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Supplementary Figure 1. Synteny analysis among 5 Armillaria species. Pairwise dot plots of the 10 largest 
scaffold in each genome showing extensive macro- and microsynteny among species. Genomes were 
aligned using nucmer.	
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Supplementary Figure 2. Transposable element distribution in 27 Agaricomycetidae species broken down 
by TE category. Species tree annotated with TE proportions estimated using the REPET packages. TEs 
were classified according to Wicker et al. 2007 and are separated into RNA-based elements (blue) and 
DNA-based elements (red). DHX: Helitron, DMX: Maverick, DTX: TIR-transposon, DXX: unknown DNA-
based element, noCat: unknown repetitive element, RIX: LINE elements, RLX: LTR elements, RPX: 
Penelope, RSX: SINE, RYX: DIRS. Transposable element content ranged from 0.9% in Omphalotus 
olearius to 59.2% in Tricholoma matsutake which constitute the smallest and the largest genome in the 
dataset, respectively. Generally, TE content increased with genome size, with the exception of the A. mellea 
genome which among the largest genomes with approximately 79 MB but only 0.94% of the sequence were 
annotated as TEs. This may in part be due to the removal of short contigs, since TEs often cluster on these 
in fragmented assemblies but closer inspection of the genome sequence showed evidence that the 
sequence may have been repeat masked prior to submission to JGI. We therefore excluded the A. mellea 
genome from subsequent analyses. It has to be noted that the accuracy of the proportions of TEs estimated 
across the different genomes likely varies, since the data comprise a set of heterogeneous sequencing and 
assembly strategies which may differ in their ability to resolve and hence assemble repeated sequences. As 
is typical for basidiomycete fungi, the most frequent classes of TEs identified were RNA-based elements (R-
-) with LTR elements (RLX) in particular found to be most abundant (Castanera et al. 2017).  Genome 
expansion in the A. clade may have at least partially driven by expansions in TE repertoires, although gains 
in non-TE sequence were proportionally greater than increases in TE content. Cylindrobasidium torrendii, 
the closest outgroup is nearly devoid of TEs (1.1% overall TE content), while the genome of Guyanagaster 
necrorhiza has been invaded by LTR-type elements and increased in TE content to 37.7%. While the non-
TE proportions of the genome between C. torrendii and G. necrorhiza are quite similar in size, with appr. 31 
and 33 MB, respectively, further evolution of genome architecture in the A. clade is characterized by 

Stehi1

SerlaS7

Sclci1

Paxin1

PleosPC152

Schco3

Fishe1

Ompol1

Gym lu1

Cylto1

Armme1

Armso1

Armost1

Armce1

Armga1

Guyne1

Volvo1

Plucer1

Amath1

Amamu1

Trima3

Agabi1

Copci1

Corgl3

Hypsu1

Galma1

Lacbi2

0.1

TE_annotat ions
DHX
DMX
DTX
DXX
noCat
RIX
RLX
RPX
RSX
RXX
RYX
DYX
Non-TE



	 4	

expansion of non-TE sequence. In contrast TE content in the four A. species grew proportionally less (A. 
cepistipes 26 MB, 34.8% TE and A. gallica 28 MB, 32.0% TE, or decreased all together (A. ostoyae, 16 MB, 
26.9% TE and A. solidipes12 MB, 20.7% TE) compared to the approx. 20 MB of TE sequence in G. 
necrorhiza. This trend for non-TE genome expansion mirrors that of the whole-genome phylogenomic 
analysis, which found large scale gene space expansions within the Armillaria. 
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Supplementary Figure 3. Windowed analysis of clustering of TE content with respect to gene content. Each 
genome was partitioned into 50kb windows and binned according to proportions of TE and gene content. 
Shading of the cells indicates the number of windows in the bin. We did not find considerable structure in 
the outgroup C. torrendii likely due to the very low overall TE content. In G. necrorhiza, we found a 
moderate degree of partitioning of TE content and genic regions as indicated by the higher intensity of bins 
along the axes. Of the 13270 genes (after filtering) in G. necrorhiza, 3418 were found in chromosomal 
neighbourhoods devoid of TEs. This is considerably different from the A. species where TE content was 
well distributed all over the genome. We found only 700, 908, 816 and 1010 genes in 50kb windows without 
TEs in A. cepistipes, A. gallica, A. ostoyae and A. solidipes, respectively, indicating that vast majority of 
genes in these genomes is found in relatively close proximity to TEs. While we cannot exclude the 
existence of unassembled TE-only compartments, our data do not provide evidence for a “two-speed 
genome” found in some other plant pathogens17, nor is there evidence for rampant TE expansion in the 
pathogenic A. species. Instead, the genomic clustering patterns observed suggest either continuing small 
scaled diversification of TEs over large parts of the genome, or a mixing and marbling of TE sequences 
throughout the genome mediated by structural changes such as segmental duplications, inversions or 
deletions. The latter mechanism would also provide a scenario for expansion of gene space and it is 
tempting to speculate that this may have facilitated the emergence of genome architectures found in extant 
Armillaria. 
 
 
 

	
Supplementary Figure 4. Time calibrated phylogenomic tree (A) was inferred by penalized likelihood as 
implemented in r8s using the maximum likelihood tree and two fossils and one secondary calibration point. 
Smoothing parameters across 30 orders of magnitude, starting with 10-20 were tested with cross-validation 
analysis (B). Note that not all examined smoothing parameters are included in figure B, because in some 
cases and above 103 smoothing parameter values were invalidated by errors during taxon prunings. The 
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subplot on the upper left corner of figure B represents a broader range of smoothing parameter values than 
the main plot. In the final analysis a smoothing parameter of 10-6 was used, but calibration with smoothing 
parameters between 10-7-10-3 resulted negligible differences in estimated ages. The values on the tree 
nodes are the estimated ages in million years. All nodes received maximal (100%) bootstrap support in ML 
bootstrapping. 
	
	
	
	

	
Supplementary Figure 5. Reconstructed gene duplication and loss histories summarized on the 
phylogenomic tree of 27 Agaricomycetes. Nodes are numbers adjacent to the branches and the inferred 
number of duplications (black) and losses (red) are shown for each branch. 
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Supplementary Figure 6. Global gene expression patterns across three replicates of ten developmental 
stages  of A. ostoyae C18 inferred using RNA-Seq. Abbreviations are as follows: ARO_RMA – rhizomorph, 
ARO_VM – vegetative mycelium, ARO_FB_L – mature fruiting body gills, ARO_FB_S – mature fruiting body 
stipes, ARO_FB_C – mature fruiting body caps, ARO_YFB_S – young fruiting body stipe, ARO_YFB_C – 
young fruiting body cap (including lamellae), ARO_P2_S – stage II primordium stipe, ARO_P2_C – stage II 
primordium cap, ARO_P1 – stage I primordium.  
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Supplementary Figure 7. MDS plot demonstrating the grouping of triplicate samples for 10 developmental 
stages and tissue types of A. ostoyae based on global gene expression patterns. Abbreviations are as 
follows: ARO_RMA – rhizomorph, ARO_VM – vegetative mycelium, ARO_FB_L – mature fruiting body gills, 
ARO_FB_S – mature fruiting body stipes, ARO_FB_C – mature fruiting body caps, ARO_YFB_S – young 
fruiting body stipe, ARO_YFB_C – young fruiting body cap (including lamellae), ARO_P2_S – stage II 
primordium stipe, ARO_P2_C – stage II primordium cap, ARO_P1 – stage I primordium.	
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Supplementary Figure 8. Heatmap of ligninolytic gene expression patterns in A. ostoyae C18. Abbreviations 
are as follows: ARO_RMA – rhizomorph, ARO_VM – vegetative mycelium, ARO_FB_L – mature fruiting 
body gills, ARO_FB_S – mature fruiting body stipes, ARO_FB_C – mature fruiting body caps, ARO_YFB_S 
– young fruiting body stipe, ARO_YFB_C – young fruiting body cap (including lamellae), ARO_P2_S – 
stage II primordium stipe, ARO_P2_C – stage II primordium cap, ARO_P1 – stage I primordium. On the 
right, gene abbreviations AlOx, PyOx, HTP, Dyp and POD stand for aryl alcohol oxidase, pyranose oxidase, 
heme-thiolate peroxidase, dye decolorizing peroxidase and Class-II peroxidase, respectively. 
(ARMOST_XXXXX	is	replaced	with	CLASS_XXXXX)	
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Supplementary Figure 9. Heatmap of laccase gene expression patterns in A. ostoyae C18. Abbreviations 
are as follows: ARO_RMA – rhizomorph, ARO_VM – vegetative mycelium, ARO_FB_L – mature fruiting 
body gills, ARO_FB_S – mature fruiting body stipes, ARO_FB_C – mature fruiting body caps, ARO_YFB_S 
– young fruiting body stipe, ARO_YFB_C – young fruiting body cap (including lamellae), ARO_P2_S – 
stage II primordium stipe, ARO_P2_C – stage II primordium cap, ARO_P1 – stage I primordium.	
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Supplementary Figure 10. Heatmap of pectinolytic CAZy gene expression patterns in A. ostoyae C18. 
Abbreviations are as follows: ARO_RMA – rhizomorph, ARO_VM – vegetative mycelium, ARO_FB_L – 
mature fruiting body gills, ARO_FB_S – mature fruiting body stipes, ARO_FB_C – mature fruiting body 
caps, ARO_YFB_S – young fruiting body stipe, ARO_YFB_C – young fruiting body cap (including lamellae), 
ARO_P2_S – stage II primordium stipe, ARO_P2_C – stage II primordium cap, ARO_P1 – stage I 
primordium. On the right, gene abbreviations BH, GH28, PECTL, PEST, PLC and Rh-Fn stand for beta-
helix, pectate lyase, pectin esterase, Pec_Lyase_C and RhgB_N/fn3_3 respectively. (ARMOST_XXXXX	is	
replaced	with	CLASS_XXXXX)	
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Supplementary Figure 11. Heatmap of (hemi-)cellulolytic CAZy expression patterns in A. ostoyae C18. 
Abbreviations are as follows: ARO_RMA – rhizomorph, ARO_VM – vegetative mycelium, ARO_FB_L – 
mature fruiting body gills, ARO_FB_S – mature fruiting body stipes, ARO_FB_C – mature fruiting body 
caps, ARO_YFB_S – young fruiting body stipe, ARO_YFB_C – young fruiting body cap (including lamellae), 
ARO_P2_S – stage II primordium stipe, ARO_P2_C – stage II primordium cap, ARO_P1 – stage I 
primordium. On the right, following are the gene abbreviations: ALFUC-alpha-L-fucosidase; BGD45-beta-
galactosidase jelly roll domain; CBM1-carbohydrate binding module1; CDH-cellobiose dehydrogenase, 
CELLE – cellulase; GH1-Glyco_hydro_1; GH10-Glyco_hydro_10; GH12-Glyco_hydro_12; GH15-
Glyco_hydro_15; GH18-Glyco_hydro_18; GH2-Glyco_hydro_2; GH3-Glyco_hydro_3; GH302-
Glyco_hydr_30_2; GH43-Glyco_hydro_43; GH6-Glyco_hydro_6; GH61-Glyco_hydro_61; GH7-
Glyco_hydro_7; GH76-Glyco_hydro_76; GH88-Glyco_hydro_88; GH9-Glyco_hydro_9; MELIB-melibiase_2. 
(ARMOST_XXXXX	is	replaced	with	CLASS_XXXXX)	
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Supplementary Figure 12. Heatmap of cerato-platanin (CEP) and expansin-like (DPBB, RLPA) gene 
expression patterns in A. ostoyae C18. Abbreviations are as follows: ARO_RMA – rhizomorph, ARO_VM – 
vegetative mycelium, ARO_FB_L – mature fruiting body gills, ARO_FB_S – mature fruiting body stipes, 
ARO_FB_C – mature fruiting body caps, ARO_YFB_S – young fruiting body stipe, ARO_YFB_C – young 
fruiting body cap (including lamellae), ARO_P2_S – stage II primordium stipe, ARO_P2_C – stage II 
primordium cap, ARO_P1 – stage I primordium. On the right gene abbreviation Rl-CEP, Rl-DPBB and RlpA 
stand for RlpA like ceratoplatanins, RlpA like-DPBB domain and rare lipoprotein A. (ARMOST_XXXXX	is	
replaced	with	CLASS_XXXXX)	
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Supplementary Figure 13. Upregulation of four A.-specific 5-oxoprolinase (ARMOST_01594, 
ARMOST_06912, ARMOST_13255, ARMOST_13256) genes, representing a hydrolase family acting on 
carbon-nitrogen bonds of cyclic amides. Note that oxoprolinases are enriched in A. genomes (see pfam 
enrichment analysis), and form A.-specific clusters. 5-oxoprolinases eliminate 5-oxoproline (or pyroglutamic 
acid), which is toxic to the cell and accumulates as a byproduct of the pyroglutamyl cycle when cytoplasmic 
glutathione is exposed to elevated levels of H2O2. We hypothesize that H2O2 originate from the activity of 
intracellular alcohol oxidase genes (AA3_3, ARMOST_02077, ARMOST_11817, ARMOST_16406), of 
which three were found up-regulated in vegetative mycelia and rhizomorphs. Thus, 5-oxoprolinase 
upregulation probably marks a defense against intracellular H2O2 generated by alcohol oxidases, which can 
be tolerated by vegetative mycelia, but not rhizomorphs. It is tempting to speculate that the 3-dimensional 
organization of rhizomorphs hampers the passive diffusion of H2O2 out of the cell, requiring an additional 
mechanism to mitigate its effects. On the right, gene abbreviation for OXOP and AA33 stand for 5-
oxoprolinase and alcohol oxidase (AA3_3), respectively. (ARMOST_XXXXX	is	replaced	with	
CLASS_XXXXX) 
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Supplementary Figure 14. The up-regulation of the genes encoding several components of the ER protein 
posttranslational import system (ARMOST_03632, ARMOST_04835, ARMOST_02122), including the signal 
peptidase complex (ARMOST_01796, ARMOST_03955, ARMOST_18036) and 10 mannosyl-transferases 
(ARMOST_00978, ARMOST_01432, ARMOST_01466, ARMOST_03595, ARMOST_03730, 
ARMOST_04467, ARMOST_07188, ARMOST_09376, ARMOST_15718, ARMOST_19330) of the N- and 
O-glycosylation machineries (ARMOST_00547, ARMOST_04944, ARMOST_05314, ARMOST_08139, 
ARMOST_08146, ARMOST_08149, ARMOST_09141), and subunits of the proteasome (ARMOST_00341, 
ARMOST_03932, ARMOST_05414, ARMOST_10058, ARMOST_12498) involved in the degradation of the 
unfolded, exported proteins on the ER surface, may indicate an intensified biogenesis and cargo of 
extracellular proteins along the secretory pathway. Although an upregulation of these genes was low 
(FC<4), it was statistically significant, suggesting that these functionalities are revved up in rhizomorphs. 
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On the right, gene abbreviations ERPT, SiPC, GLYC, PROE and MANT stand for ER protein translocation 
system, Signal peptidase complex, N and O glycosylation machineries, subunits of Proteosome and 
Mannosyl transferases. (ARMOST_XXXXX is replaced with CLASS_XXXXX) 
	
	
	

	
Supplementary Figure 15. Heatmap of chitin binding and metabolism-related gene expression patterns in A. 
ostoyae C18. Abbreviations are as follows: ARO_RMA – rhizomorph, ARO_VM – vegetative mycelium, 
ARO_FB_L – mature fruiting body gills, ARO_FB_S – mature fruiting body stipes, ARO_FB_C – mature 
fruiting body caps, ARO_YFB_S – young fruiting body stipe, ARO_YFB_C – young fruiting body cap 
(including lamellae), ARO_P2_S – stage II primordium stipe, ARO_P2_C – stage II primordium cap, 
ARO_P1 – stage I primordium. On the right, gene family abbreviations CBM512, CHITO, LysM and PoDA 
stand for carbohydrate binding module5/12, fungal chitosanase (GH75), LysM motif and polysaccharide 
deacethylase. (ARMOST_XXXXX	is	replaced	with	CLASS_XXXXX)	
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Supplementary Figure 16. Heatmap of hydrophobin gene expression patterns in A. ostoyae C18. 
Abbreviations are as follows: ARO_RMA – rhizomorph, ARO_VM – vegetative mycelium, ARO_FB_L – 
mature fruiting body gills, ARO_FB_S – mature fruiting body stipes, ARO_FB_C – mature fruiting body 
caps, ARO_YFB_S – young fruiting body stipe, ARO_YFB_C – young fruiting body cap (including lamellae), 
ARO_P2_S – stage II primordium stipe, ARO_P2_C – stage II primordium cap, ARO_P1 – stage I 
primordium.	
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Supplementary Figure 17. Heatmap of transcription factor gene expression patterns in A. ostoyae C18 
broken down by major TF category: General transcription factors (TFs like TFIID, TATA box binding factors 
etc.,, upper left), Fungal specific transcription factors (Fungal type like Fungal transcription factor) , Zinc 
finger type transcription factors and DNA binding factors (Fork head domain, ARID DNA binding etc.,). 
Abbreviations are as follows: ARO_RMA – rhizomorph, ARO_VM – vegetative mycelium, ARO_FB_L – 
mature fruiting body gills, ARO_FB_S – mature fruiting body stipes, ARO_FB_C – mature fruiting body 
caps, ARO_YFB_S – young fruiting body stipe, ARO_YFB_C – young fruiting body cap (including lamellae), 
ARO_P2_S – stage II primordium stipe, ARO_P2_C – stage II primordium cap, ARO_P1 – stage I 
primordium.  
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Supplementary Figure 18. We detected several HTPs and GMC oxidoreductases upregulated in fruiting 
bodies. ARMOST_13453 (HTP) and ARMOST_07644 (GMC oxidoreductase) show uniformly high transcript 
levels in fruiting body samples, whereas 3 further HTPs and 5 GMC oxidoreductases show high expression 
in caps, but significantly lower in stipes. Certain GMC oxidoreductases were upregulated in fruiting body 
tissues of Flammulina velutipes too73, which supports a potential role of HTPs and GMC oxidoreductases in 
the multicellular organization of rhizomorphs and fruiting bodies. Similarly, several pectin degradation-
related genes, including multiple GH28 exo- and endopolygalacturonases, a pectate lyase and 
pectinesterase showed an expression maximum in cap tissues of stage II primordia and to a lesser extent in 
young fruiting body caps. Their upregulation in fruiting body tissues (and rhizomorphs) is remarkable as 
these genes are generally linked to PCW degradation, whereas to our best knowledge, they have not been 
implicated in fruiting body development so far. On the right, gene abbreviations HTP, GMC, GH28, PECL 
and PECE stand for heme-thiolate peroxidase, GMC oxidoreductase, GH28 exopolygalacturonases, 
pectate lyase and pectinesterase, respectively. (ARMOST_XXXXX is replaced with CLASS_XXXXX) 
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Supplementary Figure 19. Genes of the cell wall biosynthesis and remodeling pathways (including its 
regulator) exhibit tissue-specific expression patterns. Two homologs of the Saccharomyces cerevisiae chitin 
synthase 1 (CHS1), four chitin deacetylases or chitosan synthases (ARMOST_ 05321, ARMOST_13355, 
ARMOST_17504, ARMOST_18526, homologues of CDA1) and one gene involved in crosslinking glucan 
and chitin (ARMOST_06791, homolog of CRH1) are predominantly upregulated in cap and gill tissues. Two 
chitinase genes (ARMOST_03314 and ARMOST_03336, homologs of CTS1 and CTS2 respectively) 
showed highest expression in vegetative mycelia. On the other hand, genes showing peak expression in 
rhizomorphs included a homologue (ARMOST_03486) of the yeast glucosidase II (ROT2), critical in the 
elongation of N-glycans, a beta–1,6–glucan synthase (ARMOST_13508, homolog of KRE6) and a gene 
encoding transporter of UDP-GlcNac (ARMOST_10642, homolog of YEA4), which is the donor of GlcNac 
residues for glycosylated proteins and cell surface structures. In contrast to CHS1 homologs, three out of 
four yeast CHS3 homologs (ARMOST_06013, ARMOST_06316, ARMOST_16675), a second homolog of 
glucosidase II (ARMOST_15648, ROT2), a beta-1,3-glucan synthase (ARMOST_13503, homolog of FKS1), 
its RHO1 regulatory factor (ARMOST_19100), an exoglucanase (ARMOST_14596, homolog of EXG1) and 
a gene which catalyzes the formation of glucosamine-6-P (the first step of the chitin biosynthetic pathway, 
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ARMOST_01969, homolog of GFA1) show concomitant upregulation in stipes and rhizomorphs. These 
latter genes show modest upregulation in cap tissues of mature fruiting bodies too. Taken together, these 
data suggest that genes involved in chitin synthesis and remodeling are differentially used by A. ostoyae in 
a development- and tissue-specific manner.	


