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Abstract

Section A and B provide preliminary comparisons between the various
peptide to protein aggregation methods: Section A focuses on classical ag-
gregation methods while Section B is dedicated to SCAMPI, that has been
proposed to account for shared peptides in isotope labelling proteomic
experiments. Section C provides preliminary comparisons between the
classical tests used to detect differentially abundant proteins. Finally, we
propose additional plots in Section D. Supplementary material to “More
powerful differential analysis of relative quantitative proteomics”, by Ja-
cob and others.

A Preliminary comparisons: aggregation

Aggregation methods can be differenciated according to two criteria: first, the
involved operator (sum or mean of peptide intensities, possibly followed by
normalization according to each protein properties, see for instance Silva and
others (2006)) and second, the set of retained peptides. The first one is an
important question in absolute quantitative proteomics but has little influence
in relative quantification: any difference between these operators equally applies
to both compared conditions, so that at protein level, the significance of the
differential abundance is not affected.
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Figure 1: Performance plots of the various aggregation methods on a real (left)
and simulated (right) dataset. Curves related to sum-based aggregation are
systematically hidden by curves related to mean-based aggregation, for they lead
to exactly equal results. Whatever the statistical test, using all peptides rather
than only the protein-specific ones leads to a decrement of the performances.

With regard to the second point, it appears (see Figure 1) that using all
peptides indistinctly (i.e. both specific and shared peptides are considered as if
they were protein-specific) leads to less accurate differential analysis than only
relying on specific ones, as shared peptides generally leads to protein abundance
overestimation. Similarly, using only the most abundant peptides is less efficient
as it leads to a loss of information. This last point is more thoroughly discussed
in the experimental section of the article.

B Preliminary comparisons: SCAMPI

SCAMPI (Gerster and others, 2014) was initially proposed for absolute quan-
tification experiments with isotope labelling, to estimate the ratio of the la-
belled protein over the original one for each protein within a given sample. The
latter can then be inferred on the basis of the known concentration of the for-
mer, that has been artificially introduced in the sample. It is thus tempting
to apply SCAMPI statistical framework to relative quantification. To do so,
SCAMPI authors suggest “running SCAMPI on each replicate/condition sepa-
rately”. However, our experiments showed this procedure is not accurate. To
explain this, we have considered a dummy dataset where the same sample was
replicated 6 times, so as to mimic a perfect experiment with no instrumental
variability. We have then applied SCAMPI to each replicate separately as sug-
gested. We expected equal protein abundance estimates, but obtained rather
different results as illustrated on Figure 2: although within-sample differences
of abundance seem to be respected (as for isotope/original protein abundance
ratios), between-sample protein abundances are not.
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[1,] 8.957604 0.3636305 8.380070 8.188959 0.63055545 0.7002375
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Figure 2: Illustration of SCAMPI results on relative quantification experiments:
Top, the six first lines of a fictive dataset with exactly equal replicates; Middle,
the corresponding results as provided by the iterative application of SCAMPI
on the six replicates; Bottom, the abundance display of the first 25 proteins of
each sample (each colored line correspond to a specific sample). Contrarily to
what is expected, there are significant differences between the supposedly equal

samples.

Protein index



C Preliminary comparisons: testing procedures

As with aggregation, several methods are reported in the proteomics literature
to select putative differentially abundant proteins. The oldest one is based on se-
lecting the proteins with the greatest fold-change (Ting and others, 2009), that
is the absolute value of the difference (between the conditions) of mean log-
transformed abundances. Although practically efficient, this method is nowa-
days hardly used, as it does not allow to control the false discovery rate associ-
ated to the set of selected proteins. Statistical tests are now classically consid-
ered, and followed by multiple test corrections. While specific tests are required
for spectral count data (such as for instance the Beta-Binomial test Pham and
others (2010)), extracted ion chromatogram data fit well the assumptions un-
derlying the t-test. Several variations are classically considered:

e The original Student ¢-test and its Welch generalization to conditions with
different numbers of replicates;

e SAM Tusher and others (2001), where the variance estimate is regularized
by a fudge factor;

e Limma Smyth (2005), where the variance estimates are shrinked across
proteins.

We report the results of an experiment comparing these procedures in Figure 1.

Student outperforms Welch The Welch t-test is theoretically of interest to
process datasets with missing values. In label-free proteomics experiments
however, there are often too few replicates per condition to deal with
missing values, and imputation must be conducted first (Lazar and others,
2016), so that the interest of Welch ¢-test is disputable. In our experiments
with equal number of replicates within each condition and after imputation
we observe that Student’s t-test systematically outperforms Welch’s. This
is probably caused by the small number of samples which makes separate
variance estimation per group more difficult.

Regularization helps As expected from the proteomics literature, Limma
and SAM perform better than Student’s. However, Student ¢-test remains
useful to represent baseline performances.

Limma and SAM lead to similar performances As both our method and
the SAM test are based on the same regularization principle, we use SAM
in our comparisons to represent the state-of-the-art performances. We
note however that limma accepts more complex hierarchical designs while
the native implementation of SAM cannot represent technical batches.

SAM is classically used in proteomics by using the fudge factor to mimic a
threshold on the fold change and picking the value that leads to the best detec-
tion performance on a dataset, as discussed in Gianetto and others (2016). Such
use is invalid as it amounts to overfitting and leads to over-optimistic results.
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Figure 3: PR curve on simulated data with 1% (upper left), 10% (upper right),
33% (lower left) and 67% (lower right) of shared peptides.

Within this work, we only consider the automatic tuning of the fudge factor
that is described in the original SAM publication Tusher and others (2001).

D Additional plots

See Figure 3 and the following ones.
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Figure 4: PR curve on Expl_R2_pept data with 40 (upper left), 80 (upper right),
160 (lower left) and 240 (lower right) artificially added shared peptides.
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Figure 5: PR curve on Expl R25_pept data with 40 (upper left), 80 (upper
right), 160 (lower left) and 240 (lower right) artificially added shared peptides.
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Figure 6: Calibration plots for
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Figure 7: Calibration plots for
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Calibration plot, s=0.035313305134641, Expl_R2_pept — Nshare=80
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Figure 8: Calibration plots for Expl R2 pept data (1/2).
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Figure 9: Calibration plots for Expl R2 pept data (2/2).
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Figure 10: Calibration plots for Expl R25 _pept data (1/2).
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Figure 11: Calibration plots for Expl R25 _pept data (2/2).
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