the	two	groups	are	so	small	that	a	much	larger	cohort	is	required	to	accurately	infer	the	937 

disparity.	938 

	939 

	940 

Genomic	profiles	across	library	preparation	protocols	941 

Similar	to	Li,	S.	et	al	we	observed	that	library	preparation	has	a	strong	effect	on	the	fraction	942 

of	 both	mapped	 and	 lost	 human	 reads	mapping	 to	CDS	 and	 intronic	 regions.	Genomic	943 

profile	of	mapped	and	unmapped	reads	across	library	preparation	protocols	is	presented	944 

in	Supplemental	Methods	Figure	SM4.		945 
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	946 

	947 

Supplemental	Methods	 Figure	 SM4.	Genomic	 profile	 of	mapped	 and	 lost	 human	 reads	948 

across	poly(A)	enrichment	and	ribo-depletion	libraries.	949 

(A)	RNA-Seq	samples	were	prepared	by	poly(A)	enrichment	protocol	(n=38).	(B)		RNA-Seq	950 

samples	 were	 prepared	 by	 ribo-depletion	 protocol	 (n=49).	 Mapped	 human	 reads	 are	951 

identified	 as	 RNA-Seq	 reads	 that	 mapped	 to	 the	 human	 reference	 genome	 and	952 

transcriptome	(ENSEMBL	hg19	build,	ENSEMBL	GRCh37	transcripome)	via	tophat2.		Lost	953 

human	reads	are	unmapped	RNA-Seq	reads	that	aligned	to	the	human	reference	genome	954 

and	 transcriptome	 (ENSEMBL	 hg19	 build,	 ENSEMBL	 GRCh37	 transcripome)	 via	 more	955 

sensitive	Megablast	alignment.		Single	alignment	is	reported	for	each	read	by	Megablast.		956 

ROP	categorizes	the	reads	into	genomic	categories	based	on	the	compatibility	of	each	read	957 

A.	poly(A)	 enrichment (n=38) B.	Ribo-depletion	 (n=49)
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from	the	pair	with	the	features	defined	by	the	Ensembl	gene	annotations.	Percentages	are	958 

calculated	as	a	fraction	of	reads	from	a	category	from	the	total	number	of	mapped	or	lost	959 

human	reads.	Junction	read	is	defined	as	a	read	spanning	exon-exon	boundary;	CDS,	UTR3,	960 

UTR5:	 reads	 overlapping	 CDS,	 UTR3	 or	 UTR5	 region;	 UTR:	 reads	 simultaneously	961 

overlapping	 UTR3	 and	 UTR5	 regions;	 intronic:	 reads	 overlapping	 intronic	 regions;	962 

intergenic:	 reads	mapped	within	 the	proximity	of	1Kb	 from	 the	gene	boundaries;	deep	963 

intergenic:	 reads	mapped	beyond	 the	proximity	of	1Kb	 from	the	gene	boundaries;	MT:	964 

mitochondrial	 reads;	multi-mapped:	 reads	mapped	 to	multiple	 locations	 of	 the	 human	965 

genome;	fusion:	reads	from	the	read	pair	mapped	to	different	chromosomes.		966 

	967 
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Genomic	profile	across	tissue	types	and	library	preparation	methods	in	S1.	Genomic	Profile	968 

is	obtained	based	on	both	mapped	and	lost	human	RNA-Seq	reads.	969 

970 

	971 

	972 

Tissue Whole	blood Nasal	epithelium Lung	epithelium
N	 19 19 49
Library	preparation	method poly(A)	enrichment	 poly(A)	enrichment	 ribo-depletion
	Splice	junction	reads,	%*,	mean	(std) 23.3%	(3.3%) 29.8%	(2.2%) 10.0%	(3.3%)
CDS	reads	%,	mean	(std) 18.0%	(3.1%) 16.9%	(	1.3%) 6.9%	(2.0%)
UTR3	reads	%,	mean	(std) 15.6%	(3.1%) 22.5%	(1.7%) 11.4%	(2.5)
UTR5	reads		%,	mean	(std) 3.2%	(0.7%) 2.2%	(0.3%) 2.6%	(0.7%)
UTR**	reads	%,	mean	(std) 4.3%	(0.8%) 5.9%	(0.5%) 1.9%	(0.6%)
Intronic	reads	%,	mean	(std) 5.6%	(1.6%) 4.4%	(0.8%) 39.4%	(6.5%)
Proximate	inter-genic***	reads	%,	mean	(std) 1.2%	(0.6%) 1.5%	(0.6%) 3.3%	(0.4%)
Deep	inter-genic	reads****	%,	mean	(std) 0.3%	(0.1%) 0.3%	(0.1%) 2.8%	(0.9%)
Mitochondrial	(MT)	reads	%*,	mean	(std) 2.3%	(1.0%) 4.3%	(1.3%) 1.5%	(1.8%)
Milti-mapped	reads	%,	mean	(std) 10.6%	(2.4%) 1.9%	(0.2%) 1.9%	(0.5%)
Fusion	reads	%,	mean	(std) 0.2%	(0.1%) 0.4	%	(0.1%) 0.7%	(0.2%)

Notes	:
*	percentage	from	the		total	number	of	reads	are	reported	
**	reads	simultaneously	overlapping	UTR3	and	UTR5	regions
***	mapped	with	the	1K	proximity	from	gene	boundaries

A.	Genomic	profile	obtained	based	on	mapped	RNA-Seq	reads.	Mapped	human	reads	are	identified	as	the	RNA-Seq	reads	
mapped	to	the	reference	genome	and	transcriptome	(ENSEMBL	hg19	build,	ENSEMBL	GRCh37	transcripome)		via	tophat2.

Supplementary	Table	2.	Genomic	profile	across	tissues	types	and	library	preparation	methods.	Genomic	profile	is	obtained	based	on	
both	mapped	and	lost	human	RNA-Seq	reads

****	mapped	further	then	1K	from	the	gene	boundaries

Tissue Whole	blood Nasal	epithelium Lung	epithelium
N	 19 19 49
Library	preparation	method poly(A)	enrichment	 poly(A)	enrichment	 ribo-depletion
	Splice	junction	reads,	%*,	mean	(std) 1.5% (0.5%) 0.7%	(0.1%) 0.6%	(0.2%)
CDS	reads	%,	mean	(std) 1.9%	(0.7%) 0.7%	(0.1%) 0.7%	(0.2%)
UTR3	reads	%,	mean	(std) 1.3%	(0.3%) 0.9%	(0.1%) 1.1%	(0.2%)
UTR5	reads		%,	mean	(std) 0.4%	(0.1%) 0.2%	(0.03%) 0.3%	(0.1%)
UTR**	reads	%,	mean	(std) 0.4%	(0.1%) 0.2%	(0.1%) 0.2%	(0.1%)
Intronic	reads	%,	mean	(std) 1.0%	(0.4%) 1.3%	(	1.1%) 5.9%	(3.1%)
Proximate	inter-genic***	reads	%,	mean	(std) 0.6%	(0.4%) 1.0%	(1.1%) 2.1%	(2.5%)
Deep	inter-genic	reads****	%,	mean	(std) 0.2%	(0.1%) 0.3%	(0.3%) 0.7%	(0.4%)
Mitochondrial	(MT)	reads	%*,	mean	(std) 0.0%	(0.0%) 0.0%	(0.0%) 0.0%	(0.0%)

Notes	:
*	percentage	from	the	total	number	of	reads	are	reported	
**	reads	simultaneously	overlapping	UTR3	and	UTR5	regions
***	mapped	with	the	1K	proximity	from	gene	boundaries
****	mapped	further	than	1K	from	the	gene	boundaries

B.	Genomic	profile	obtained	based	on	lost	human	reads.		Lost	human	reads	are	the	unmapped	RNA-Seq	reads	that	
aligned	to	the	human	reference	genome	and	transcriptome	(ENSEMBL	hg19	build,	ENSEMBL	GRCh37	transcripome)	via	
more	sensitive	Megablast	alignment.		
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Repeat	profile	across	tissues	types	and	library	preparation	methods.		973 

Repeat	 profile	 is	 based	 on	 both	 mapped	 and	 lost	 repeat	 reads.974 

	975 

	976 

	977 

Tissue Whole	blood Nasal	epitheliumLung	epithelium
N	 19 19 49

Library	preparation	method
poly(A)	

enrichment	
poly(A)	

enrichment	 ribo-depletion
L1,	%*,	mean 0.4% 0.5% 5.5%
L2,	%,	mean 0.2% 0.2% 1.0%
CR1,	%,	mean 0.02% 0.01% 0.1%
Alu,	%,	mean 1.0% 1.0% 2.5%
MIR,	%,	mean 0.1% 0.1% 0.6%
ERVL-MaLR,	%,	mean 0.2% 0.2% 1.1%
ERV1,	%,	mean 0.2% 0.2% 0.8%
ERVK,	%,	mean 0.0% 0.0% 0.1%
ERVL,	%,	mean 0.1% 0.1% 0.5%
RNA,	%,	mean 0.0% 0.0% 0.2%
hAT-Charlie,	%,	mean 0.1% 0.1% 0.4%
TcMar-Tigger,	%,	mean 0.04% 0.1% 0.5%
Others,	%,	mean 0.05% 0.1% 0.3%

*	Percentage	from	the	total	number	of	reads

Supplementary	Table	3.	Repeat	profile	across	tissues	types	and	library	preparation	methods.	Repeat	profile	is	obtained	based	on	
both	mapped	and	lost	repeat	reads

A.	Repeat	profile	obtained	based	on	mapped	RNA-Seq	reads.	Mapped	reads	were	categorized	based	on	the	overlap	with	
the	repeat	instances	prepared	from	RepeatMasker	annotation	(Repeatmasker	v3.3,	Repeat	Library	20120124).		

Tissue Whole	blood Nasal	epitheliumLung	epithelium
N	 19 19 49

Library	preparation	method
poly(A)	

enrichment	
poly(A)	

enrichment	 ribo-depletion
%,	mean*
hAT,	mean 0.0001% 0.0004% 0.0000%
TcMar-Mariner,	mean 0.0001% 0.0005% 0.0001%
TcMar-Tigger,	mean 0.0001% 0.0015% 0.0001%
L1,	mean 0.0045% 0.1409% 0.0048%
ERVK,	mean 0.0002% 0.0026% 0.0001%
ERV,	mean 0.0017% 0.0082% 0.0014%
ERV1,	mean 0.0025% 0.0106% 0.0016%
ERVL,	mean 0.0000% 0.0014% 0.0000%
Satellite,	mean 0.0001% 0.0006% 0.0000%
Alu,	mean 0.0495% 0.0896% 0.0382%
Deu,	mean 0.0001% 0.0024% 0.0001%
Others,	mean 0.0051% 0.0072% 0.0025%

*Percentage	from	the	total	number	of	reads

B.	Repeat	profile	obtained	based	on	lost	repeat	reads.		Lost	human	reads	are	the	unmapped	RNA-Seq	reads	that	aligned	
to	human	reference	genome	and	transcriptome	(ENSEMBL	hg19	build,	ENSEMBL	GRCh37	transcripome)	via	more	
sensitive	Megablast	alignment.		
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	979 

Supplemental	 Methods	 Figure	 SM5..	 Percentage	 of	 immune	 reads	 mapped	 to	 B-cell	980 

receptor	(BCR)	and	T-cell	receptor	(TCR)	loci.		981 

(A)	 RNA-Seq	 samples	were	prepared	by	poly(A)	 enrichment	protocol	 (whole	blood	 and	982 

nasal	epithelium).		(B)		RNA-Seq	samples	were	prepared	by	ribo-depletion	protocol	(lung	983 

epithelium).	Immune	reads	that	are	entirely	mapped	to	BCR	and	TCR	genes	are	identified	984 

by	tophat2.	Immune	reads	with	extensive	somatic	hyper	mutations	(SHM)	and	reads	arising	985 

from	V(D)J	recombination	are	identified	by	IgBlast.	Blood	samples	show	a	larger	fraction	of	986 

reads	mapped	to	BCR	locus,	while	nasal	and	lung	epithelium	samples	show	a	larger	fraction	987 

of	reads	mapped	to	TCR	locus.	BCR	are	composed	of	heavy	(IGH)	and	light	chains.	Among	988 

the	reads	mapped	to	BCR	locus,	the	number	of	reads	mapped	to	immunoglobulin	heavy	989 
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locus	(IGH),	immunoglobulin	kappa	locus	(IGK),	and	immunoglobulin	lambda	locus	(IGL)	is	990 

determined.	Among	the	reads	mapped	to	TCR	locus,	the	number	of	reads	mapped	to	T	cell	991 

receptor	alpha	locus	(TCRA),	T	cell	receptor	beta	locus	(TCRB),	T	cell	receptor	gamma	locus	992 

(TCRG),	and	T	cell	receptor	delta	locus	(TCRD)	is	determined.			993 
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	994 

Supplemental	 Methods	 Figure	 SM6..	 	 Percentage	 of	 immune	 reads	 mapped	 to	 genes	995 

encoding	the	constant	region	of	immunoglobulin	heavy	locus	(IGH).			996 

(A)	 RNA-Seq	 samples	were	prepared	by	poly(A)	 enrichment	protocol	 (whole	blood	 and	997 

nasal	epithelium).		(B)		RNA-Seq	samples	were	prepared	by	ribo-depletion	protocol	(lung	998 

epithelium).	 	 Immune	 reads	 that	 are	 entirely	mapped	 to	 IGHA	 (Immunoglobulin	Heavy	999 

Constant	Alpha),	 IGHD	 (Immunoglobulin	Heavy	Constant	Delta),	 IGHG	 (Immunoglobulin	1000 

Heavy	 Constant	 Gamma),	 IGHE	 (Immunoglobulin	 Heavy	 Constant	 Epsilon),	 and	 IGHM	1001 

(Immunoglobulin	Heavy	Constant	Mu)	are	identified	by	tophat2.		1002 
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	1003 

	1004 

	1005 

	1006 

Number	of	RNA-Seq	reads	mapped	to	BCR	and	TCR	genes	(immune	reads).		1007 

Reads	 entirely	 mapped	 to	 BCR	 and	 TCR	 genes	 are	 identified	 by	 Tophat2.	 Reads	 with	1008 

extensive	somatic	hyper	mutations	(SHM)	and	reads	arising	from	V(D)J	recombination	are	1009 

identified	by	IgBLAST.		1010 

	1011 

	1012 

	1013 

Tissue Whole	blood Nasal	epithelium Lung	epithelium
N	 19 19 49

Library	preparation	method poly(A)	enrichment	 poly(A)	enrichment	 ribo-depletion
Number	of	immune	reads	(tophat2),	RPM,	mean 4805 107 16
Number	of	immune	reads	(IgBlast),		RPM,	mean 270 7 1
Total	number	of	immune	reads	,	RPM,	mean										 5075 114 17

RPM	:	reads	per	million

Supplementary	Table	5.	Number	of	RNA-Seq	reads	mapped	to	BCR	and	TCR	genes	(immune	reads).		Reads	entirely	
mapped	to	BCR	and	TCR	genes	are	identified	by	tophat2.	Reads	with	extensive	somatic	hyper	mutations	(SHM)	
and	reads	arising	from	V(D)J	recombination	are	identified	by	IgBlast.	
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List	of	software	tools	used:	1014 

Tophat2	v.2.0.13	-	http://ccb.jhu.edu/software/tophat/index.shtml		1015 

STAR		v2.5.2b	-	https://github.com/alexdobin/STAR	1016 

Bowtie	v.0.12.9	-		http://bowtie-bio.sourceforge.net/index.shtml		1017 

Bowtie2		v.2.2.9	-	http://bowtie-bio.sourceforge.net/bowtie2/index.shtml		1018 

Samtools	v.0.1.18	-	http://www.htslib.org/		1019 

Bamtools	v.2.3.0	-		https://github.com/pezmaster31/bamtools		1020 

FASTX-Toolkit	v.0.0.13	-	http://hannonlab.cshl.edu/fastx_toolkit/		1021 

SEQLEAN	v(seqclean-x86_64)	-	http://sourceforge.net/projects/seqclean/files/		1022 

BLAST+	v.2.2.30	-	ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/		1023 

IgBlast	v.1.4.0-	http://www.ncbi.nlm.nih.gov/igblast/		1024 

TopHat-Fusion	v.2.0.13-	http://ccb.jhu.edu/software/tophat/fusion_index.shtml		1025 

circExplorer2	v.2.2.4	-	http://circexplorer2.readthedocs.io/		1026 

MetaPhlAn2	v.2.0	-	http://huttenhower.sph.harvard.edu/metaphlan		1027 

HTSeq	v.0.6.1	-	http://www-huber.embl.de/users/anders/HTSeq/		1028 

Preseq	v	2.0-	http://smithlabresearch.org/software/preseq/	1029 

Quicksect	v.0.0.2		-	https://github.com/brentp/quicksect		1030 

	1031 

	1032 
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Databases	1033 

Ensembl	hg19	-	http://www.ensembl.org/Homo_sapiens/Info/Index		1034 

Human	 ribosomal	 DNA	 complete	 repeating	 unit	 -1035 

http://www.ncbi.nlm.nih.gov/nuccore/U13369		1036 

GTF	 formatted	 file	 for	 repeat	 annotations-		1037 

http://labshare.cshl.edu/shares/mhammelllab/www-1038 

data/TEToolkit/TE_GTF/hg19_rmsk_TE.gtf.gz		1039 

Repeat	elements	(RepBase20.07)	–		http://www.girinst.org/repbase/	1040 

V(D)J	genes	of		B	and	T	cell	receptor	-	http://www.imgt.org/vquest/refseqh.html#V-D-J-C-1041 

sets		1042 

Database	of	viral	genomes:	http://ftp.ncbi.nlm.nih.gov/genomes/Viruses		1043 

Database	of	bacterial	genomes:		http://ftp.ncbi.nlm.nih.gov/genomes/Bacteria/	1044 

Database	of	eukaryotic	pathogens	-	http://eupathdb.org/eupathdb/			1045 

	1046 
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