$\boldsymbol{R}^{\mathbf{2}}$ s for Correlated Data: Phylogenetic Models, LMMs, and GLMMs

Anthony R. Ives, Department of Integrative Biology, UW-Madison, Madison, WI 53706 arives@wisc.edu

Appendix 2: More comparisons among the $\boldsymbol{R}^{\mathbf{2}} \mathrm{s}$.

To give a comprehensive assessment of the $R^{2} \mathrm{~s}$, this supplement discusses and plots a complete set of simulations, from which a subset was presented in the main text. The different models (LMM, PGLS, GLMM, and PLOG) are presented in turn.

For the comparisons, $R^{2}{ }_{g l m m}$ and $R_{\text {ols }}^{2}$ are included where applicable. Nakagawa and Schielzeth (2013) present two R^{2} s. The conditional $R_{g l m m(c)}^{2}$ is the total R^{2} that includes the "explained" variance by both fixed and random effects. The marginal $R_{\text {glmm(m) }}^{2}$ give that component of the total variance that is attributed to the fixed effects. Note that $R^{2}{ }_{g l m m(m)}$ is not a partial R^{2}, but instead is given as

$$
R_{g l m m(m)}^{2}=1-\frac{\sigma_{d}^{2}+\hat{\sigma}_{l}^{2}}{\hat{\sigma}_{f}^{2}+\hat{\sigma}_{l}^{2}+\sigma_{d}^{2}}
$$

To give a comparable measure for the contribution of the random effects, I define

$$
R_{g l m m(v)}^{2}=1-\frac{\sigma_{d}^{2}+\hat{\sigma}_{f}^{2}}{\hat{\sigma}_{f}^{2}+\hat{\sigma}_{l}^{2}+\sigma_{d}^{2}}
$$

In the comparisons for LMMs and GLMMs, I compare the partial R^{2} s of $R_{l s}^{2}, R_{l r}^{2}$ and $R^{2}{ }_{c e}$ for the fixed effect to $R^{2}{ }_{g l m m(m)}$ and the partial R^{2} s for the random effect to $R^{2}{ }_{g l m m(v)}$. This illustrates the differences between using partial $R^{2} \mathrm{~s}$ and marginal $R^{2} \mathrm{~s}$.

Figure Captions

Figure A2.1: Simulation results for a Linear Mixed Model (LMM) giving $R^{2}{ }_{l s}, R^{2}{ }_{l r}, R^{2}{ }_{c e}, R^{2}{ }_{g l m m}$, and $R^{2}{ }_{\text {ols }}$ versus the log likelihood ratio (LLR) between full and reduced models. The simulation model (equation (7)) contained both a fixed effect β for a continuous variable x and a random effect b for a categorical variable u. For (a), (b) and (c), data were simulated without the random
$\operatorname{effect}(\beta=1, \sigma=0)$, and for (d), (e) and (f), data were simulated without the fixed effect ($\beta=0$, $\sigma=1.5$). Simulations for (g), (h), and (i) contained both fixed and random effects. Columns give different partial R^{2} S for each method. Specifically, (a), (d), and (g) give the partial $R^{2} \mathrm{~S}$ in which the reduced model removes the fixed effect for x : therefore, these give partial $R^{2} \mathrm{~s}$ for the fixed effect. Panels (b), (e), and (h) give the partial $R^{2} \mathrm{~s}$ in which the reduced model removes the random effect for u : therefore, these give partial $R^{2} \mathrm{~s}$ for the random effect. In panels (c), (f) and (i), the reduced model removes both fixed and random effects, giving the total R^{2}. Each data set consisted of 100 simulated points, x was simulated as a normal $(0,1)$ random variable, and u had 10 levels with b is simulated as a normal $(0, \sigma)$. All analyses were performed with the function $\operatorname{lmer}()$.

Figure A2.2: Simulation results for a Linear Mixed Model (LMM) giving associations between $R_{l s}^{2}, R_{l r}^{2}, R_{c e}^{2}, R_{g l m m}^{2}$, and $R_{o l s}^{2}$. Data are the same as presented in figure A2.1.

Figure A2.3: Simulation results for a Linear Mixed Model (LMM) showing means and standard deviations of $R^{2}{ }_{l s}, R^{2}{ }_{l r}, R_{c e}^{2}, R^{2}{ }_{g l m m}$, and $R^{2}{ }_{o l s}$ versus sample size. The simulation model (equation (7)) contained both a fixed effect β for a continuous variable x and a random effect b for a categorical variable u. For each level of u, from 4 to 16 replicates were simulated. (a), (b), and (c) give means of each R^{2} were calculated for 500 simulations at each sample, and (d), (e), and (f) give standard deviations. Columns give different partial $R^{2} \mathrm{~s}$, with (a) and (d) giving the partial $R^{2} \mathrm{~s}$ for the fixed effect, (b) and (e) giving the partial $R^{2} \mathrm{~s}$ for the random effect, and (c) and (f) giving the total R^{2} s. In the simulations, x is simulated as a normal $(0,1)$ random variable with $\beta=$ 1 ; u has 10 levels and b is simulated as a normal $(0, \sigma=1.5)$ random variable; and residuals e are independent $(0,1)$ random variables. All analyses were performed with the function lmer().

Figure A2.4: Simulation results for the phylogenetic model with a continuous predictor variable x giving $R_{l s}^{2}, R_{l r}^{2}$, and $R_{c e}^{2}$ versus the log likelihood ratio (LLR) between full and reduced models. For each simulation, a phylogenetic tree was first simulated, and the values of x were simulated up the phylogeny assuming Brownian Motion evolution. Data were simulated using equation (7) with $b=0$, and residuals e_{i} were simulated from a multivariate normal distribution with mean zero and covariance matrix $\boldsymbol{\Sigma}(\boldsymbol{\lambda})=(1-\lambda) \mathbf{I}+\boldsymbol{\lambda} \boldsymbol{\Sigma}_{\mathrm{BM}}$. For (a), (b) and (c), data were
simulated without phylogenetic signal $(\lambda=0, \beta=1)$, and for (d), (e) and (f), data were simulated without the fixed effect $(\lambda=0.5, \beta=0)$. Simulations for (g), (h), and (i) contained both fixed and phylogenetic effects $(\beta=1, \lambda=0.5)$. (a), (d), and (g) give the partial R^{2} s for the fixed effect. Panels (b), (e), and (h) give the partial R^{2} s for the phylogenetic effect. In panels (c), (f) and (i), the reduced model removes both fixed and phylogenetic effects, giving the total $R^{2} \mathrm{~s}$. All analyses were performed with the function phylolm().

Figure A2.5: Simulation results for a PGLS model giving associations between $R^{2}{ }_{l s}, R^{2}{ }_{l r}$, and $R_{c e}^{2}$. Data are the same as presented in figure A2.3.

Figure A2.6: Simulation results for the phylogenetic model with a continuous response variable showing means and standard deviations of $R_{l s}^{2}, R_{l r}^{2}$, and $R_{c e}^{2}$ versus sample size. For each simulation, a phylogenetic tree was first simulated, and the values of the predictor variable x were simulated up the phylogeny assuming Brownian Motion evolution. In equation 9, residuals e_{i} were simulated from a multivariate normal distribution with mean zero and covariance matrix $\boldsymbol{\Sigma}(\lambda)=(1-\lambda) \mathbf{I}+\lambda \boldsymbol{\Sigma}_{\mathrm{BM}}$, and the parameter values were $\lambda=0.5, \beta=1$, and $b=0$. (a), (b), and (c) give means of each R^{2} were calculated for 500 simulations at each sample, and (d), (e), and (f) give standard deviations. Columns give different partial $R^{2} \mathrm{~s}$, with (a) and (d) giving the partial $R^{2} \mathrm{~s}$ for x, (b) and (e) giving the partial $R^{2} \mathrm{~s}$ for phylogenetic signal λ, and (c) and (f) giving the total $R^{2} \mathrm{~s}$. All analyses were performed with the function phylolm().

Figure A2.7: Simulation results for a binary Generalized Linear Mixed Model (GLMM) giving $R_{l s}^{2}, R_{l r}^{2}, R_{c e}^{2}, R_{g l m m}^{2}$, and $R_{\text {ols }}^{2}$ versus the log likelihood ratio (LLR) between full and reduced models. The simulation model (equation (7)) contained both a fixed effect β for a continuous variable x and a random effect b for a categorical variable u. For (a), (b) and (c), data were simulated without the random effect $(\beta=1.8, \sigma=0)$, and for (d), (e) and (f), data were simulated without the fixed effect ($\beta=0, \sigma=1.8$). Simulations for (g), (h), and (i) contained both fixed and random effects. (a), (d), and (g) give the partial R^{2} s for the fixed effect, and panels (b), (e), and (h) give the partial $R^{2} \mathrm{~s}$ for the random effect. In panels (c), (f) and (i) give total $R^{2} \mathrm{~s}$. In the simulations, x is simulated as a normal $(0,1)$ random variable and u has 10 levels and b is simulated as a normal $(0, \sigma)$. All analyses were performed with the function $\operatorname{glmer}()$.

Figure A2.8: Simulation results for a Generalized Linear Mixed Model (GLMM) giving associations between $R^{2}{ }_{l s}, R^{2}{ }_{l r}, R_{c e}^{2}, R_{g l m m}^{2}$, and $R^{2}{ }_{o l s}$. Data are the same as presented in figure A2.7.

Figure A2.9: Simulation results for a binary Generalized Linear Mixed Model (GLMM) showing means and standard deviations of $R^{2}{ }_{l s}, R^{2}{ }_{l r}, R_{c e}^{2}, R^{2}{ }_{g l m m}$, and $R^{2}{ }_{o l s}$ versus sample size. The simulation model (equation (7)) contained both a fixed effect β for a continuous variable x and a random effect b for a categorical variable u. For each level of u, from 4 to 16 replicates were simulated. (a), (b), and (c) give means of each R^{2} were calculated for 1000 simulations at each sample, and (d), (e), and (f) give standard deviations. Columns give different partial $R^{2} \mathrm{~s}$, with (a) and (d) giving the partial $R^{2} \mathrm{~s}$ for the fixed effect, (b) and (e) giving the partial $R^{2} \mathrm{~s}$ for the random effect, and (c) and (f) giving the total $R^{2} \mathrm{~s}$. In the simulations, x is simulated as a normal $(0,1)$ random variable with $\beta=1.8$ and u has 10 levels and b is simulated as a normal $(0, \sigma=1.8)$ random variable. All analyses were performed with the function glmer().

Figure A2.10: Simulation results for the phylogenetic model with a continuous predictor variable x giving $R^{2}{ }_{l s}, R^{2}{ }_{l r}$, and $R_{c e}^{2}$ versus the log likelihood ratio (LLR) between full and reduced models. For each simulation, a phylogenetic tree was first simulated, and the values of x were simulated up the phylogeny assuming Brownian Motion evolution. Data were simulated using equation (7) with $b=0$, and residuals e_{i} were simulated from a multivariate normal distribution with mean zero and covariance matrix $\boldsymbol{\Sigma}(\lambda)=(1-\lambda) \mathbf{I}+\lambda \boldsymbol{\Sigma}_{\mathrm{BM}}$. For (a), (b) and (c), data were simulated without phylogenetic signal $(\lambda=0, \beta=1.5)$, and for (d), (e) and (f), data were simulated without the fixed effect $(\lambda=2, \beta=0)$. Simulations for (g), (h), and (i) contained both fixed and phylogenetic effects $(\lambda=2, \beta=1.5)$. (a), (d), and (g) give the partial $R^{2} \mathrm{~s}$ for the fixed effect. Panels (b), (e), and (h) give the partial R^{2} s for the phylogenetic effect. In panels (c), (f) and (i), the reduced model removes both fixed and phylogenetic effects, giving the total R^{2} s. All analyses were performed with the function phylolm().

Figure A2.11: Simulation results for a phylogenetic logistic regression model giving associations between $R^{2}{ }_{l s}, R_{l r}^{2}$, and $R_{c e}^{2}$. Data are the same as presented in figure A2.10.

Figure A2.12: Simulation results for the phylogenetic model with a binary response variable showing means and standard deviations of $R^{2}{ }_{l s}, R^{2}{ }_{l r}$, and $R^{2}{ }_{c e}$ versus sample size. For each simulation, a phylogenetic tree was first simulated, and residuals e_{i} (equation (7)) were simulated from a multivariate normal distribution with mean zero and covariance matrix $\Sigma(\lambda)=\lambda \Sigma_{\text {BM }}$. Values of the predictor variable x were assumed to be independently distributed by a $(0,1)$ normal distribution, and the parameter values were $\lambda=2, \beta=1.5$, and $b=0$. (a), (b), and (c) give means of each R^{2} were calculated for 500 simulations at each sample, and (d), (e), and (f) give standard deviations. Columns give different partial $R^{2} \mathrm{~s}$, with (a) and (d) giving the partial $R^{2} \mathrm{~s}$ for x, (b) and (e) giving the partial $R^{2} \mathrm{~s}$ for phylogenetic signal λ, and (c) and (f) giving the total R^{2} s. Calculations of $R^{2}{ }_{l r}$ were performed with a modified version of the function phyloglm() and the function $\operatorname{glm}()$. Calculations of $R_{l s}^{2}$ and $R^{2}{ }_{c e}$ were performed with the function binaryPGLMM().

Fig. A2.1
Partial R^{2} for β_{1}
Partial R^{2} for θ
Total R^{2}

Fig. A2. 2

$\begin{array}{ll}\times & \beta_{1}=1, \theta=1.5 \\ \triangle & \beta_{1}=1, \theta=0\end{array}$

Fig. A2.3

Fig. A2.4
Partial R^{2} for β_{1}

(b) $\stackrel{-1}{-1}$

Fig. A2.5

$\times \beta_{1}=1, \theta=0.5$
$\triangle \beta_{1}=1, \theta=0$

- $\beta_{1}=0, \theta=0.5$

Fig. A2. 6

Fig. A2. 7

Fig. A2.8

Fig. A2. 9

Fig. A2.10
Partial R^{2} for β_{1}

Fig. A2.11

$$
\begin{aligned}
& \times \beta_{1}=1.5, \theta=2 \\
& \triangle \beta_{1}=1.5, \theta=0 \\
& \circ \beta_{1}=0, \theta=2
\end{aligned}
$$

Fig. A2.12

