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S1 Qualitative differences between subsets of biomolec-
ular events

In high-throughput sequencing experiments, it is not uncommon to find a subset
of biomolecular events that are qualitatively different from the remainder. In
mRNA-Seq data, we expect a set of non-expressed genes to which only a small
number of reads are assigned, for reasons such as sequencing error, misalignment
or very low background levels of expression. Figure S9 shows the distribution of
the log of the parameter associated with mean expression in RNA-seq data, as-
sumed to be distributed negative binomially and equivalently across all samples.
The tail of data to the left of the modal peak may be considered to represent
non-expressed genes.

To distinguish between such qualitatively different events, we can construct
additional models in baySeq v2. In the example above, we construct one model
(MNDE) for expressed but non-differentially expressed genes, and one model
(MNE) for non-expressed genes. These two models are identical in terms of
their equivalence classes, but will differ in the assumed hyperdistribution.

Two principal options exist for varying the assumed hyperdistributions be-
tween models that share the same equivalence classes. Firstly, since the purpose
of the two models is to separate two qualitatively different sets of biomolecular
events, we may find some function of the values in Θq that splits the data. The
data shown in Figure S9 can be split by minimising the intra-class variance [3].
Sampled values mapping to the left of the threshold indicated by the vertical
red line represent the distribution of data for MNE while those to the right
represent the distribution of data for MNDE .
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In some cases, the distinction between two quantitatively different models
for gene expression introduces a natural variation between the hyperdistribu-
tions. For example, in paired data, a substantial proportion of the data may be
equivalently expressed within all pairs, and this may be regarded as a qualita-
tively different scenario to equivalent expression across replicates but divergent
expression within each pair. We have previously shown [2] that these cases can
be analysed by constructing a model for equivalent expression across replicates.
Assuming a beta-binomial distribution with parameters p, the proportion of
counts observed in the first member of each pair, and φ, the dispersion, a set Θq

can be constructed by maximum likelihood methods, as discussed in Section 2.
We can then construct a second model describing equivalent expression within
pairs in which the calculated values for φ are used for the dispersions but in
which the values for p are set to 0.5, the value which corresponds to a hypothesis
of balanced expression between pairs.

We simulate a set of data following [1, 4] in which data from ten thousand
genes in ten samples are simulated from a negative binomial distribution, with
means sampled from a SAGE dataset. Dispersions for each gene are sampled
from a gamma distribution with shape = 0.85 and scale = 0.5. Library sizes
for each sample are sampled from a uniform distribution between 30000 and
90000. One thousand of the genes are simulated to have an eight-fold differential
expression in either direction between the first and second sets of five samples
each. A further one thousand genes have their mean expression reduced by a
factor of twenty; these represent a set of unexpressed genes within the data.

The parameters of an assumed negative-binomial distribution are µh
q , φ

h,

where µh
q represents the estimated mean (scaled for library size) for some equiv-

alence class q estimated by sampling some genomic event h, and φh the similarly
estimated dispersion. An initial weighting on these parameters for a model MNE

of no expression is acquired by considering the log of the µh
q estimated in a model

of no differential expression. Figure S10 shows the distribution of this random
variable and the threshold ψ which, if used to split this variable, minimises the
intra-class variance. For a model MNE of no expression, the initial weights used
are wh

MNE
= 1 if logµh

q < ψ and 0 otherwise, while for all other models, the

weights used are wh
M = 1 − wh

MNE
. We then iteratively use Eqn 8 to update

these weightings and improve the posterior likelihoods acquired for each model.
At each iteration, wh

MNE
= phMNE

(the current estimate of the posterior likeli-

hood that gene h is not expressed) and wh
M = 1 − wh

MNE
for all other models.

Figure S1 shows the performance of these methods in simultaneously identifying
non-expressed and differentially expressed genes in these simulations.
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S2 Variable Model Priors

Figure S11 shows a reanalysis of the simulated data used in Soneson et al [5].
This figure is derived from simulated data equivalent to 12450 genes from 10
samples, of which approximately 1250 are differentially expressed between the
first five and second five samples. In one set of simulations, the differentially
expressed genes are equally likely to be up-regulated as down-regulated between
the two groups in the data, while in the other, all differential expression is up-
regulation of the second group relative to the first. Allowing baySeq v2 to
choose different model priors depending on which group has higher average
expression gives a substantial increase in performance in the unbalanced case,
while not affecting performance for the balanced data.

S3 Simulation of zero-inflated negative binomial
data

We base the simulation of these data on previous simulations developed to gen-
erate high-throughput sequencing data [1, 4] in which data from ten thousand
genes in ten samples are simulated from a negative binomial distribution, with
means sampled from a SAGE dataset. Increased sequencing depth can be ex-
plored by scaling these sampled means. Dispersions for each gene are sampled
from a gamma distribution with shape = 0.85 and scale = 0.5. Library sizes for
each sample are sampled from a uniform distribution between 30000 and 90000.
One thousand of the genes are simulated to have an eight-fold differential ex-
pression in either direction between the first and second sets of five samples.
For each gene, we then sample a proportion pc of zero-inflation from a uniform
distribution between 0 and 0.5, and for each sample in that gene, replace the
observed value with a zero with probability pc.
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Supplementary Figures

Figure S1: Mean ROC and FDR curves for discovery of non-expressed and
differentially expressed data in simulation studies, with no bootstrapping (blue),
and two (red), five (green) and ten (purple) cycles of bootstrapping. Percentiles
of true discovery rates (for ROC curves) and false discovery rates (for FDR
curves) across simulations are shown as transparent areas around curves.
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Figure S2: The expected proportion of differentially expressed genes against
the true proportion in simulation studies following [1, 4] with 10 libraries. The
expected proportion of differentially expressed genes was calculated by summing
the posterior likelihoods of differential expression, and dividing by the total
number of genes. Model priors were calculated using the BIC method described
in 2 or the iterative method described in Hardcastle (2010) [1].
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Figure S3: Gene/spike-in variances of expression across all arrays in the
Affymetrix HGU133A Latin Square data. Differentially expressed spike-ins have
much higher variance than data describing gene expression in cell-lines, as ex-
pected. Variance in the non-differentially expressed control spike-ins can be as
high as that seen in differentially expressed data, suggesting that these should
be removed from differential expression analyses.
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Figure S4: Distribution of pq1 in a model of consistent expression between
age groups for the observed expression from from ten tissue types (adrenal
gland, brain, heart, kidney, liver, lung, muscle, spleen, thymus, and uterus) in
female rats, comparing four juvenile (2-week old) to four aged (104-week old)
individuals in the Rat BodyMap project [6]. The threshold (red) is chosen to
minimise the intra-class variance of the partitioned data.
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Figure S5: Gene expression plots and posterior distributions of the parameters
for the proportion of expression in the tissue of highest (black) and second
highest (red) expression. These four genes are the top ranked genes for a change
in expression between tissue but not over time.
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Figure S6: Functional GO terms enriched in the gene set showing a decline in
expression in thymus tissue relative to the expression across all other tissues.
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Figure S7: Numbers of genes for which there is a change in ratio of expression
between tissues over time, split by tissues of maximum expression in the two
time points. Bars are labelled as X¿/¡Y, such that the tissue with the highest
proportion of expression in juvenile individuals is X, in aged individuals Y. The
higher proportion of expression is indicated by the ’¿/¡’ symbol.
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Figure S8: The expected number of genes belonging to each model (a). Nor-
malised expression values of the top ranked gene for each of the eight models
with highest expected number of genes, summarised by age group (b). Models
are defined such that, e.g. 1,2,34 indicates that the data from age groups 1,2
and 3 are equivalently distributed, and differ from age group 4. Age groups are
identified in order, with 1 corresponding to juvenile individuals and 4 to aged
individuals.
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Figure S9: Distribution of the log of the parameter associated with the mean
expression (scaled by library scaling factor and gene length) in RNA-seq data
derived from rat thymus in juvenile female individuals [6]. The tail of data
to the left of the modal peak may be considered to represent non-expressed
genes. The red line indicates the threshold level which minimises the intra-class
variance.
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Figure S10: Distribution of the log of the parameter associated with the mean
expression (scaled for library scaling factor) in a set of simulated RNA-Seq data.
The tail of data to the left of the modal peak may be considered to represent
non-expressed genes. The red line indicates the threshold level which minimises
the intra-class variance.
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Figure S11: Average ROC curves showing performance of baySeq v2 on bal-
anced and unbalanced differentially expressed data. Allowing unequal model
priors for different sets of the data increases performance for unbalanced data.
Percentiles of true positive rates across samplings are shown as transparent areas
around curves.
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Supplementary Tables

GO term Description P-value FDR q-value
GO:0003723 RNA binding 3.17E-13 4.14E-10
GO:0044822 poly(A) RNA binding 1.66E-10 1.08E-7
GO:0003676 nucleic acid binding 2.69E-10 1.17E-7
GO:1901363 heterocyclic compound binding 5.69E-6 1.86E-3
GO:0097159 organic cyclic compound binding 7.25E-6 1.89E-3
GO:0008026 ATP-dependent helicase activity 2.12E-4 4.61E-2
GO:0070035 purine NTP-dependent helicase activity 2.12E-4 3.95E-2
GO:0051427 hormone receptor binding 2.86E-4 4.66E-2
GO:0035257 nuclear hormone receptor binding 3.05E-4 4.42E-2
GO:0035258 steroid hormone receptor binding 3.91E-4 5.09E-2
GO:0016874 ligase activity 7.28E-4 8.63E-2
GO:0003724 RNA helicase activity 8.34E-4 9.07E-2

Table S1: Functional GO terms enriched in the gene set showing a decline in
expression in thymus tissue relative to the expression across all other tissues.
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