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1 Determining the best fitting distribution per gene

To determine the best fitting distribution to the observed RNA-seq count data, we compare the theoretical

fit of the Poisson, negative binomial (NB), zero-inflated Poisson (ZIP) and zero-inflated negative binomial

(ZINB) and Beta-Poisson (BP) distribution to the empirical RNA-seq read counts [2, 8, 3]. We used the

following statistics to evaluate which distribution fits best:

• goodness of fit (GOF) statistics based on Chi-square statistic using residual deviances and degrees of

freedom (Chi-square test).

• Akaike Information Criterium (AIC).

• Likelihood Ratio Test (LRT) for nested models, i.e. testing whether estimating a dispersion parameter

in the NB models is appropriate.

• Vuong Test (VT) for non-nested models, i.e. testing whether assuming zero-inflation results in a better

fit.

• Comparing the observed dropouts to the zero count prediction of the models.

Note that the goodness of fit statistics could not be calculated for the BP, however, since it already the

AIC statistic suggested that the BP fit worse than the other distributions and could neither predict the

dropouts correctly (Figure S1, Supplementary File S2), we did not follow this further.

We analyzed 8 published single cell RNA-seq studies ([1, 9, 11, 6, 7, 14, 13, 15]) produced using 9 different

RNA-seq library preparation methods (Smart-seq/C1, Smart-seq2, MARS-seq, SCRB-seq, STRT, STRT-

UMI, Drop-seq, 10XGenomics, CEL-seq2). For illustrative purposes, we focus on Kolodziejczk et al. (2015)

[9], but the distribution analysis for all can be found in Supplementary File S2.

For the Kolodziejczk et al. (2015) data, we found that the NB distribution is an adequate fit (Figure

S1): The Chi-Square test indicates that the NB is appropriate for at least 40 % of the genes (Figure S1 A).

Moreover, the AIC suggests that the NB is in 60% of the cases better than the Poisson, ZIP, ZINB and BP

(Figure S1 B). The ZINB is the only of the commonly used distributions that comes close, providing the best

fit for 40% of all compared genes, however this difference is only significant for 6% (Figure S1D).

One of the major differences between the methods is the use of Unique Molecular Identifiers (UMIs) that

allow for confident removal of PCR-duplicates [5, 15]. For all protocols considered, we evaluated the fit of

the 5 different distributions, and for the vast majority the NB would be the distribution of choice (Figure

S2). This is especially true for the UMI-methods: Here no zero-inflation is needed for modeling the gene

expression distribution. On the contrary, also a simple Poisson often provides the best fit (Figure S4).

Next, we assess the fit of the dropout rate by comparing expected and predicted zero counts per gene.

Interestingly, even though the negative binomial does not model dropouts explicitly, the deviation of predicted

zero counts from the expected under the NB distribution is relatively small (Figure S1 C). The ZINB only gives
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a small advantage with respect to dropouts. The comparison of models by LRT and VT illustrates the small

improvement of the model fit by assuming a ZINB distribution (10%) (FigureS1 D) for the Kolodziejczk

data, which is comparable to the average for non-UMI methods, and much lower for the UMI-methods

(<5%)(Figure S4 and Figure S3).

We thus refrain from using a mixture distribution, however for some of the protocols that do not utilize

UMIs, such as e.g. Smart-Seq2, the ZINB might provide a better fit and should be used as a sampling

distribution in the power simulations.
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Figure S1: A) Goodness of fit of the model per gene assessed with a Chi-square test based on residual
deviance and degrees of freedom. B) The fraction of genes for which the respective distribution has the
lowest AIC and additionally the distribution with the lowest AIC as well as not rejected by the goodness of
fit statistic. C) Observed versus predicted dropouts per distributional model and gene. D) Model assessment
per gene based on Likelihood Ratio Test for nested models and Vung Test for non-nested models.
The same plot representing other datasets can be found in Supplementary File S2.
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Figure S2: The negative binomial gives the best fit for the majority of genes (i.e. lowest AIC) for all
UMI datasets. For protocols that do not account for PCR duplicates, the zero-inflated negative binomial
often has a lower AIC, however this is mainly due to genes that cannot be fitted very well in general (GOF
p-value<=0.05).

2 Read Count Simulation Framework

We have implemented a read count simulation framework assuming an underlying negative binomial distri-

bution. To predict the dispersion θ given a random draw of an observed mean expression value µ, we apply a

locally weighted polynomial regression fit. Furthermore, to capture the variability of the observed dispersion

estimates, a local variability prediction band is applied (R package msir [12]). The read count for gene i in

sample j is then given by:

Xij ∼ NB(µ, θ) (1)

The mean, dispersion and dropout rates of an example read count simulation closely resembles the observed

estimates for the Kolodziejczk data set (Figure S5).

For bulk RNA-seq experiments, the negative binomial alone is not able to capture the observed number

of dropouts appropriately. Here, we predict the dropout probability (p0) using a decreasing constrained

B-splines regression (CRAN R package cobs [10]) of dropout rate against mean expression to determine the

mean expression value µDP5, where the dropout probability is expected to fall below 5%. For all genes with
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Figure S3: Model assessment per gene based on likelihood ratio test for nested models and Vuong test for
non-nested models shows that zero-inflated negative binomial significantly improves the fit for maximally
25% of the genes (STRT protocol).

µi < µDP5 we do not estimate a gene specific dropout probability, but sample the dropout probability from

all genes with < µDP5. With these parameters, the read count for a gene i in a sample j is modeled as a

product of a negative binomial multiplied with an indicator whether that sample was a dropout or not, which

is determined using binomial sampling:

Xij ∼ I ∗NB(µ, θ),where I ∈ {0, 1} (2)

P (I = 0) = B(1− p0) (3)

The necessity of this apparently unintuitive zero inflation for bulk data is illustrated by the dataset from

Eizirik et al. 2012 [4]. Note that dropouts occur across genes with different mean expression levels so that

there is only a very weak relationship between mean expression and dropout probabilities (Figure S6).

For the simulations of expression changes, the user can freely define a distribution, a list of log2-fold

changes or simply a constant. We recommend to simulate with a realistic log2-fold change distribution, which

we determined for the Kolodziejczyk et al. (2015) [9] as a narrow Γ(α, β)- distribution plus −1 × Γ(α, β)

(Figure S7).

4



non−UMI UMI

0% 25% 50% 75% 100% 0% 25% 50% 75% 100%

Lowest
AIC

Lowest
AIC + 
GOF 

p >0.05

Percentage

Negative 
Binomial

Zero−Inflated 
Negative Binomial Poisson Zero−Inflated 

Poisson Beta−Poisson

A

non−UMI UMI

0% 25% 50% 75% 100% 0% 25% 50% 75% 100%

Zero−Inflated Negative Binomial 
> Zero−Inflated Poisson

Zero−Inflated Poisson 
> Poisson

Negative−Binomial 
> Poisson

Zero−inflated Negative−Binomial 
> Negative−Binomial

Percentage

Te
st

B

Figure S4: 6 UMI-protocols (STRT-UMI, Cel-SEq2, Drop-seq, MARS-seq, SCRB-seq,10XGenomics) are
compared to 3 protocols not using UMIs (Smartseq/C1, SmartSeq2, STRT), showing that zero-inflation is
only relevant for non-UMI-methods. A) The fraction of genes for which the respective distribution has the
lowest AIC and additionally the distribution with the lowest AIC is not to rejected by the goodness of fit
statistic. D) Model assessment per gene based on likelihood ratio test for nested models and Vuong test for
non-nested models.

Figure S5: A) Dispersion versus mean. B) Dropout versus mean.
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Figure S6: For bulk RNA-seq, the simulations include dropout sampling to better mimic the observed
mean-dropout relation. A) Dispersion versus mean with locally weighted polynomial regression fit (orange
line) and variability prediction band (dashed orange line). B) Dropout versus mean with red box indicating
genes with < µDP5 from which the dropout probability will be sampled from.
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Figure S7: Log2 fold changes between serum+LiF and 2i+LiF cultured cells (Kolodziejczk et al. 2015).
Red line indicates the density of a theoretical narrow gamma distribution (shape and rate equal to 3).
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3 Included RNA-seq Experiments

We provide raw count matrices for several published single cell data sets (Table S1 on github (https://github.

com/bvieth/powsimRData). Furthermore, the vignette gives an example on how to access RNA-seq datasets

in online repositories such as recount (https://jhubiostatistics.shinyapps.io/recount/).

Table S1: Key properties of the example data-sets included in powsimR.

Study Accession Species No.
Cells

Cell-
type*

Library
prepara-
tion

UMI Remarks

1 Kolodziejczk et al.
(2015) [9]

E-MTAB-
2600

Mouse 869 ESC Smart-seq
C1

no different growth me-
dia

2 Islam et al. (2011)
[6]

GSE29087 Mouse 48 ESC STRT-seq no -

3 Islam et al. (2014)
[7]

GSE46980 Mouse 96 ESC STRT-seq
C1

yes -

4 Buettner et al.
(2015) [1]

E-MTAB-
2805

Mouse 288 ESC Smart-seq
C1

no FACs-sorted for
cell-cycle

5 Soumillon et al.
(2014) [13]

GSE53638 Human 12,000 adipo-
cytes

SCRB-
seq

yes time-series

* ESC - embryonic stem cells
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