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S1 Measureing social fluidity

Our analysis concerns a closed system containing a set
N of N individuals who can interact with each other in
some way. The model has only one tunable parameter
which we call “social fluidity” and can be interpreted as
both the heterogeneity of relationship strengths, and the
level of mixing in the population. From the description
of the model we derive, analytically, the expected value
of the the observed number of interaction partners of an
individual, di, as a function of the number of times they
been observed in an interaction, si. By using maximum
likelihood methods we are able to measure and compare
social fluidity quantity across a wide range of data.

S1.1 Mathematical model of social behavior

We start by considering one focal individual i and its re-
lationship to another individual j. Suppose that i is ob-
served interacting with one other individual. We use xj|i,

for all j ∈ N \ {i}, to denote the probability that the
interaction will be with j.

If at least one interaction has been observed between i
and j then we say that an edge exists between them. The
probability that this is the case after i has been observed
si times is

P (i→ j|si) = 1− (1− xj|i)si . (1)

We now introduce heterogeneity into the distribution
of relationship strengths. We make no assumptions about
the relationship between i and j other than that xj|i is
drawn from some distribution ρ(x). The probability that
an edge exists between i and any node in the network after
s interactions is

Ψ(s) = 1−
∫
ρ(x)(1− x)sdx. (2)

Letting di be the degree of i, the expectation is simply
E(di) = (N −1)ψ(si). For a given distribution (ρ) of rela-
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tionship strengths in a population we now have a formula
that connects the number of interactions to the degree.

Our goal is to choose the distribution ρ that produces
an accurate recreation of the behavior seen in real social
systems. We therefore choose the truncated power law,

ρ(x) =
φεφ

1− εφ
x−(1+φ) for ε < x < 1. (3)

The reason for choosing a power law is that it allows the
heterogeneity of the relationship strengths to be controlled
by a single parameter φ making it adaptable to a wide va-
riety of social systems. The distribution is truncated at ε
so as not to include an asymptote at x = 0. It is truncated
1 to ensure that all values of xj|i, which are probabilities,
are less than 1.

S1.2 Choosing ε

The value of ε is determined by the choice of φ. To find ε,
consider that interactions are pairwise; when i interacts,
exactly one other individual is involved. Hence, the ex-
pectation of the sum of the xj|i’s over all j ∈ N \ {i} is
equal to 1. Another way to express this is

(N − 1)〈x〉 = 1 (4)

where 〈x〉 denotes the mean of the distribution ρ(x), and
is

〈x〉 =
φεφ(1− ε1−φ)

(1− φ)(1− εφ)
. (5)

Combining Eq.(4) and Eq.(5) we find that the only possi-
ble choice of ε is the solution of

(A+ 1)εφ − ε−A = 0 (6)

where A = (1− φ)/(N − 1)φ.

S1.3 Degree distribution

Substituting Eq.(3) into Eq.(2) we have, for an individual
that has had s interactions, that

Ψ(s) = 1− φεφ

1− εφ

∫ 1

ε

x−(1+φ)(1− x)sdx. (7)

This simplifies to

Ψ(s) = 1− φεφ(1− ε)s+1

(1− εφ)(s+ 1)
2F1(s+1, 1+φ, s+2, 1−ε) (8)

The notation 2F1 refers to the Gauss hypergeometric func-
tion [1]. Recall that Ψ(si) is the probability that an edge
exists from i to j, for any j ∈ N \ {i}, after i has been
involved in si interactions. The existence of any edge is
therefore determined by a Bernoulli trial independent of
the existence of any other. After s interactions the degree
of any node should therefore follow a binomial distribu-
tion d(s) ∼ B(N − 1,Ψ(s)), however, this gives non-zero

probabilities for cases where d > s. This only occurs for
0 < s < N so we replace the formula in this region with a
binomial distribution with the same mean, (N − 1)Ψ(s),
but bounded by s. Thus

di(s) ∼

B
(
s,

(N − 1)Ψ(s)

s

)
if 0 < s < N

B (N − 1,Ψ(s))) if s ≥ N
(9)

S1.4 Estimating φ in empirical data

The model we have described is based on the assumption
that the system is closed; over some sampling period the
N individuals only interact with others from the same
population. For each node i we need to know know the
number of time they interacted, si, and the number of oth-
ers they interacted with, di. We write this as two vectors
d = {d1, d2, ..., dN} and s = {s1, s2, ..., sN}.

The family of distributions in Eq.(9) allow us to cal-
culate P (d|s), the probability that an individual will have
degree d given that they have interacted s times, for any
value of the global parameter φ. The log-likelihood func-
tion is

logL(φ|d, t) =

N∑
i=1

log[P (di|si)]. (10)

We then compute the maximum likely estimate of φ,
φ = argmaxφ logL(φ|d, s). Standard error SEφ is
calculated at 95% confidence intervals using SEφ =

1.96/
√
−N(logL)′′ where the derivatives of logL are com-

puted numerically. The standard error is a measure of
confidence that our chosen φ is in fact the best choice. It
does not tell us how well the model fits the data in the
first place. To quantify this we introduce a measure of
model fidelity.

To measure model fidelity we compare the likelihood of
the proposed model it to a null model that represents the
most random, i.e. uniformly distributed, possible degree
distribution for each given t. The null model equivalent
of Eq.(9) is

d(s) ∼

{
U(0, s) if 0 < s < N

U(0, N − 1) if s ≥ N.
(11)

Model fidelity, fφ, quantifies the amount to which the pro-
posed model fits the data when compared to an equivalent
null model. We define it as

fφ = (1/N)[logL(φ|d, s)− logL(null|d, s)]. (12)

Because we are using observed values of si this approach
controls for fact activity levels may vary between data
sets.

Finally, to find a benchmark to compare the model fi-
delity we measured fφ for several synthetically generated
data sets. These data were generated by first selecting 100
values of s between 1 and 100 uniformly at random, then,
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Table S1: Summary of parameters and variables

Social behavior Disease transmission

N Number of nodes∑
si/2 The total number of interactions of all nodes
φ The mixing parameter. The optimal value cal-

culated from the process described in Section
S1.1

ε The lower cut-off for the relationship strength
distribution, Eq.(3)

SEφ The standard error of the estimate of φ
fφ Model fidelity. Given by Eq.(12)

β The probability of transmission given that
contact has occurred

γ Recovery rate of the disease model. Chosen so
that the mean number of infectious contacts is
the same across all data-sets Eq.(24)

ri Mean individual reproduction number based
on either Eq.(21) or disease simulation.

SEr Standard error of the reproduction number
based on disease simulation

|e| Absolute error. Sum of the differences be-
tween ri predicted by Eq.(21) and ri simulated

for each one we select a value of d either from the model
distribution given by Eq.(9) or from the noise distribu-
tion given by Eq.(11) (N = 100 and phi = 0.6). When
less than 8% of the synthetic values of d come from the
noise distribution, fφ is positive. We conclude that pos-
itive values of fφ found in any data-set implies that the
model is a good fit to the data.

S2 Modelling the spread of disease

The disease model is described as follows: We consider a
fully susceptible population of N individuals. At a ran-
domly selected point in time, one individual, i, becomes
infectious. They remain infectious for a duration of length
τ , where τ is a random variable drawn from an exponen-
tial distribution P (τ) = γ exp(−γτ). This is equivalent to
i being able to recover at any point in time and γ being
the probability that recovery occurs at any point during
an interval of length 1. The times for which infected indi-
vidual, i, engages in interaction follows a Poisson process
with rate parameter ai. Given that i is engaged in an
interaction, the probability that the interaction is with
individual j is xj|i. Once contact is established, the prob-
ability that the disease will transmit is β.

S2.1 The number of secondary infections

We are interested in r(ai), the expected number of other
individuals infected by i, given that the rate of interaction
of i is ai.

The transmission probability, the probability that i in-
fects j during an infectious period of length τ , is equal to
the probability that at i makes infectious contact with j
at least once during that time. Since the rate of infectious
contact between i and j follows a Poisson process with
rate aixj|iβ, the transmission probability for an infectious
period of length τ is derived from the Poisson distribution
and is

Ti→j(τ, ai, xj|i) = 1− exp(aixj|iβτ). (13)

As in Section S1.1 we make no assumptions about the re-
lationship between i and j other than that xj|i is drawn
from the distribution given by Eq.(3). The probability
that transmission occurs from i to any other node in the
network is

T (τ, ai) =

∫ ∞
0

ρ(x)Ti→j(τ, ai, x)dx

= 1− φεφ

1− εφ

∫ 1

ε

x−(1+φ) exp(aixj|iβτ)dx

= 1− φ
∞∑
k=0

(−aiβτ)k

(k − φ)k!

εφ − εk

1− εφ
.

(14)

The probability that i was infectious for a period of dura-
tion τ is γ exp(−γτ). Integrating Eq.(14) across all possi-
ble values of τ we get

T (ai) =

∫ ∞
0

γe−γτTi(τ, ai)dτ

= 1− φ
∞∑
k=0

(−aiβ/γ)k

k − φ
εφ − εk

1− εφ
.

(15)

The quantity T is the probability that i will infect j for
any j ∈ N \{i}. To get the expected number of secondary
infections that come from i we simply have to multiply by
the number of susceptibles. We therefore have that

r(ai) = (N − 1)T (ai). (16)

It is not possible to express Ti(ai) in terms of N so
we instead express it in terms of ε. By substituting
N − 1 = 1/〈x〉 and Eq.(5) into Eq.(16) we get

r(ai) =
Ti(ai)

〈x〉

=
1− φ

φ(εφ − ε)

[
1− εφ − φ

k=∞∑
k=0

(−aiβ/γ)k

k − φ
(εφ − εk)

]
(17)
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which can also be expressed using hypergeometric func-
tions

r(ai) =
1− φ

φ(εφ − ε)
[
1− εφ + εφ2F1(−φ, 1, 1− φ;−aiβ/γ)

−2F1(−φ, 1, 1− φ;−εaiβ/γ)]

(18)

S2.2 Calibration of time-scales

The collection of data-sets we compare is diverse and so-
cial activity happens on different time-scales. Addition-
ally, the type of diseases that affect one species is unlikely
to affect another. Instead of choosing parameter values
that relate to some specific disease, it is more informative
to select parameter values for each system separately in a
way that exposes the effects of population size and social
fluidity. To achieve this the two temporal variables, γ and
the mean activity rate, 〈ai〉, are calibrated to each other
in such a way that R0 would always be the same value if,
hypothetically, the effects of social fluidity and population
size were not present.

We define R∗ to be the value of R0 in a large popula-
tion with homogenous mixing. In this case, the infectious
individual, i, will never repeat an interaction with an in-
dividual whom they previously infected. In other words,
every interaction during the infectious period will, with
probability β, cause a new infection, and so R∗ can be
found by multiplying the mean infectious period by β and
the mean rate interactions,

R∗ =
β〈ai〉
γ

. (19)

By estimating the rate parameter ai from the number of
observed interactions si as ai = si

∆t
where ∆t is the dura-

tion of the time-frame of the data, Eq.(19) becomes

γ =
β〈s〉
∆tR∗

, (20)

where 〈s〉 is the mean of si over all individuals. Addition-
ally, by substituting this value of gamma into Eq.(18) we
get

r(s) =
1− φ

φ(εφ − ε)
[
1− εφ + εφ2F1(−φ, 1, 1− φ;−R∗s/〈s〉)

−2F1(−φ, 1, 1− φ;−εR∗s/〈s〉)] .
(21)

Note that no temporal information appears in this equa-
tion. In all the analysis presented we have arbitrarily cho-
sen R∗ = 2.

S2.3 Limit of R0 as N →∞
Noting that the taking the limit in Eq.(17) as ε → 0 is
equivalent to N →∞ we can also say

lim
N→∞

ri(ai) =
1− φ
φ

[−1+2F1(−φ, 1, 1−φ;−aiβ/γ) (22)

if φ < 1 and
lim
N→∞

ri(ai) = aiβ/γ (23)

if φ > 1 (at φ = 1, ρ(x) is not defined). Arriving at this
solution requires the use of L’Hopital’s Rule.

S2.4 Simulating the spread of disease

Because the fidelity of the social behavior model, i.e. the
extent to which it agrees with the data, varies across the
different social settings, we expect that the predictions
made in Section S2.1 are only applicable to a some of our
data-sets. To test how accurate the prediction of Eq.(18)
is, we simulated the effects of transmission on the real
contact data.

The collection of data-sets we are comparing is diverse,
and social activity happens on dramatically different time-
scales. To control for this variability the recovery rate γ
is adjusted. We choose γ to be

γ =
2β
∑
ti

N∆ts
(24)

where ∆t is the duration of the time-frame of the data.
Eq.(24) is equivalent to choosing γ such that, if the sys-
tem is well-mixed, then an individual with the mean rate
of activity is expected to directly infect s others. In all
the results presented we set s = 2.

For every individual, i, the simulated reproduction
number rsim

i is found by averaging the number of suc-
cessful infections caused by i over 103 simulation trials.
Each trial followed the following procedure:

1. A time τ is chosen randomly and uniformly between
the beginning and end of the time-frame of the data

2. The length of infectious period ∆I is generated from
an exponential distribution with rate parameter γ

3. A list L of interactions that involved i between time
τ and τ + ∆I is generated. If τ + ∆I is beyond the
time-frame of the data then interactions from the
beginning of the sampling time-frame are used in
place of the missing data.

4. Each interaction in the set L is removed with prob-
ability 1 − β and ri is the number of remaining in-
dividuals j ∈ N \ {i} that have interactions in L

This gives a reproduction number for every individual in
the system. In Table S2 we provide the mean r̄ and stan-
dard error SEr over the population.

Finally, to measure the accuracy of Eq.(18) we calcu-
late the mean absolute error |e|. We first calculate the
rate of activity ai = ti/∆t which, along with the associ-
ated values of N , phi, and ε, is used in Eq.(18) to compute
ri. The error is given by

|e| = 1

N

∑
i∈N
|ri − rsim

i | (25)
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S3 Sources of empirical data

S3.1 Human face-to-face interaction

We use human contact data from the Sociopatterns
project (sociopatterns.org). Participants wore radiofre-
quency identification sensors that detect face-to-face prox-
imity of other participants within 1-1.5 meters in 20-
second intervals. Each dataset lists the identities of the
people in contact, as well as the 20-second interval of de-
tection. The timing and duration of contacts are known
with a resolution of 20-seconds. To exclude contacts de-
tected while participants momentarily walked past one an-
other, only contacts detected in at least two consecutive
intervals are considered interactions.

The data we use comes from two studies: an academic
conference which occurred over the course of 3 days [2],
a primary school for which there are 2 days of data [3],
a high school which spanned 5 days [4], and a hospital
which spanned 4 full days [5]. In each case the data were
divided into 24 hour subsets beginning at midnight.

S3.2 Ant trophallaxis

We collected data from three carpenter ant colonies (Cam-
ponotus Pennsylvanicus). In nature, carpenter ant for-
agers consume liquid food and, upon returning to the nest,
regurgitate it into the mouths of their nest-mates, a pro-
cess known as trophallaxis. Typically, foragers will only
give food to a small number of other ants; to feed the
entire colony it gets passed through a complex network
of feeding interactions [6]. Trophallaxis is also an impor-
tant form of communication and a way that information
about the state of the colony can be shared by all of its
members [7, 8].

We placed colonies of approximately 80 ants in a nest
designed to replicate the conditions found in nature. The
colony was first given a restrictive area of 65 × 42mm to
live (high density) the ants were given several days to ad-
just before 4 hours of trophallaxis activity was recorded.
The nest was then expanded by a factor of 4 (low den-
sity) and after another adjustment period another 4 hours
were recorded. The process was repeated for 3 unrelated
colonies.

S3.3 Ant antennal Contact

The antennae of ants contain highly sensitive olfactory
cells. By touching the cuticle of another ant they are
able to perceive information (primarily the status of the
other ant) which is expressed through hydrocarbons se-
creted on their cuticle. We use data from [9] which was
collected by constant human observation of video footage
of ant colonies over a period of approximately 30 minutes.
The experiment was performed on 3 unrelated Temnotho-
rax rugatulus colonies, each of which was recorded in two
sessions separated by a two week period.

S3.4 Bat food-sharing

Vampire bats share food with each other through regurgi-
tation. In order to initiate such an event a hungry bat will
lick the mouth of another bat from whom they hope to re-
ceive food. The data we use is a record of mouth-licking
observations originally collected to address questions of
altruism and reciprocity in bat communities [10,11].

A population of vampire bats (Desmodus rotundus)
were kept captive in an enclosure. Out of the 25 bats, 20
were subjected to experimental treatment. In each case,
the subject was removed from the enclosure and starved
for 24 hours. The observation period of 2 hours began
when the starved bat was let back into the enclosure and
during this time the usual sources of food were not avail-
able. Thus, for the subject bat to feed, interaction with
others was necessary. The starvation treatment and ob-
servations occurred on a different day for each bat. Some
bats were tested more than once so to avoid biasing our
results we select only the first day they were tested.

S3.5 Vole territory sharing

Data were collected from a population of wild voles (Mi-
crotus agrestis) to assess the role of space in determining
the structure of social networks [12]. [Sentence about vole
behavior and what an interaction is].

In each of four field sites 100 traps were placed in a
square grid covering 0.3 hectares. Bait was put into the
traps and then three days later observers would check the
traps for voles, those who were found were tagged so that
they could be recognized should they be caught again.
During each trapping session the traps were checked on
several consecutive days. If a vole is observed in a trap at
any point during a trapping session then we say that they
interacted with any other vole that was observed in the
same trap at any point during the same trapping session.
The time of the interaction is the day that the trapping
session began.

We then discard any voles that had 10 or less interac-
tions and all interactions in which they participated. Since
the voles have a very short lifespan and cyclic fluctuations
in population size we use only a sub-sample of each data-
set. We chose periods of 130 days selected at times of high
activity for each of the four experiment sites.

S3.6 Mouse territory sharing

Mice Mastomys natalensis [13] were kept in a large en-
closed space that contained nine evenly spaced feeding
stations. Four of nine feeding stations had sensors that
recorded the moment when a mouse passed through its
door.

If two mice pass through within 30 minutes of each
other then we regard this as a territory sharing interac-
tion comparable to the Vole data (in the source paper the
authors used a 30 second threshold). The experiment was
repeated with varying densities of mice, at low densities
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the very little interaction occurs so we use only the highest
density treatments (enclosure C and enclosure D during
the last 5 days).

S3.7 Association by group membership

Since foraging groups and social groups can change from
one day to the next, a commonly way to measure the
strength of a pairwise relationship is to consider the num-
ber of times that the pair were observed in the same group.
In most studies of this kind the data is processed in a way
that attempts to correct for observation bias and group
size heterogeneity, which makes it incompatible for our
method of analysis. We were, however, able to use 3 ex-
periments from which the raw data is available. These are
kangaroos Macropus giganteus [14], barn swallow Hirundo
rustica erythrogaster [15], and howler monkeys Alouatta
palliata [16]. The data from each of these papers were col-
lected through intermittent, rather than continuous, ob-
servation. We define an interaction as belonging to the
same group during one round of observation.

S3.8 Grooming

Grooming in monkeys, and other primates, is used to
build and social bonds, avoid conflict, and maintain social
structures including the dominance hierarchy. We used

grooming data from two studies of macaques Macaca mu-
latta [17, 18] and one of stumptailed macaques Macaca
arctoides [19]. Data were collected intermittently rather
than through continuous observation. If one animal was
grooming another during one round of observations then
this would be recorded as a directed interaction. For our
analysis we neglect the direction of the interaction (it is
unclear whether the direction would have consequences
relevant to the spread of disease).

S3.9 Aggression and dominance

Aggression between animals can be in the form of a phys-
ical fight or a display of dominance that causes one indi-
vidual to concede. From the literature we obtained ag-
gression data from macaques Macaca fuscata fuscata [20],
female bighorn sheep Ovis canadensis [21], bison Bison bi-
son [22], cattle [23], and parakeets Myiopsitta monachus
[24]. The data from each of these papers were collected
during intermittant observation periods. When an an-
imal was determined to be the winner of a dominance
encounter then this would be recorded as a directed inter-
action between the winner and the loser. For our analysis
we neglect the direction of the interaction (it is unclear
whether the direction would have consequences relevant
to the spread of disease).
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Figure S1: Every data-set used in our analysis as detailed in Section S3. Each point represents one individual in the
system. In each case, the mixing parameter φ has been tuned to maximize the likelihood of the model using the process
described in Section S1.4. The optimal φ is given and the curve shows the mean degree of an individual as a function of
the number of interactions. The shaded area and the lighter shaded area represent intervals that are one and two standard
deviations from the mean respectively. Data points for which the number of interactions is more than 90 are excluded
from the figure but not from the inference of φ. [Reference the formulas that are in the text].
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