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Supplementary Figure 1. HTS identified seven hit molecules that bind TAR and displace Tat peptide 

(see Methods). a. HTS workflow. b. Tat-displacement assays for the HTS hit molecules in the 

absence (black) and presence (gray) of 100-fold excess tRNA. c-f. Overlay of SOFAST-[1H-13C] 

HMQC1 NMR spectra of 50 µM TAR free (black) and in the presence of 3X hit molecule (red, purple 

or blue). Spectra are overlaid for hits that induced similar chemical shift perturbations: c. CCG-

208662 (red) and CCG-208677 (blue); d. CCG-133879 (red), CCG-133868 (purple) and CCG-133895 

(blue); e. CCG-133905 (red); and f. CCG-133994 (red). (*) designates folded peaks 

 

 

 

 



 

 

Supplementary Figure 2. Experiments to detect potential false negatives. Molecules with chemical 

similarity to hit molecules do not a. displace Tat peptide (points saturating the fluorescence reader are 

removed) or b. bind to TAR based on SOFAST-[1H-13C] HMQC1 NMR chemical shift mapping 

employing 50 µM TAR. Shown are spectra with (red) and without (black) 3X small molecule. (*) 

designates folded peaks. 

 



 

Supplementary Figure 3. Identifying false positive molecules from HTS using NMR. a. Tat-

displacement assay showing activity for three molecules that were identified as hits by HTS, but that 

did not bind TAR by NMR. b. Tat-only control for the three molecules showing ambiguous activity. c-

e. SOFAST-[1H-13C] HMQC1 NMR spectra of 50 µM TAR both free (black) and in the presence of c. 

6X CCG-111926 (red), d. 4X CCG-106134 (red), and e. 3X CCG-160257 (red).  (*) designates folded 

peaks.  

 



 

Supplementary Figure 4. False negative hits from HTS identified by testing a random set of nine 

molecules from within the top 3% of docking scores. a. Tat-displacement assays for CCG-208298 

and CCG-100975, which have fluorescence interference with the assay at high concentrations (points 

saturating the fluorescence reader are removed); and CCG-39701, which was solubilized in water 

rather than DMSO. b-d, SOFAST-[1H-13C] HMQC1 NMR spectra of 50 µM TAR both free (black) and 

in the presence of 3X molecule (red): b. 3X CCG-208298 c. 3X CCG-100925 and d. 3X CCG-39701. 

(*) designates folded peaks. 

 



 

Supplementary Figure 5. ROC curves for EBVS against TAR ensembles a. E1, b. E2, c. E3 and d. 

E4 for all 247 hits (black), aminoglycoside hits (purple), non-aminoglycoside hits (orange) and cell-

active hits (red). 

 

 

 

 

 

 

 

 



 

Supplementary figure 6. Inter-helical bend (βh) and twist (αh+γh) angles2 (negative and positive αh+γh 

values correspond to over- and under-twisting respectively) averaged over all models in the NMR 

structure (blue circles) and the Boltzmann-weighted angles predicted by EBVS for the randomly 

selected ensemble, E3, averaged over 20 docking runs (orange triangle). Also shown are the angles 

for individual conformers in the E3 ensemble (open triangles). 

 

 



 

Supplementary Figure 7. Analysis of docking predicted poses for six ligand-bound TAR complexes 

when using a docking thoroughness of twenty repeated five times. For each small molecule, NMR 

structures (all models) are compared to docking predicted structures (all conformations > 25% 

populated over five docking runs). Colored in red are the base pairs in the upper and lower stems 

used to superimpose the RNA structures (left) and the small molecule (right). Also shown are the 

inter-helical bend (βh) and twist (αh+γh) angles2 (negative and positive αh+γh values correspond to 



over- and under-twisting respectively) averaged over all models in the NMR structure (blue circles) 

and the Boltzmann-weighted angles predicted by EBVS averaged over 5 docking runs for the parent 

ensemble, E0, (green squares) and the random ensemble, E3, (orange triangles). Also shown are the 

angles for individual conformers in the parent ensemble, E0, (open squares) and random ensemble, 

E3, (open triangles).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chemical Structure Molecule 
Name 

IC50  
(µM) 

100X tRNA 
IC50 (µM) 

 

 

CCG-133994 12 ± 4  16 ± 5 

 CCG-133895 17 ± 1  29 ± 17 

 
CCG-133868 31 ± 7  21 ± 10 

 CCG-133905 53 ± 30  12 ± 1 

 
CCG-133879 29 ± 8  24 ± 2 

 

CCG-208662 41 ± 14 NA 

 

CCG-208677 55 ± 13  NA 

 

Supplementary Table 1. Hit Molecules identified by HTS with IC50 values from the Tat-displacement 

assay in the presence and absence of 100-fold excess tRNA. 
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Supplementary Table 2. Table of known TAR binders taken from the literature.  

(Provided as Excel Spreadsheet) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Molecule Structure N CN 
RDC 

RMSD (Hz) 
R 

Argininamide 

NMR 29 1.85 5.98 0.87 

E0 Docking 29 2.12 5.35 0.86 

E3 Docking 29 1.90 5.66 0.82	  

Acetylpromazine 

NMR 30 2.00 8.15 0.91 

E0 Docking 30 2.62 9.34 0.89 

E3 Docking 30 1.95 19.53 0.46	  

 

Supplementary Table 3. RAMAH3 analysis to determine the agreement between published ligand-

bound TAR RDCs4,5 and the lowest energy bound-TAR structures from NMR6,7 and docking. Shown 

are the number of RDCs (N), condition number (CN), root mean-square deviation (RMSD), and 

correlation coefficient (R) between measured and back-predicted RDCs. 
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