Accessible, curated metagenomic data through ExperimentHub

Edoardo Pasolli^{*,1}, Lucas Schiffer^{*,2}, Paolo Manghi^{*,1}, Audrey Renson², Valerie Obenchain³, Duy Tin Truong¹, Francesco Beghini¹, Faizan Malik², Marcel Ramos², Jennifer B. Dowd^{2,4}, Curtis Huttenhower^{5,6}, Martin Morgan³, Nicola Segata^{^,1}, Levi Waldron^{^,2}

Affiliations:

¹ Centre for Integrative Biology, University of Trento, Trento, Italy

² Institute for Implementation Science and Population Health, City University of New York School of Public Health, New York, New York, United States of America

³ Roswell Park Cancer Institute, University of Buffalo, Buffalo, New York, United States of America

⁴ Department of Global Health and Social Medicine, King's College London

⁵ Biostatistics Department, Harvard School of Public Health, Boston, Massachusetts, United States of America

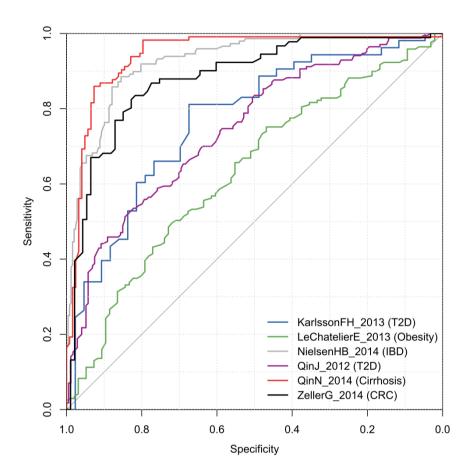
⁶ The Broad Institute, Cambridge, Massachusetts, United States of America

^{*} Equal contribution

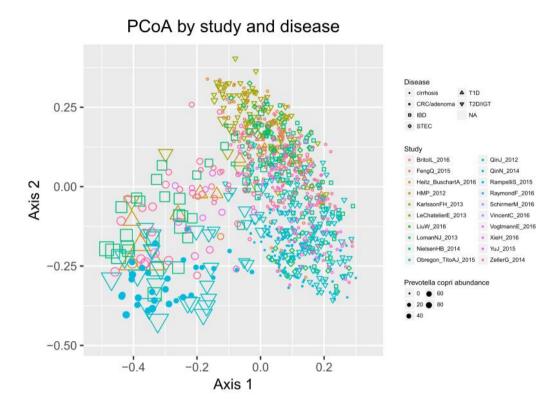
[^] Corresponding authors: <u>levi.waldron@sph.cuny.edu</u>; <u>nicola.segata@unitn.it</u>

Dataset	Body	Disease	# Total Samples	# Case Samples	Average Reads per Sample	Size	# Reads	Reference
Name	Site				(std) (M)	(Tb)	(G)	
AsnicarF_2017	Stool, milk	None	26	-	21.4	0.2	0.5	7
					(19.8)			
BritoIL_2016	Stool, oral	Other	312	-	67.4	5.6	21.0	8
		condition			(51.8)			
Castro-NallarE_2015	Oral	Schizophrenia	32	16	61.0	0.5	2.0	9
					(25.2)			
ChngKR_2016	Skin	Atopic	78	38	15.8	0.3	1.2	10
		dermatitis			(7.5)			
FengQ_2015	Stool	Colorectal	154	93	53.8	2.3	8.3	11
		cancer			(8.5)			
Heitz-BuschartA_2016	Stool	Type 1	53	27	44.5	0.5	2.4	12
		diabetes			(0.9)			
HMP_2012	Several	None	749	-	51.5	9.4	38.6	4
					(44.8)			
KarlssonFH_2013	Stool	Type 2	145	53	31.0	1.4	4.5	13
		diabetes			(17.6)			
LeChatelierE_2013	Stool	Obesity	292	169	69.0	4.0	20.1	14
					(23.2)			
LiuW_2016	Stool	Other condition	110	-	58.3	1.8	6.4	15
					(26.8)			
LomanNJ_2013	Stool	Shiga-toxigenic	43	43	9.2	0.1	0.4	16
		E. coli			(12.1)			
NielsenHB_2014	Stool	Inflammatory	396	148	53.9	3.5	21.4	17
		bowel diseases			(20.2)			
Obregon-TitoAJ_2015	Stool	Other	58	-	47.1	0.6	2.7	18
		condition			(20.9)			
OhJ_2014	Skin	None	291	-	24.7	2.2	7.2	19
					(38.1)			
QinJ_2012	Stool	Type 2	363	170	40.2	4.0	14.6	20
		diabetes			(11.8)			

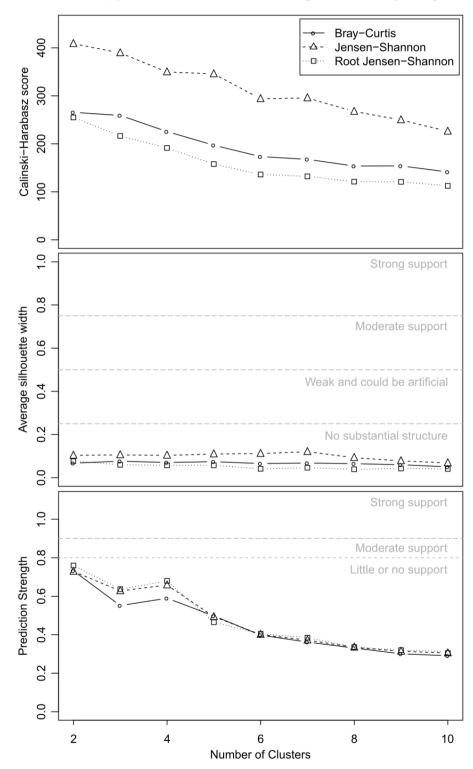
Supplemental Tale 1: Study characteristics for the current release (development version 1.3.7) of the curatedMetagenomicData package. Additional details on the datasets are available in the Supplementary Methods.

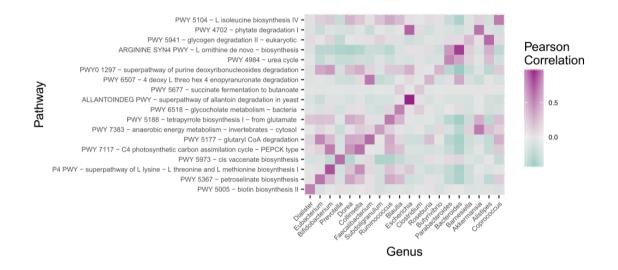

TOTAL	-	-	5718	1441	44.5	63.3	254.3	-
		cancer			(26.9)			
ZellerG_2014	Stool	Colorectal	199	133	63.5	2.9	12.6	30
		cancer			(10.0)			
YuJ_2015	Stool	Colorectal	128	75	56.3	2.1	7.2	29
-		condition			(9.1)			
XieH_2016	Stool	Other	250	-	72.9	5.2	18.2	28
	51001	cancer	110	52	(15.6)	1.0	,	
ogtmannE_2016	Stool	Colorectal	110	52	66.4	1.6	7.3	27
incente_2010	5:001	CDI	225	55	(12.7)	1.0	4.0	
/incentC_2016	Stool	condition CDI	229	33	(11.1) 17.4	1.6	4.0	26
/atanenT_2016	Stool	Other	785	171	21.0	4.4	16.4	
	Ch a a l	Other	705	474	(5.2)		10.4	25
TettAJ_2016	Skin	Psoriasis	97	97	3.0	0.1	0.3	
					(8.2)			_
chirmerM_2016	Stool	None	471	-	30.3	3.1	14.3	24
		condition			(50.4)			24
RaymondF_2016	Stool	Other	72	-	135.1	2.7	9.7	23
		condition			(19.3)			22
RampelliS_2015	Stool	Other	38	-	22.3	0.2	0.8	22
		cirrhosis			(30.9)			
QinN_2014	Stool	Liver	237	123	51.6	3.0	12.2	21

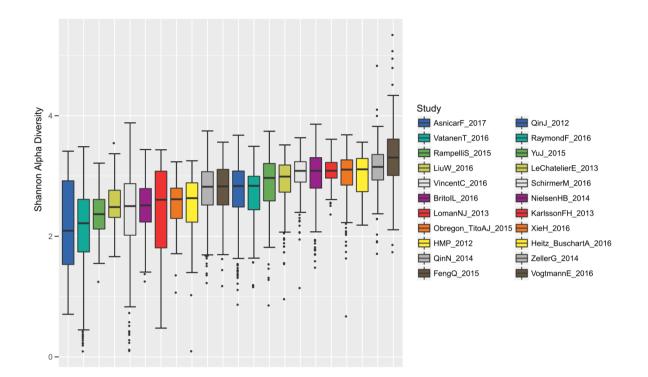
Supplemental Table 2: Metadata fields available in curatedMetagenomicData


Metadata Field	Description					
adiponectin	Curators must use mg/l					
ge	Subject age (years)					
ge_category	Age category: newborn < 1 year; 1 <= child < 12; 12 <= schoolage < 19; 19 <= adult <= 65; senior > 65					
ıjcc	AJCC staging for colorectal-cancer					
lbumine	Albumine level; curators must use g/l					
lcohol	Subject is reported as a drinker					
ntibiotics_current_use	Subject is currently taking antibiotics					
ntibiotics_family	Family of antibiotics currently used; Semicolon-separated					
ilubirin	Bilubirin; curators must use mg/dl					
irth_control_pil	Use of the birth-control-pils at the sampling time (men: no)					
MI	Body mass index (kg/m2)					
oody_site	Bodysite of acquisition					
ody_subsite	Subsite of body site of acquisition					
d163	Curators must use ng/ml					
holesterol	Curators must use mg/dl					
country	Country of acquisition using ISO3 code from http://www.fao.org/countryprofiles/iso3list/en/					
z-peptide	Curators must use ng/ml					
reatine	Curators must use micro-mol/l					
reatinine	Curators must use micro-mol/l					
tp	Cytidine triphosphate level					
lays_after_onset	Days from the onset of the disease					
lays_from_first_collection	Used for time series studies					
lisease lisease_subtype	Semicolon-delimited vector of conditions; Use healthy only if subject is known to be healthy; CRC=colorectal cancer Disease subtype; CD=Chrohn's Disease					
DNA_extraction_kit	DNA extraction kit					
lyastolic p	Measured in mm/Hg					
ever_smoker	Ever been a smoker					
amily	A number identifying the family subjects belong; not corrected for					
asting_insulin	meta-analyses Curators must use micro-units/ml					
erm_milk_prod_consumer	Dfmp means yes (defined milk product)					
gf-19	Curators must use pg/ml					
lg-genotype	Any term for filaggrin-protein genotype					
obt	Fecal occult blood test					
jender	Subject gender					
;lp-1	Curators must use pmol/l					
lucose	Curators must use mg/dl					
glutamate_decarboxylase_2_antibody	Glutamic acid decarboxylase (GAD65) antibody assay					
hba1c	Curators must use %					
ndl	Curators must use mg/l					

hitchip probe number HIT-chip probe score hla_dbq11 Hla_dbq11 allele hla dbg12 Hla dbg12 allele hla dga11 Hla dga11 allele hla dqa12 Hla dqa12 allele hla_drb11 Hla drb11 allele hla_drb12 Hla_drb12 allele hscrp High-sensitivity C-reactive protein test result il-1 Curators must use pg/ml infant_age Infant age (days); should be used for infants < 2 years old inr International normalized ratio insulin(cat) Insulin intake as a boolean lactating Lactating subjects (men: no) ldl Curators must use mg/l leptin Curators must use micrograms/I location free-form additional location information median read length Median read length - calculated from raw data mgs richness Metagenomic species richness minimum read length Minimum read length - calculated from raw data momeducat Years of education of the mother of the subject (yeah: funny) mumps Subject has been through mumps in life NCBI accession Semicolon-separated vector of NCBI accessions non westernized Subject belongs to a non-westernized community number bases Total number of bases sequenced in the sample number reads Number of final reads - calculated from raw data PMID Identifier of the main publication in PubMed pregnant Pregnancy of the subject (men: no) protein_intake Indication about the protein intake in the Mongolians diet prothrombin time Prothrombin time in seconds sampleID Sample identifier sequencing_platform This will be modified as new sequencing platforms are added to the database shigatoxin 2 elisa Enzyme-linked immunosorbent assay for Shiga-toxigenic E.coli smoker Currently a smoker at sampling start_solidfood First day of solid food introduction (newborns) stec count Amount of STEC colonies detected Texture of the stool at sampling time stool_texture study_condition The main disease or condition under study; control for controls subjectID Subject identifier systolic_p Measured in mm/Hg TNM classification for colorectal-cancer tnm triglycerides Curators must use mg/l visit_number Visit number for studies with repeated visits


Supplemental Figure 1: **Health status classification from species abundance.** Six different classification problems of health status were attempted using a random forest algorithm and cross-validation to estimate prediction accuracy. Plots show ROC curves by using species abundance as microbiome features, one of the five data types considered in the Example 1 of Figure 1. Results are consistent with the meta-analysis conducted in ³¹.


Supplemental Figure 2: Principal Coordinates Analysis (PCoA) plot of species abundance for stool samples on selected diseases. Specimens are annotated by disease state (shape), study name (color), and abundance of *Prevotella copri* (size).


Supplemental Figure 3. Clustering scores for enterotypes in gut WGS samples. Consistent with Koren *et al.* ⁵, these plots indicate weak support for any discrete clustering in the data and confirm that the three enterotypes hypothesis is likely an oversimplification that does not hold when considering large set of biogeographycally diverse populations. Thresholds for significance of clustering are presented as dashed lines, and are the same thresholds used by Koren *et al.* ⁵. Each plot line represents an analysis that can be accomplished with one line of code using the R packages 'fpc' (prediction strength and Calinski-Harabasz) and 'cluster' (silhouette index), provided in the curatedMetagenomicData package examples.

Supplemental Figure 4: Top correlations between metabolic pathways and genera. Pearson correlation was calculated between each individual pathway (HUMAnN2 pathways from the full UniRef90 database) and each of the top 20 most abundant microbial genera, in a combined dataset obtained from merging 20 studies of stool specimens. The top correlations are 1) Ornithine de novo biosynthesis: Bacteroides (r = 0.86), activity that has been confirmed in cultures of this organism³², and 2) superpathway of allantoin degradation in yeast: Escherichia (r =0.95). Although this superpathway has been associated with yeast, it includes subpathways (such as allantoin degradation to glyoxylate I and allantoin degradation to ureidoglycolate I) that are common in Escherichia, which is known to be an allantoin utilizier under anaerobic conditions ³³. Of note, the top 100 correlations have adjusted p < 0.001.

Supplemental Figure 5: Alpha diversity of taxa from 22 studies of the gut microbiome. Shannon Alpha Diversity was calculated for each individual sample within each human gut microbiome study. The median diversity varies by a maximum factor of 1.5 between studies, however the variability within studies as measured by interquartile range varies by more than 3-fold.

