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Online Methods 

Data 
We analysed RNA-seq data from 1188 donors with matched whole genome           
sequencing (WGS) data [1] derived from samples of 22 TCGA studies (755 tumour             
samples) and 7 others ICGC studies (454 tumour samples). In total RNA-seq from             
1359 samples were analysed, encompassing 1209 samples from tumours and 150           
from normal or adjacent tissues (Supplementary Fig. 1). Non-primary tumour          
samples were excluded from recurrency analysis (24 samples). In addition RNA-seq           
data from GTEx [2] (version phs000424.v4.p1) was used to complement the panel of             
normal tissues. GTEx RNA-seq data were realigned to the PCAWG reference using            
the PCAWG RNA-seq SOP [3]. The Human genome (GRCh37.p13) and annotation           
were obtained from Gencode (release 19). Cancer gene census list was compiled            
from the Catalogue of Somatic Mutations in Cancer version 80 [4]. 
 
The following data sets were obtained from the PCAWG repository in Synapse            
(https://www.synapse.org/): gene expression (Tophat2/Star FPKM) <syn5553985>;      
transcript expression <syn5974793>; clinical and histological data <syn7253568,        
syn7253569>; RNA-seq metadata <syn7416381>; consensus somatic structural       
variants (version 1.6 <syn7596712>) [5]; somatic driver mutations <syn9758012>;         
consensus somatic mutation calls (SNVs and Indels) <syn7118450>; and copy          
number alterations <syn7499507>; PCAWG's cancer driver genes (candidate        
release 24/4/2017) <syn9758012>. Further details about the data can be found           
elsewhere [1]. 

1 



 

Gene fusion detection using RNA-Seq 
For each aliquot with paired-end RNA-seq reads FusionCatcher [6] (version 0.99.6a)           
was applied to the raw reads, with the genome reference. The “-U True; -V True”               
runtime options were used. For each aliquot with single-end RNA-seq reads,           
STAR-Fusion [7] (version 0.8.0) was applied to the raw reads, with the same             
reference genome and gene models and with default settings. 
 
In parallel FusionMap (version 2015-03-31) [7] was applied to all unaligned reads            
from the PCAWG aligned TopHat2 RNA-seq BAM files [3] for each aliquot to detect              
gene fusions with the following non-default options values: MinimalHit = 4;           
OutputFusionReads = True; RnaMode = True; FileFormat = BAM.  
 
The output of both tools was post-processed so that the fusions detected and             
respective breakpoints and numbers of supporting reads were passed to the next            
step as depicted in Supplementary Fig. 2. The following filters were applied            
independently to the fusions detected by the two tools: i) the fusion has 4 or more                
breakpoint-spanning reads; ii) gene partners are not similar (paralogs or          
pseudogenes according to Ensembl Biomart); iii) the fusion was not detected in            
GTEx or in PCAWG's normal samples. This filter relied on analysis of GTEx and              
normal samples in the PCAWG cohort using the same fusion detection pipeline. 
 
The two sets of fusion that passed the above criteria were then merged as follows.               
First, a fusion was retained if it was detected in a sample by both fusion detection                
pipelines and the breakpoint locations were consistent. Then two further constraints           
were applied: i) a fusion was detected by both fusion detection tools in at least one                
sample; or ii) a fusion detected by one of the methods had a matched SV in at least                  
one sample. For integration with SVs, a fusion was considered to match a structural              
variant (SV) if the absolute distance between the fusion breakpoints and SV            
breakpoints did not exceed 500 KB (the distance was considered infinite when the             
chromosomes of the fusion and SV breakpoint differ). When there was no evidence             
for a direct SV fusion, the search was expanded to look for composite fusions. In this                
case an exhaustive search was performed to look for two SVs with breakpoints             
close to the fusion breakpoints and with an effective distance smaller than 250KB             
(Figure 3A). For instance, let F​1 and F​2 be the fusion breakpoints locations of a               
fusion F, and A​1, A​2, B​1​, B​2 ​be the breakpoint locations of two structural variants (A                
and B), and dist(x,y) the distance between two breakpoint locations (infinite if the             
chromosomes are different). The search would try to find SVs A and B such that:               
a) ​dist(F​1​,A​1​)​<=500000; b) ​dist(F​2​,B​1​)​<=500000; c) ​dist(A​2​,B​2​)​<=250000. Note that        
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there are other valid combinations implemented (e.g., where the         
dist(F​1​,A​2​)​<=500000) but for conciseness only this example is here presented. 
 
This resulted in detection of 3540 fusion events, from these 2268 were detected by              
both FusionCatcher/STAR-Fusion and FusionMap (from these 1821 had SV support)          
and 1112 were detected by only one method and had SV support. All fusions are               
available in Synapse (syn10003873). 

Transcript quantification 
Transcript quantification was estimated for each sample using Kallisto (v0.42.4) [9].           
The set of protein coding transcripts found in Gencode 19 was used as the              
reference. For each gene and sample, a transcript was defined as ​dominant if its              
expression was reported at least 2-fold higher than the expression of the second             
most abundant transcript [10]. Expression of putative fusion transcripts was also           
estimated with Kallisto but with an extended set of transcripts: a non-redundant set             
of fusion transcripts together with the set of protein coding transcripts from Gencode             
19. 

Fusion reading frame prediction and domain 
annotation 
For each gene fusion candidate, the entire chimeric transcript sequence was           
assembled. First, we selected the dominant isoform for the fusion gene as the             
reference transcript; if a gene in an aliquot did not have a dominant isoform, the               
longest CDS transcript was selected. Second, based on fusion gene breakpoint           
coordinates, chimeric sequences based on the isoforms were selected and splicing           
junctions of each gene were reconstructed. Finally, based on the positions of the             
junctions on the transcripts we tagged them as coding (CDS) if the junctions fell              
within the coding boundaries and as 5’ un-translated region (5UTR) or 3’            
un-translated region (3UTR) if they fell outside the coding boundaries. The positions            
of breakpoints at the codon level were related to the lengths of the open reading               
frames. Based on the predicted reading frame potential we classified fusions into            
several groups: ​in-frame, out-of-frame, 5’UTR->CDS, CDS->5’UTR, 5’UTR->5’UTR,       
3’UTR->CDS, CDS->3’UTR, 5’UTR->3’UTR, 3’UTR->5’UTR, 3’UTR->3’UTR​. For      
fusions involving non-coding genes the reading frames were assigned to the           
category ​Other​s. The structural domains for each predicted fusion protein were           
annotated using the Uniprot and Pfam domain tracks downloaded from the UCSC            
table browser. For a number of recurrent fusions such as ​DCAF6-MPZL1 and            
GNS-NUP107​, manual literature search was used to refine the the definition of            
protein domains for the leucine-zipper motif.  
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Identification of sequence features and DNA repair 
mechanisms associated with bridged fusions 
SV densities and mutation densities were calculated by sampling each 1 Mbp            
chromosomal window across all samples containing bridged fusions. The         
chromothripsis calls for each sample are described in [11] . Consensus somatic            
mutation calls were used to characterize kataegis for each sample as follows. A             
genomic window would be considered to have kataegis if it had at least 6              
consecutive mutations with an average inter-mutation distance of less than 10 kb.            
We used the MEME suite (​http://meme-suite.org/​) to identify de novo motifs that            
might be enriched in the vicinity of pillar breakpoints. Specifically, we used the             
DREME algorithm with an E-value threshold of 0.05 to search for motifs in the 50 bp                
window of pillar breakpoints [12]. Controls sequences were based on the randomly            
shuffled original input sequences. Repeat elements that were used to overlap with            
fusion breakpoints were obtained from the UCSC RepeatMasker track, and common           
fragile sites were downloaded from [13] and were converted to the hg19 genome             
coordinates by liftover.  
 
The DNA repair-related mechanisms were predicted based on the homology and           
mutation features at both sides of the pillar breakpoints for each bridged fusion.             
Microhomology sequences for each breakpoint were extracted from the consensus          
somatic structural variants. The classification criteria was defined previously [14, 15,           
16]. The mutation rate in the vicinity of the 100kb window of the bridged regions were                
calculated using circlize R package [17] to infer hypermutation status using           
consensus somatic mutation calls. 

Previously reported gene fusions 
We used ChimerDB 3.0 [18] as a reference of previously reported gene fusions. It              
contains 32,949 fusion genes splitted into three groups: 
- ​KB​: 1,067 fusion genes manually curated based on public resources of fusion             
genes with experimental evidences; 
- ​Pub​: 2,770 fusion genes obtained from text mining of PubMed abstracts. 
- ​Seq​: archive with 30,001 fusion gene candidates from deep sequencing data. This             
set includes fusions found by re-analysing the RNA-seq data of the TCGA project             
encompassing 4,569 patients from 23 cancer types . 
Throughout the manuscript we refer previously reported fusions as "high confidence"           
if they are part of the KB and Pub groups.  
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Statistical analysis 
All statistical analyses were performed using R 3.3. The association of the genes             
with different pathways was performed using the Pathview package [19] version           
1.14.0 analysis, the background included all genes involved in gene fusions. The            
STRING database [20] (version 10) and the STRINGdb R package (version 1.14.0)            
was used as the reference of known protein-protein interactions and the tool for             
visualizing protein-protein interactions and to perform promiscuous gene fusion         
partner overlap enrichment. 
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