
 

Supplementary Figure 1 

Illustration of the effects of scattering in conventional wide-field and light-field microscopy, illustrating the prior state of the art 

(a)  Ground truth: neurons in the mouse cortex. 

(b)  Wide field image of ground truth in the presence of scattering.  

(c)-(d)  LFM raw image of ground truth without scattering (c) and with scattering (d).  

(e) Zoom into the indicated region in (d), solid white line is intensity profile along dashed white line. Black arrow highlights 
brightness gradients originating from directionality information retained in scattered light, while white arrow highlights peak due 
to ballistic light.  

(f)  Axial projection of volumetric reconstruction of the LFM image without scattering shown in (c).  

(g)  Un-mixed temporal signals extracted from an LFM movie without scattering, from the regions-of-interested indicated as dashed 
circles in (f).  

(h)  Axial projection of volumetric reconstruction of the LFM image with scattering shown in (d).  

(i)  Temporal signals extracted from an LFM movie with scattering, from dashed circles in (h). Black rectangles highlight regions 
with crosstalk from one neuronal signal to the other in the presence of scattering. 



 

Supplementary Figure 2 

Seeded source extraction principles and convergence 

(a) Standard deviation image of a raw LFM movie from mouse cortex (no background subtraction) 

(b) Example of spatial background component extracted using rank-1 matrix factorization of a raw LFM recording from mouse cortex 

(c) Example of temporal background component extracted using rank-1 matrix factorization of a raw LFM recording from mouse cortex 

(d) Standard deviation image of a background-subtracted LFM movie from mouse cortex 

(e) Maximum-intensity projection of LFM reconstruction of the standard deviation image with background subtraction shown in (d). Red 
circles: Centers of neuron candidates as identified using volume segmentation by local maxima search 

(f) Example of initial forward model for a particular neuron candidate. White trace: corresponding initial temporal signal estimate 

(g) Convergence plot of alternating spatial and temporal non-negative least squares optimization: Norm of residual vs. iteration count 

(h) Example of refined forward model after 20 iterations. White trace: corresponding refined temporal signal estimate 



 

Supplementary Figure 3 

Simulation of SID performance versus ground truth: SID-demixing of overlapping neurons with small axial distance 

(a) Detail from standard deviation image of a synthetic LFM raw movie generated as described in Suppl. Note 3 for a simulated 
depth of 450 µm). 

(b) + (c) Two demixed spatial components (neuron footprints) detected by SID within the encircled region shown in (a). The detected 
neurons are spaced 3 µm apart laterally and 8 µm axially in the ground truth. 

(d)  Composite color overlay of the spatial components (b) and (c), showing considerable overlap (yellow). 

(e) - (h)  Comparisons of ground truth temporal signals extracted using SID and spatial region-of-interest extraction. Black: Ground truth 
signals for the two neurons whose LFM images fall into the area encircled in (a). Green: demixed signals corresponding to the 
spatial components (b) and (c), as indicated by the arrows. Violet: signal extracted by summing over the encircled area in (a). 
Red circles highlight intervals where time series of neuron 1 (b) and neuron 2 (c) are mixed for a circular region-of-interest 
extraction (e, f) and demixed for SID (g, h) as evident by comparing the corresponding signals to the ground truth. 



 

Supplementary Figure 4 

Seeded iterative demixing applied to whole-brain Ca2+ imaging in larval zebrafish 

Heat map of 5505 neuronal signals detected by Seeded Iterative Demixing (SID) in a four minute, 20 Hz LFM recording of spontaneous 
activity in the larval zebrafish brain. Corresponding neuron locations are shown in Fig. 2 d-e of the main text. 



 

Supplementary Figure 5 

Comparison of extraction performance of Seeded Iterative Demixing and an ICA-based method in larval zebrafish 

(a)  Zoom into a frontal slice of the reconstructed standard deviation image shown in Fig. 2c of the main text, overlaid with spatial 
component centroids (neuron positions) detected by an ICA-based method (orange circles) and Seeded Iterative Demixing 
(SID) (green circles). Circle radii are standard deviations of spatial components (orange circles), or a fixed value of 3 µm (green 
circles).  

(b)  Example signals detected at the locations encircled in (a). Numbers in (a) and (b) identify corresponding locations and signals. 
Signals are grouped into three groups (indicated by curly braces) according to their spatial proximity and overlapping spatial 
components. (i) Example of components found by SID (1) and ICA (2), respectively, that match well both in location and activity. 
(ii) Example of signals where a single component from Seeded Iterative Demixing (SID) (3) is split up into several overlapping 
and temporally correlated components by ICA (4, 5). (iii) Examples of components where ICA resulted in signals (9, 10) that 
appear to be mixtures of signals detected by SID (6, 8), due to ICA detecting “ghost” components in scatter. Vertical arrows 
indicate time points where peaks from SID-signals (6, 8) appear in ICA-signals (9, 10). 



 

Supplementary Figure 6 

Video-rate volumetric Ca2+ imaging to 380 µm depth in mouse cortex 

Heatmap of neuron activity traces obtained by Seeded Iterative Demixing (SID), corresponding to positions shown in Fig. 3c-d of the main 
text. Upper panel: 296 active, GCaMP6m-expressing neurons found in 0-170 µm depth range. Lower panel: 208 neurons found in 120-
380 µm in a subsequent recording. 



 

Supplementary Figure 7 

Neuron detection scores for different sensitivity settings of SID and CaImAn and quality of SID-extracted Ca2+ transients 

(a)-(f) Neuron detection scores "Sensitivity", "Precision" and "F-score" of SID and CaImAn for three different sensitivity settings, as 

described in Suppl. Note 5 

(g) Neuron detection scores versus depth as achieved by SID (green traces), in comparison to scores achieved by the analysis 
package CaImAn applied to the 2PM data (blue traces), both evaluated with respect to a ground truth. (i) Sensitivity score 
(ratio of number of detected to actual neurons), (ii) Precision score (ratio of number of true positives to sum of true and false 
positives), (iii) F-Score (harmonic mean of sensitivity and precision). n = 4. 

(h) Correlation of SID-extracted signals to ground truth (see Suppl. Note 5), computed across peaks only, for four different tissue 
depths 



 

Supplementary Figure 8 

Background suppression and neuropil rejection 

(a) Mean image of 2PM movie of a single plane in mouse cortex, same data as in Fig. 5c  

(b) Standard deviation image of 2PM movie of a single plane in mouse cortex, same data as in Fig. 5c. White arrows highlight 
neurites that are identified by a local maximum search and segmentation of the LFM standard deviation image (c, d), in addition 
to active somata. 

(c) Maximum-intensity projection of reconstructed standard deviation image of LFM movie from mouse cortex, recorded by 
sending part of the 2P-excited emission light to an LFM camera in a hybrid 2PM-LFM setup. Corresponding 2PM signal shown 
in (a) and (b). 

(d) Result of volume segmentation of LFM-reconstructed standard deviation image shown in (c). Comparison with (b) shows that 
in addition to the active somata, some large and active neurites (corresponding pairs highlighted with white arrows in (b) and 
(d)) are identified by the local maximum search and segmentation algorithm and thus can be subtracted. 

(e) + (f):  Examples of axial maximum intensity projections of LFM-reconstructed footprints classified as neurons 

  (g) + (h):  Examples of axial maximum intensity projections of LFM-reconstructed footprints classified as neuropil 



 

Supplementary Figure 9 

Motion detection and motion frame exclusion in SID raw data 

(a) Motion metric based on image autocorrelation as described in Suppl. Note 7, evaluated for a 2PM recording (red trace) and a 

simultaneously acquired SID recording (green trace) from mouse cortex (PPC) at 200 µm depth. Black trace indicates rotational 
speed [a.u.] of treadmill disk due to walking behavior of a head-fixed mouse, as measured by a high-speed optical computer 
mouse in proximity to the treadmill disk  

(b) Top panel: Heatmap of SID-extracted neuronal activity traces from simultaneous 2P-SID recording (frame rate 3 Hz) from 
mouse cortex (PPC) at 200 µm depth. Bottom panels: Motion metrics and treadmill tracking data as in (a). Column marked in 
yellow in top panel indicates frame excluded from further analysis due to high motion metric value in corresponding time bin, 
as described in Suppl Note 7 



 

Supplementary Figure 10 

SID-extracted positions and signals of jRGECO-labelled neurons in mouse hippocampus CA1 

(a) Heatmap of SID-extracted neuronal activity traces for 54 neurons recorded from mouse hippocampus CA1 at a frame rate of 
5 Hz. Cranial window surgery and imaging as described in the main text and Methods section. (The recordings were performed 
under suboptimal conditions in which the expression of jRGECO was not fully developed and the transfection protocol sub-
optimal) 

(b) SID-extracted 3D neuron positions corresponding to activity traces in (a). Top panel: isometric view. Bottom panels: Top, side 
and front views. Depth is given from bottom surface of cranial window placed onto corpus callosum as shown in Fig. 4a of the 
main text 
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SUPPLEMENTARY NOTE 1: SEEDED ITERATIVE DEMIXING (SID) ALGORITHM 

IMPLEMENTATION DETAILS  

Background rejection 

Deep tissue LFM movies contain strong global background fluorescence which has to 
be subtracted before computing a standard deviation image and before any further 
steps. This background is mostly due to fluorescence originating from above and 
below the depth range captured by the numerically simulated PSF that is used for 
reconstruction. We extracted this background by applying a rank-1-matrix-
factorization to the LFM raw data. The spatial and temporal components obtained 
from rank-1-matrix-factorization are added to the neuron candidates in the spatial and 
temporal update steps – as described in the Methods section – as an additional row 
and column of the S and T matrices, respectively. The background estimates are 
therefore refined during these optimization steps, and activity may be re-allocated 
from neurons to the background, and vice versa. In the temporal update step, this 
corresponds to an inherent background subtraction, while in the spatial update step, 
the shape of the background is refined. 

Without background subtraction, the standard deviation image of an LFM movie is 
dominated by temporal variations in the background (Suppl. Fig. 1a). We found a one-
dimensional approximation of the background sufficient to obtain the ballistic 
components of the neuron footprints. Suppl. Fig. 1b illustrates the spatial component 
(background image) of the rank-1 factorization, and Suppl. Fig. 1c the corresponding 
temporal component (background signal). We compared the standard deviation 
image without and with background subtraction, respectively (Suppl. Fig. 1a, 1d). It is 
evident that removing the background reveals LFM footprints of localized sources. 
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Reconstruction with sparsity, segmentation 

The standard deviation images were reconstructed (de-convolved with numerically 
simulated PSF) using a modification of a Richardson-Lucy-type algorithm known as 
ISRA1, which yields non-negative components. Classical LFM reconstruction based on 
Richardson-Lucy deconvolution with a ballistic PSF2,3 is prone to blocky artefacts near 
the native focal plane of the microscope where the optical spatial sampling density is 
strongly reduced2. These artefacts are detrimental to the success of the subsequent 
segmentation procedure. When necessary, we therefore modified ISRA with a sparsity 
constraint. The update step for volume estimate x is: 

𝑥𝑛+1 = 𝑥𝑛  
𝑃𝑇 𝑦

𝑃𝑇 𝑃 𝑦 + 𝜆 1dim(𝑥)
, 

where 1dim(𝑥) is a vector of ones with the same dimension as x, and P is the PSF. The 

parameter 𝜆 governs the weight of the sparsity-encouraging term. We used 𝜆 > 0 for 
the zebrafish recordings shown in Fig. 2. For deep mouse recordings, we set 𝜆 = 0 for 
performance reasons and instead discarded neuron candidates detected in the artefact 
region. Before reconstruction, standard deviation images were thresholded to exclude 
residual background activity. 

Segmentation 

In order to suppress spatial frequencies not compatible with neuron shapes, a 
bandpass filter was applied to the reconstructed standard deviation volume, followed 
by thresholding the result to exclude background. Then, a local maximum search 
algorithm was applied, Suppl. Fig. 1e illustrates the result: Detected regions in a 
reconstructed standard deviation image are labelled with red dots. The segmentation 
threshold is chosen to robustly reject noise and artefacts. 

Non-negative matrix factorization 

The algorithm proceeds as described in the Methods section of the main text, by 
alternating temporal and spatial update steps. Suppl. Fig. 1f shows an example of the 
initial estimates of spatial and temporal components of a neuron. Suppl. Fig. 1h shows 
the components for the same neuron after two update iterations: While the initial 
spatial estimate only includes the ballistic footprint, the updated estimate increasingly 
incorporates the scattered light around it. The corresponding temporal components 
become more pronounced and – crucially – increasingly de-mixed from overlapping 
signals (Fig. 1c and 5a). 

Convergence 

Both the spatial and temporal optimization steps as defined in the Methods section 
are convex problems and therefore each converge to a global optimum. The combined 
problem is bi-convex and a variant of what is known as an alternate convex search4 in 
the literature, which is a frequently used algorithm for this class of problem. The 
alternate convex search algorithm optimizes a bi-convex target function by splitting 
the problem into its convex sub-problems, initializes the solution with a guess, and 
iteratively solves one of the two sub-problems, while keeping the other variable fixed 
at the optimum of the previously solved sub-problem (or the initial guess), and then 
alternating the sub-problems until a stopping criterion is reached. It has been shown4 
that the iteration sequence pursued by the alternate convex search algorithm has at 
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least one accumulation point, and that if each accumulation point has a unique 
solution for each of the sub-problems, then the difference between consecutive 
iterations converges to zero. The value of the target function is the same at each 
accumulation point, and reaches a partial optimum (i.e., an optimum in each of the 
convex variables). In a strict sense, the global optimality of the solution is not 
guaranteed. However, alternate convex search is routinely applied to bi-convex 
optimization problems, for instance in the context of Ca2+ imaging for spatio-temporal 
demixing of 2PM data5, with good success.  

For both the spatial and temporal update steps, we use the ISRA algorithm without a 
sparsity constraint. We found it to parallelize efficiently across multiple CPU-cores as 
well as thousands of GPU-cores, allowing for quick solution of large problems 
(thousands of pixels times thousands of time steps within approx. 1 GPU-second per 
neuron). In Suppl. Fig. 1g, the normalized residual of the combined spatio-temporal 
updates is plotted on a logarithmic axis versus the number of iterations. We routinely 
observe fast convergence and abort the algorithm after approx. 10 iterations, when the 
residual has been reduced by four orders of magnitude. At this point, no spatial or 
temporal structure is evident in the residual data anymore. 

SUPPLEMENTARY NOTE 2: SYNTHETIC DATASET GENERATION 

The synthetic dataset used for Fig. 1c of the main text was generated as follows, using 
literature values for the parameters7–9: 40 neurons (spheres of 8 µm diameter) were 
randomly placed in a volume of 70 × 70 × 200 µm, maintaining a minimum distance of 
one neuron diameter, and surrounded by a margin of 25 µm on each side to avoid 
border artefacts. The simulated neuron density was chosen to be 40,000 per cubic 
millimeter. This is lower by a factor of approx. two than the average density reported 
for mouse cortex10, to account for the fact that not all neurons are active during a 
given recording. The volume size was chosen large enough to span most of the LFM 
axial range, and for scattered neuron images originating from distant sides of the 
volume to be non-overlapping on the simulated LFM sensor, while keeping 
computational effort within the capacity of a 20-CPU-core, quad-GPU workstation. 
Poissonian spike trains of action potentials were randomly generated (mean firing rate 
0.5 Hz, 1000 time steps at a 5 Hz sampling rate), linearly mixed to introduce some 
correlation among them (mixing matrix chosen to result in an exponential 
distribution of variances explained by principal components), and convolved with an 
exponentially decaying GECI response kernel (mean decay time constant 1.2 s). 
Gaussian noise was added to the resulting traces to emulate a GECI signal-to-noise 
ratio (SNR) of 25. 

The randomly placed neurons and the simulated GECI activity traces were then 
combined to generate a time series of volumes. To account for fluctuations of the 
background fluorescence due to neuropil and detection noise, a noisy background was 
added throughout the synthetic volumes (SNR 25), as well as to the final simulated 
sensor image. To obtain simulated sensor data in the absence of scattering, the 
synthetic volumes were convolved with a numerically simulated, ballistic LFM PSF 
(corresponding to a 16x 0.8NA water dipping objective). To obtain an approximation 
of the scattered sensor data, the synthetic volumes were convolved with a simulated 
scattered PSF obtained from a Monte-Carlo approach (see next subsection) for a 
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scattering length of 100 µm, a depth 400 µm, and a Henyey-Greenstein anisotropy 
parameter 0.9, in accordance with literature values7,8. 

Monte-Carlo simulation of scattered PSF 

To generate the scattered PSFs, we followed a Monte-Carlo approach inspired by 
Ref. 11: 100000 virtual rays were launched from a point source on the optical axis and 
propagated by sampling the distances between scattering events (free paths) from an 
exponential distribution and scattering angles from a Henyey-Greenstein distribution. 
For each scattering event, a “virtual” source was placed at the apparent origin of the 
scattered ray and at a depth corresponding to the free path before the scattering event. 
The resulting volume of virtual sources was projected forward to the sensor by 
convolving with the ballistic PSF. This was repeated for every lateral and axial 
displacement necessary to fully capture the spatially varying, but periodic structure of 
the LFM PSF. 

SUPPLEMENTARY NOTE 3: STATISTICAL ANALYSIS OF SID-EXTRACTED NEURONAL 
SIGNALS 

To obtain the extraction quality characterizations presented in Fig. 6 of the main text 
and Suppl. Fig. 4, we recorded a set of single-plane, simultaneous 2PM-SID movies at a 
series of depths from the posterior parietal cortex of awake, head-fixed mice (100–
375 µm, total n = 18 recordings, 4 animals). In what follows we discuss the analysis 
steps involved in more detail and discuss the optimal tuning of extraction parameters 
for robust extraction performance. 

Signal extraction and tuning of detection characteristics 

The recently published constrained matrix factorization algorithm for Ca2+ signal 
extraction5 implemented in the CaImAn analysis package was used to analyze the 2PM 
recordings, exactly implemented in the demo script6 that comes with the package, 
adapting the neuron size and approximate number of active neurons to values suitable 
for our data. After running an initialization subroutine and the core constrained 
matrix factorization, the script performs post-selection of ROIs based on spatial shape 
and size. We found that the overall sensitivity and precision of the algorithm depends 
mostly on the thresholds for required convexity and size of neurons, as well as the 
approximate number of active neurons chosen initially. We determined three sets of 
parameter values for our data that result in three estimation qualities: A "sensitive" 
estimate (avoid missing neurons while accepting a greater risk of detecting false 
positives), a "conservative" estimate (avoid false positives while taking greater risk of 
missing actual neurons), and a "balanced" setting that aims for the optimal trade-off 
between sensitivity and precision. 

The light-field raw data was processed as described in the main text and Methods 
section, as well as Suppl. Note 1. After background-subtraction, the motion metric 
described in Suppl. Note 5 was calculated, and motion-affected frames excluded from 
further processing. The sensitivity and precision values of SID are tuned by varying 
two parameters that estimate the noise floor and the background level, respectively, of 
the data and manually inspecting the output of the segmentation step. Sensitivity can 
be increased at the expense of precision by the lowering noise floor and background 
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estimates, and vice versa. Again, three different sets of parameters were chosen that 
resulted in conservative, balanced and sensitive signal extraction qualities. SID was 
run with the "balanced" setting on all datasets, and in addition with the "conservative" 
and "hypersensitive" settings on the recordings from one animal.  

Compilation of ground truth and categorization of detections 

We manually inspected the output of the sensitive CaImAn runs and categorized the 
detections contained therein as true or false positives by assessing the shape of the 
detected object, and whether a single object was segmented into several ROIs. Any 
neurons that were not picked up were added manually and categorized as false 
negatives. Together, the true positive CaImAn detections and manually added neurons 
(positions and signals) in the 2PM recordings constitute what we regarded as the 
ground truth for all further analyses. 

In a second manual step, we assessed all SID runs of the "sensitive" quality setting by 
comparing SID-detected locations to the ground truth locations, identifying the 
matching pairs, and adding any missing neurons, marking them as false negatives. The 
categorizations as true/false positives/negatives of all other CaImAn and SID results 
(i.e., the "balanced" and "conservative" extraction qualities) were inferred by 
automatic comparison to the locations and signals that were categorized manually 
based on the "sensitive" extraction output, followed my manual inspection and 
verification. 

Neuron detection scores 

To describe the neuron detection performance of the CaImAn and SID, we computed 
three standard quality scores commonly used in the context of classification/detection 
models: The score known as recall or sensitivity (ratio of true neurons to detected 
neurons); the precision (ratio of true positives to total detections, i.e. to the sum of 
true and false positives); and the F-score, which is defined as the harmonic mean of 
precision and recall (multiplied by two to scale its value to the (0,1) range). The F-
score is one when both sensitivity and precision are equal to one, i.e. all true neurons 
were detected correctly, and no false positives detections appeared. 

In Suppl. Fig. 4a-f, we plot these three scores for both SID and CaImAn, and the three 
extraction quality settings: While the "sensitive" quality setting maximizes the 
sensitivity scores in both SID and CaImAn, the "conservative" setting results in a 
maximal precision scores. The F-scores are optimized for the "balanced" setting. This 
result verifies that the parameter sets were chosen in an appropriate way, and we 
determine the "balanced" SID setting to be the default setting in the SID 
implementation published as Supplementary Code with this article. 

Correlation analysis of SID-extracted neuronal signals 

For the signal quality assessments presented in Fig. 6b-c of the main text, we 
computed the zero-lag correlation coefficients of the true positive SID signals and 
their respective counterparts in the ground truth, including their entire duration. The 
values given in Fig. 6b-c therefore contain information both about whether any peaks 
in the extracted signals match with the ground truth peaks (true/false positive GECI 
transient detections), and on whether their absence in the extracted signal is correct 
(true/false negative transient detections). For comparison, we also calculated the 



6 
 

correlation of the SID signals to ground truth across peaks only. A histogram of the 
resulting peak-gated signal correlations versus depth is shown in Suppl. Fig. 4g: In 
comparison with the ungated data shown in Fig. 6b-i of the main text, we observe no 
significant differences. This is an indication that any mismatches in the extracted 
signals compared to ground truth are not strongly biased towards false negative or 
false positive peaks, and that the ungated correlation values used throughout Fig. 6b-c 
are a good measure of signal extraction quality. 

SUPPLEMENTARY NOTE 4: NEUROPIL REJECTION 

Generally, it can be desirable to decontaminate the neuronal signals from that of 
nearby neurites as well as from any background signals (neuropil). In our approach, 
diffuse fluorescence from neuropil and very small neurites are rejected to a large 
degree due to background subtraction and the use of a standard deviation image as 
the starting point for segmentation but also the remainder of the algorithm. This is 
illustrated in Suppl. Fig. 2 using a planar movie from mouse cortex recorded 
simultaneously in LFM and 2PM. While the signal-to-background ratio is as low as ~2 
in the mean image of a 2PM planar movie recorded depth 200 µm (Suppl. Fig. 2a), it is 
as high as ~20 in the standard deviation image of the same movie (Suppl. Fig. 2b): In 
the latter, diffuse background is strongly suppressed compared to the active cell 
bodies and larger neurites. The high-intensity regions of the 2PM standard deviation 
image – which clearly are somata – also stand out in the corresponding reconstructed 
standard deviation image of the LFM recording (Suppl. Fig. 2c), and reliably get 
identified by a local maximum search algorithm followed by a segmentation 
(Suppl. Fig. 2d). This algorithm primarily picks out the active somata, but also some of 
the larger and very active neurites (highlighted using arrows in Suppl. Fig. 2b and 2d). 
These larger neurites are processed further, and their spatial and temporal 
components are optimized iteratively as described above. After the optimization, we 
can reconstruct the optimized spatial components to more closely examine their 
shape: While the cell bodies are compact, larger and spherically shaped (Suppl. Fig. 2e 
and 2f), neurites often extend over a larger region, both due to their morphology and 
since nearby neurites are often merged into the same spatial component due to their 
correlated activity, and have less regular shapes (Suppl. Fig. 2g and 2h). These 
differences are used for manual or automatized post-selection processing whereby the 
signals from neurites can be identified and subtracted out from that of neuronal cell 
bodies. 

SUPPLEMENTARY NOTE 5: MOTION DETECTION AND CORRECTION 

During imaging sessions, mice were head-fixed using a customized mount 
complemented with a head bar holder and a mouse body stabilizer (body jacket) and 
could run freely on a disc (200 mm diameter), as described in more detail elsewhere12. 
This considerably reduced animal-induced motion of the brain during imaging. To 
detect any residual motion in the raw SID/LFM raw data prior to further processing, 
we developed a simple motion detection metric based on image autocorrelation which 
is computed as follows: First, the raw data is background-subtracted by rank-1 non-
negative matrix factorization of the time series of SID/LFM camera frames. Next, we 
compute the difference frames between all background-subtracted frames, and 
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compute the autocorrelation images of the difference frames. In the difference frames, 
translation of a source within the FOV manifests itself as negative values at pixels 
illuminated from the previous source position, and positive values at pixels 
illuminated by the new source position. Hence, the values of these two sets of pixels 
will be anti-correlated, resulting in a negative peak in the autocorrelation image, at a 
spatial "lag" (distance) corresponding to the extent of the motion effect. We extract 
the minima of each autocorrelation image (normalized to the maximum of the 
autocorrelation image), and take the time derivative of this series of minima to obtain 
a clear metric for motion in the LFM raw frames. This metric is what is plotted in 
Suppl. Fig. 5a for data from a simultaneous 2PM+SID recording: The motion metric 
computed from the of the 2PM and LFM/SID raw data are in good agreement, and the 
peaks in both metrics correlate with the onset of animal motion as recorded by 
tracking the movement of the running disc with a high-resolution optical computer 
mouse (middle trace). 

In SID/LFM, the point-spread function of the system is engineered to vary spatially (in 
order to provide axial resolution), so a translation of a source does not result in a mere 
translation of the image on the sensor as in classical wide-field imaging, but a more 
intricate transformation. However, we found that simply taking the minima of the 
difference frame autocorrelation images still picks up motion well. 

Pixels affected by motion would exhibit high standard deviation along time that does 
not originate from neuronal activity, and would thus negatively affect the precision of 
SID demixing and segmentation. We therefore exclude frames with a motion metric 
value above a threshold prior to computing the standard deviation image (step ii in 
Fig. 1b of the main text). An example of an excluded frame together with motion 
metrics and running disk tracking data is shown in Suppl. Fig. 5b. 

Within the scope of this work we did not attempt to recover neural activity from the 
motion-affected frames. Since LFM/SID captures the full recording volumes in an 
unbiased way, we expect it to be possible to recover neuron activity information by 
registering the SID-detected neuron footprints of the unaffected frames to the 
transformed footprints in the motion-affected frames and extract the source 
brightness. As mentioned above, the translation of a source (neuron) in LFM/SID 
results in transformation of its LFM image that is not a simple translation, due to the 
spatially varying point-spread function in LFM. However, since the point-spread 
function is known, it is possible map source positions to images and iteratively find 
the transformation of source positions that best explains the image observed during 
motion frames. This procedure can be based on a standard optimizer for image 
registration, with the additional step of mapping position estimates to LFM images by 
convolving with the LFM point-spread function. 
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