
 

 

A robust statistical framework to detect multiple sources of hidden 

variation in single-cell transcriptomes 

 

 

Supplementary Information 

 

 

Donghyung Lee1,*, Anthony Cheng1,2 and Duygu Ucar1,* 
1The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, Unites States of 

America, 2University of Connecticut Health Center, Farmington, Connecticut, Unites States 

of America  

*To whom correspondence should be addressed.	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

 



 
Supplementary Figure 1. Summary of the IA-SVA framework. At each iteration IA-SVA computes the 

first principal component (PC1) from read counts adjusted for all known factors and tests its significance 

[Steps 1-3]. If significant, IA-SVA uses this PC1 to infer marker genes associated with the hidden factor 

[Steps 4-5] and obtain a surrogate variable (SV) to represent the hidden factor using these marker genes [Step 

6]. In the next iteration, IA-SVA uses the obtained SV as an additional known variable to find further hidden 

factors. 

 

 

 

 



 
Supplementary Figure 2. Pearson correlation coefficients between simulated factor, group variable, 

and factor estimates from IA-SVA and alternative supervised (SSVA and RUVcp) and unsupervised 

(USVA, PCA, RUVemp and RUVres) methods. IA-SVA outperforms existing methods in terms of 

accuracy of the estimate for all three factors. See Supplementary Note 1 for more details of the data 

simulation and experiments. 

 



 
Supplementary Figure 3. Correlation structure among true and estimated factors (Group, Factor1, 

Factor2 and Factor3) and the group variable based on simulated scRNA-seq data. We studied the true 

correlation structure (Pearson correlation coefficient) among all simulated factors (Group, Factor1, Factor2 

and Factor3) and compared this against the correlation structure based on detected factors. IA-SVA 

accurately estimated correlations between the group variable and hidden factors, whereas other methods 

failed to do so particularly for the correlations between three hidden factors due to their orthogonality 

assumption. 

	  

	  

	  

	  

	  

	  
 

 



 
Supplementary Figure 4. The absolute correlation coefficient between the cell type estimates obtained 

via different methods and the indicator variable of the true cell type assignments in brain scRNA-Seq 

data. IA-SVA outperforms alternatives in inferring cell type as a hidden factor. Upper half of the matrices 

represent the absolute correlation coefficient scores for each comparison, where as lower half depicts the 

strength of the absolute correlation scores. The correlation score for IA-SVA’s estimate is marked with gray 

box. 

  	  



	  
Supplementary Figure 5. IA-SVA recapitulates detected heterogeneity in alpha cells in a second 

pancreatic islet scRNA-seq data.  (a) Heterogeneity captured within alpha cells using IA-SVA. Cells are 

clustered into two groups (black vs. red dots) based on IA-SVA’s surrogate variable 2 (SV2 > 0.05). (b) 

Hierarchical clustering of alpha cells using the top 30 marker genes (ward.D2 and cutree_cols =2). 36 cells 

clearly separate from the rest of the cells based on their high expression of these genes. Heterogeneity 

captured by (c) PCA, (d) USVA and (e) tSNE. In PCA, PC1 and PC2 were disregarded since PC1 and PC2 

map to the number of expressed genes and patient id respectively. While PCA, USVA and tSNE detected 

some heterogeneity among alpha cells, they failed to clearly separate these 36 cells. PCA and tSNE captured 

clusters originated from known factors (e.g., patient id), which are adjusted for in IA-SVA and USVA.  

 



 
Supplementary Figure 6. GO term enrichment analyses for 87 marker genes associated with IA-SVA’s 

SV2. FDR corrected enrichment p-values are depicted. Note that these genes are strongly enriched in cell-

cycle related GO terms, where 86 out of 87 genes are associated with at least one such GO term.  

 

 

 

	  

	  



	  
Supplementary Figure 7. Pairwise scatter plot of top four significant IA-SVA surrogate variables (SV) 

detected from human islet scRNA-Seq data including three cell types: alpha (GCG), beta (INS) and 

ductal (KRT19) cells. Cells on the right subfigure are color-coded based on the original assignment. SV1 

and SV2 clearly separate cells into distinct clusters, therefore are good candidates for further analyses. SV4 

captures technical heterogeneity stemming from cell contamination (e.g., stacked doublets), which was 

observed in Figure 2 and Supplementary Figure 5. 	  

	  
 

 

	  



	  
Supplementary Figure 8. Known variables explain single cell clustering and may confound with the 

heterogeneity stemming from different cell types. tSNE plots generated using entire set of expressed genes 

are color-coded using known variables: sex, patient id, ethnicity, and phenotype. Among these, patient id and 

ethnicity drive the clustering of cells and can lead to misinterpretations of cell types.	  

	  

	  
 

 

 



	  
Supplementary Figure 9. IA-SVA effectively dissects the hidden variation in a second human islet 

scRNA-Seq data with strong confounders. (a) Pairwise scatter plot of top four significant IA-SVA 

surrogate variables (SV). (b) Same as panel (a) where cell are color-coded with respect to original cell 

assignments. SV1 and SV4 separate cells into disjoint clusters that matches to respective cell types as 

determined in the original study. SV3 captures technical heterogeneity stemming from stacked doublet cells, 

which was observed in Figure 2 and Supplementary Figure 5. (c) Pairwise scatter plot of top four PCs from 

PCA on the same data. (d) Pairwise scatter plot of top four significant SVs obtained from USVA adjusted for 

all known factors that are also considered in the IA-SVA analysis (i.e., patient id, phenotype, sex and 

geometric library size). IA-SVA outperforms alternatives in capturing hidden factors associated with cell 

types. 

 

 

 



	  

	  
Supplementary Figure 10. IA-SVA detects marker genes associated with different cell types among islet 

cells. Hierarchical clustering of islet cells using 57 marker genes detected by IA-SVA (ward.D2 and 

cutree_cols = 4). These genes are significantly associated (Benjamini-Hochberg q-value < 0.05 ) and highly 

correlated (r2 > 0.3 ) with IA-SVA’s SV1 and SV4. Note that cells are clustered together based on their cell 

types. Color-coding is based on the original study’s assignments. 	  

	  
	  
	  
 

 

 

 

 

 



Supplementary Note 1. IA-SVA outperforms existing methods for detecting hidden 

sources of variation.  

We simulated gene expression levels for 2,000 genes and 50 cells under the alternative 

hypothesis (i.e., existence of hidden factors) with the moderate correlation scenario 

(|r|=0.3~0.6). We applied IA-SVA and supervised (SSVA 1 and RUVcp2) and unsupervised 

(USVA1, PCA, RUVemp 2 and RUVres 2) methods to detect the simulated factors . Among 

the studied methods, only IA-SVA, USVA and SSVA can infer the number of hidden 

factors in the data (k). For other methods, we used k=3. For the significance assessment of 

estimated factors we used 20 permutations and set the nominal level of significance at 0.05 

for IA-SVA, USVA and SSVA analyses. While all three (IA-SVA, USVA and SSVA) 

determined the number of hidden factors correctly (i.e., k=3), IA-SVA outperformed other 

methods in terms of the accuracy of the estimate (the correlation between simulated and 

estimated factors) (Supplementary Fig. 2). For the estimation of Factor1 (i.e., the factor 

that affects 30% of genes), IA-SVA outperformed all tested supervised and unsupervised 

methods where the correlation between the IA-SVA estimation and the simulated factor 

was 0.99 (Supplementary Fig. 2a). The efficacy of IA-SVA was more evident for factors 

affecting smaller number of genes. For example, for Factor 2 (affecting 20% of genes), the 

IA-SVA estimate was almost perfectly correlated with the true factor (r=0.99), whereas the 

correlation was lower for the other two methods (r=0.83) (Supplementary Fig. 2b). 
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