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Figure S1 – The trade-off shape changes in response to the level of noise in hormones and receptors

gene expressions. The noise is modeled by multiplying each genetically encoded gene expression by

10ε, where ε = N (0, σn). Dots and error bars represent the mean and between-quantile difference

(q(0.9)− q(0.1)) of the distribution of shape parameters calculated in 50 replicate populations (see

main text for details)
.
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Figure S2 – The mean population difference in conformation between hormone and receptor decreases

as the cost associated with storage increases. Dots and bars represent respectively to the mean and

the difference between quantiles (0.1 and 0.9) of the distribution of conformation differences.
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Figure S3 – Comparison of fitnesses obtained in our standard model with those obtained in a model

where receptors only are recycled – instead of both the hormone and the receptor being recycled. In

this latter model, eq. [1] becomes
d[Hk]

dt
= αk−

nr∑
i=1

ns∑
j=1

(
konik×[Rij ]×[Hk]

)
−kd×[SD]×[Hk], such

that the term corresponding to the hormone released after complex dissociation is canceled. Dots

correspond to different genotypes, which were randomly generated by simulating three mutations

from the initial conditions defined in the main text. The line represents the situation where both

models yield identical fitnesses.
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SI text 1 – Solution for the energy allocation dynamics

Equations (10) and (11) in the main text yield three distinct phases for the energy allocation dynamics,
as illustrated by figure 1.

Phase 1. As stated in the main text, phase 1 starts at t0 (the meal) and goes on as long as [E] > Eom,
Eom = 0.08 being a concentration threshold above which energy is stored. At t0, [E] = Eo and decreases
until [E] = Eom (t1). From equation (10), we obtain

[E](t) =
b× Eom

a+ b
× (1− e−(a+b)×t) + Eo× e−(a+b)×t. (S1)

We find t1 from the equality [E](t1) = Eom :

t1 = − ln(
Eom × a

Eo× (a+ b)− b× Eom
)× 1

a+ b
(S2)

Finally, substituting [E](t) in equation (11) we obtain :

[Es](t1) =
b× (1− Cstorage)

a+ b
×
(
−a× Eom × t1 + (Eo− b× Eom

a+ b
)× (1− e−(a+b)×t1)

)
(S3)

Phase 2. Here the resource is released from the storage structure until [Es](t) = 0 (t2). At this point,
we have :

In order to obtain t2, we assume that [E] is constant during this phase, so
d[E]

dt
= 0 and b([E]−Eom) =

−a[E]. Therefore,
d[Es]

dt
= −a[E]. (S4)

From equation (S4) we obtain

[Es](t) = [Es](t1) + a× t1 ×
bEom

a+ b
− a× Eom × t, (S5)

which equals 0 at t2. We thus find t2 :

t2 = (Es(t1) + a× b× Eom

(a+ b)
× t1)×

(a+ b)

a× b× Eom
. (S6)

Finally we calculate :

[E](t2) =
b× Eom

a+ b
× (1− e−(a+b)×t2) + Eo× e−(a+b)×t2 (S7)

Phase 3. Phase 3 begins when [Es] reaches 0, such that [E] decreases until it reaches the critically low
value Emin = 0.01 (t3). During this phase, we find from equation (10) that

[E](t) =
b× Eom

a+ b
× e−a×t

e−a×t2
, (S8)

and we find t3 by substituting [E](t3) by Emin in equation (S8) :

t3 =
ln (Emin × (a+b)

b×Eom
)− a× t2

−a
(S9)
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