Supporting Information for "A direct approach to estimating false discovery rates conditional on covariates"

Simina M. Boca and Jeffrey T. Leek

June 19, 2017

1 Proofs of analytical results

Proof of Theorem 3

$$
\begin{aligned}
E\left[Y_{i} \mid \mathbf{X}_{i}=\mathbf{x}_{i}\right] & =\operatorname{Pr}\left(P_{i}>\lambda \mid \mathbf{X}_{i}=\mathbf{x}_{i}\right) \\
& =\operatorname{Pr}\left(P_{i}>\lambda \mid \theta_{i}=1, \mathbf{X}_{i}=\mathbf{x}_{i}\right) P\left(\theta_{i}=1 \mid \mathbf{X}_{i}=\mathbf{x}_{i}\right) \\
& +\operatorname{Pr}\left(P_{i}>\lambda \mid \theta_{i}=0, \mathbf{X}_{i}=\mathbf{x}_{i}\right) P\left(\theta_{i}=0 \mid \mathbf{X}_{i}=\mathbf{x}_{i}\right) .
\end{aligned}
$$

Then, using the assumption that conditional on the null, the p-values do not depend on the covariates:

$$
\begin{aligned}
E\left[Y_{i} \mid \mathbf{X}_{i}=\mathbf{x}_{i}\right] & =\operatorname{Pr}\left(P_{i}>\lambda \mid \theta_{i}=1\right) P\left(\theta_{i}=1 \mid \mathbf{X}_{i}=\mathbf{x}_{i}\right) \\
& +\operatorname{Pr}\left(P_{i}>\lambda \mid \theta_{i}=0\right) P\left(\theta_{i}=0 \mid \mathbf{X}_{i}=\mathbf{x}_{i}\right) \\
& =(1-\lambda) \pi_{0}\left(\mathbf{x}_{i}\right)+\{1-G(\lambda)\}\left\{1-\pi_{0}\left(\mathbf{x}_{i}\right)\right\} .
\end{aligned}
$$

Proof of Corollary 4

Applying the law of iterated expectations:

$$
E\left[Y_{i}\right]=E\left[E\left[Y_{i} \mid \mathbf{X}_{i}\right]\right]=(1-\lambda) E\left[\pi_{0}\left(\mathbf{X}_{i}\right)\right]+\{1-G(\lambda)\}\left\{1-E\left[\pi_{0}\left(\mathbf{X}_{i}\right)\right]\right\}
$$

We complete the proof by using:

$$
\begin{aligned}
\pi_{0} & =\operatorname{Pr}\left(\theta_{i}=1\right)=\int \operatorname{Pr}\left(\theta_{i}=1, \mathbf{X}_{i}=\mathbf{x}\right) d \nu(\mathbf{x}) \\
& =\int \operatorname{Pr}\left(\theta_{i}=1 \mid \mathbf{X}_{i}\right) d F_{\mathbf{X}_{i}}=E\left[\operatorname{Pr}\left(\theta_{i}=1 \mid \mathbf{X}_{i}\right)\right]=E\left[\pi_{0}\left(\mathbf{X}_{i}\right)\right]
\end{aligned}
$$

where ν is typically either the Lebesgue measure over a subset \mathbb{R} or the counting measure over a subset of \mathbb{Q}, and $F_{\mathbf{X}_{i}}$ is the cumulative distribution function for \mathbf{X}_{i}. Here we are implicitly assuming some distribution for \mathbf{X}_{i} as well. Everywhere else we are conditioning on \mathbf{X}.

Proof of Result 6

We prove this result by showing that:

$$
\begin{equation*}
E\left[\left(\hat{\pi}_{0}\left(\mathbf{x}_{i}\right)-\pi_{0}\left(\mathbf{x}_{i}\right)\right)^{2} \mid \hat{\pi}_{0}\left(\mathbf{x}_{i}\right)>1\right]>E\left[\left(\hat{\pi}_{0}\left(\mathbf{x}_{i}\right)^{C}-\pi_{0}\left(\mathbf{x}_{i}\right)\right)^{2} \mid \hat{\pi}_{0}\left(\mathbf{x}_{i}\right)>1\right] \tag{1}
\end{equation*}
$$

and:

$$
\begin{equation*}
E\left[\left(\hat{\pi}_{0}\left(\mathbf{x}_{i}\right)-\pi_{0}\left(\mathbf{x}_{i}\right)\right)^{2} \mid \hat{\pi}_{0}\left(\mathbf{x}_{i}\right)<0\right]>E\left[\left(\hat{\pi}_{0}^{C}\left(\mathbf{x}_{i}\right)-\pi_{0}\left(\mathbf{x}_{i}\right)\right)^{2} \mid \hat{\pi}_{0}\left(\mathbf{x}_{i}\right)<0\right] . \tag{2}
\end{equation*}
$$

Then, we can combine them as follows:

$$
\begin{aligned}
& E\left[\left(\hat{\pi}_{0}\left(\mathbf{x}_{i}\right)-\pi_{0}\left(\mathbf{x}_{i}\right)\right)^{2}\right]-E\left[\left(\hat{\pi}_{0}^{C}\left(\mathbf{x}_{i}\right)-\pi_{0}\left(\mathbf{x}_{i}\right)\right)^{2}\right]= \\
= & E\left[\left(\hat{\pi}_{0}\left(\mathbf{x}_{i}\right)-\pi_{0}\left(\mathbf{x}_{i}\right)\right)^{2} \mid \hat{\pi}_{0}\left(\mathbf{x}_{i}\right)>1\right]-E\left[\left(\hat{\pi}_{0}\left(\mathbf{x}_{i}\right)^{C}-\pi_{0}\left(\mathbf{x}_{i}\right)\right)^{2} \mid \hat{\pi}_{0}\left(\mathbf{x}_{i}\right)>1\right] P\left(\hat{\pi}_{0}\left(\mathbf{x}_{i}\right)>1\right) \\
+ & E\left[\left(\hat{\pi}_{0}\left(\mathbf{x}_{i}\right)-\pi_{0}\left(\mathbf{x}_{i}\right)\right)^{2} \mid \hat{\pi}_{0}\left(\mathbf{x}_{i}\right)<0\right]-E\left[\left(\hat{\pi}_{0}^{C}\left(\mathbf{x}_{i}\right)-\pi_{0}\left(\mathbf{x}_{i}\right)\right)^{2} \mid \hat{\pi}_{0}\left(\mathbf{x}_{i}\right)<0\right] P\left(\hat{\pi}_{0}\left(\mathbf{x}_{i}\right)<0\right) \\
\geq & 0 .
\end{aligned}
$$

In Eq. (1):

$$
\begin{aligned}
& E\left[\left(\hat{\pi}_{0}\left(\mathbf{x}_{i}\right)-\pi_{0}\left(\mathbf{x}_{i}\right)\right)^{2} \mid \hat{\pi}_{0}\left(\mathbf{x}_{i}\right)>1\right]-E\left[\left(\hat{\pi}_{0}^{C}\left(\mathbf{x}_{i}\right)-\pi_{0}\left(\mathbf{x}_{i}\right)\right)^{2} \mid \hat{\pi}_{0}\left(\mathbf{x}_{i}\right)>1\right]= \\
= & E\left[\left(\hat{\pi}_{0}\left(\mathbf{x}_{i}\right)-1\right)\left(\hat{\pi}_{0}\left(\mathbf{x}_{i}\right)+1-2 \pi_{0}\left(\mathbf{x}_{i}\right)\right) \mid \hat{\pi}_{0}\left(\mathbf{x}_{i}\right)>1\right]>0,
\end{aligned}
$$

because in this region $\hat{\pi}_{0}\left(\mathbf{x}_{i}\right)+1>2 \geq 2 \pi_{0}\left(\mathbf{x}_{i}\right)$.
In Eq. (2):

$$
\begin{aligned}
& E\left[\left(\hat{\pi}_{0}\left(\mathbf{x}_{i}\right)-\pi_{0}\left(\mathbf{x}_{i}\right)\right)^{2} \mid \hat{\pi}_{0}\left(\mathbf{x}_{i}\right)<0\right]-E\left[\left(\hat{\pi}_{0}^{C}\left(\mathbf{x}_{i}\right)-\pi_{0}\left(\mathbf{x}_{i}\right)\right)^{2} \mid \hat{\pi}_{0}\left(\mathbf{x}_{i}\right)<0\right]= \\
= & E\left[\left(a-\hat{\pi}_{0}\left(\mathbf{x}_{i}\right)\right)\left(2 \pi_{0}\left(\mathbf{x}_{i}\right)-\hat{\pi}_{0}\left(\mathbf{x}_{i}\right)-0\right) \mid \hat{\pi}_{0}\left(\mathbf{x}_{i}\right)<0\right]>0,
\end{aligned}
$$

because in this region $2 \pi_{0}\left(\mathbf{x}_{i}\right) \geq 0>\hat{\pi}_{0}\left(\mathbf{x}_{i}\right)$.

2 Functions $\pi_{0}\left(\mathbf{x}_{i}\right)$ used in simulation scenarios

Below, we refer to scenarios I-IV, as in Figure 3:
In scenarios I-IV, the values of x_{1} are equally spaced between 0 and 1 , with the number of points being equal to m, the number of features considered.

- Scenario I: $\pi_{0}\left(x_{1}\right)=0.9$
- Scenario II: $\pi_{0}\left(x_{1}\right)=\pi_{01}\left(x_{1}\right)+\pi_{02}\left(x_{1}\right)+0.12 \pi_{03}\left(x_{1}\right)$, where:

$$
\begin{gathered}
\pi_{01}\left(x_{1}\right)=\left\{\begin{array}{l}
1 \text { if } 0 \leq x_{1} \leq 0.5 \\
-4 / 1.96\left(x_{1}+0.2\right)\left(x_{1}-1.2\right) \text { if } 0.5<x_{1}<0.7 \\
4 / 1.96 \times 0.45 \text { if } 0.7 \leq x_{1} \leq 1,
\end{array} \pi_{02}\left(x_{1}\right)=\left\{\begin{array}{l}
0 \text { if } 0 \leq x_{1}<0.7 \\
-2.5(x-0.7)^{2} \text { if } 0.7 \leq x_{1} \leq 1
\end{array}\right.\right. \\
\pi_{03}\left(x_{1}\right)=\left\{\begin{array}{l}
0 \text { if } 0 \leq x_{1} \leq 0.1 \\
-(x-0.1)^{2} \text { if } 0.1<x_{1}<0.7 \\
-0.36 \text { if } 0.7 \leq x_{1} \leq 1 .
\end{array}\right.
\end{gathered}
$$

- Scenario III:

$$
\pi_{0}\left(x_{1}, x_{2}\right)=\left\{\begin{array}{l}
\pi_{01}\left(x_{1}\right)+\pi_{02}\left(x_{1}\right)+0.12 \pi_{03}\left(x_{1}\right) \text { if } x_{2}=1 \\
\pi_{01}\left(x_{1}\right)+0.5 \pi_{02}\left(x_{1}\right)+0.06 \pi_{03}\left(x_{1}\right) \text { if } x_{2}=2 \\
\pi_{01}\left(x_{1}\right)+0.3 \pi_{02}\left(x_{1}\right) \text { if } x_{2}=3
\end{array}\right.
$$

where x_{2} is defined by first randomly generating m points from $\operatorname{Unif}(0,0.5)$, then creating discrete categories by using the thresholds 0.127 and 0.302 and $\pi_{01}, \pi_{02}, \pi_{03}$ are defined as in Scenario II.

- Scenario IV: $\pi_{0}\left(x_{1}, x_{2}\right)$ is the same function as in scenario III multiplied by 0.6 .

3 Supplementary figures

Figure S1: Simulation scenarios with $\mathrm{m}=1,000$ features and normally-distributed independent test statistics (Table 3) showing the true function $\pi_{0}\left(\mathbf{x}_{i}\right)$ in black and the empirical means of $\hat{\pi}_{0}\left(\mathbf{x}_{i}\right)$, assuming different modelling approaches in the orange (for our approach, Boca-Leek $=\mathrm{BL}$), blue (for the Scott approach with the theoretical null $=$ Scott T), and brown for the Storey approach.
(a)

(b)

(d)

III

(f)

(c)

(e)
III

(g)
iv

Figure S 2 : Simulation scenarios with $\mathrm{m}=1,000$ features and t -distributed independent test statistics (Table 3) showing the true function $\pi_{0}\left(\mathbf{x}_{i}\right)$ in black and the empirical means of $\hat{\pi}_{0}\left(\mathbf{x}_{i}\right)$, assuming different modelling approaches in the orange (for our approach, Boca-Leek = BL), blue (for the Scott approach with the theoretical null $=$ Scott T), and
brown for the Storey approach.
(a)

(b)
(c)

Figure S3: Simulation scenarios with $\mathrm{m}=10,000$ features and normally-distributed independent test statistics (Table 4) showing the true function $\pi_{0}\left(\mathbf{x}_{i}\right)$ in black and the empirical means of $\hat{\pi}_{0}\left(\mathbf{x}_{i}\right)$, assuming different modelling approaches in the orange (for our approach, Boca-Leek = BL), blue (for the Scott approach with the theoretical null $=$ Scott T), and brown for the Storey approach.
(a)

(b)

(d)

(f)

IV
(c)

(e)
III

(g)
iv

Figure S4: Simulation scenarios with $\mathrm{m}=10,000$ features and t -distributed independent test statistics (Table 4) showing the true function $\pi_{0}\left(\mathbf{x}_{i}\right)$ in black and the empirical means of $\hat{\pi}_{0}\left(\mathbf{x}_{i}\right)$, assuming different modelling approaches in the orange (for our approach, Boca-Leek = BL), blue (for the Scott approach with the theoretical null = Scott T), and brown for the Storey approach.
(a)

(b)

(d)

(f)

IV
(c)

(e)
III

(g)
iv

Figure S5: Diagnostic plots for assessing whether, in the BMI GWAS meta-analysis, the p-values and the covariates are conditionally independent under the null. Panel a) stratifies according to N , splitting up the dataset into 8 approximately equal datasets, panel b) uses the MAF stratification

