
1

NeatSeq-Flow: A Lightweight Software For Efficient
Execution Of High Throughput Sequencing Workflows
Menachem Sklarz1,*, Michal Gordon1 and Vered Chalifa-Caspi1,*
1Bioinformatics Core Facility, National Institute for Biotechnology in the Negev, Ben-Gurion University of
the Negev, 84105, Beer-Sheva, Israel,

* Corresponding authors

Supplementary information

Abstract: Bioinformatics workflows (WFs) in general, and those involving next
generation sequencing (NGS) data in particular, typically involve executing a sequence
of programs on raw sequence files from as many as thousands of samples.
Management of these WFs is laborious and error-prone. We have developed NeatSeq-
Flow, a python package that manages WF creation for execution on computer clusters.
NeatSeq-Flow creates shell scripts as well as a directory structure for storing analysis
results, error messages, and execution logs. The user maintains full control over the
execution of the WF, while the computer cluster enforces sequential execution and
parallelization. NeatSeq-Flow also supplies tools for version tracking, documentation
and execution logging.

Users may add modules for open source, commercial or custom programs not included
in the basic package using basic python code (see template in Fig. S5). Detailed
instructions for module creation can be found at (http://neatseq-
flow.readthedocs.io/en/latest/). It is our hope that the community of users will contribute
additional modules to the public.

Availability: https://github.com/bioinfo-core-BGU/neatseq-flow
Documentation: http://neatseq-flow.readthedocs.io/en/latest/
Additional info: http://in.bgu.ac.il/en/bioinfo/Pages/software/neatseq-flow.aspx

2

Contents
Example workflow ... 3

Figure S1. NeatSeq-Flow example parameter-file .. 4

Figure S2. NeatSeq-Flow example sample-file .. 7

Figure S3. Tree structure of an example NeatSeq-Flow workflow... 8

Table S4. Modules currently included in NeatSeq-Flow .. 9

Figure S5. NeatSeq-Flow module template .. 10

Figure S6. Description of NeatSeq-Flow output directory structure .. 12

References .. 16

3

Example workflow

Following is an example of a basic WF (see figure S1 for the parameter file and figure
S2 for the sample file). The purpose of the example WF is to perform quality testing and
trimming on a set of fastq sequence files, align the sequences to a reference genome
and create bigwig files for display in the UCSC genome browser (Kent et al., 2002).
Additionally, the example WF creates a report on the quality of the reads and on the
mapping of the reads to the reference.

All NeatSeq-Flow WFs begin with the merge module, which copies the raw files from
their original locations to the data directory, decompresses them, if necessary, and
merges split files into a single file (per direction, in case of paired end reads). The
fatsqc_html and trimmo modules are included for quality testing with FastQC
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and trimming with
trimmomatic (Bolger et al., 2014), respectively.

The sequences are then aligned to a reference genome with bowtie2 (bowtie2_mapper
module) and bowtie (bowtie_mapper module). The SAM files produced from each of
these mapping strategies are sorted and compressed with samtools, converted to
bedgraph format with genomeCoverageBed from bedtools (Quinlan and Hall, 2010) and
to bigwig format with bedGraphToBigWig (Kent et al., 2010).

Finally, the results of FastQC and mapping steps are graphically presented in a single
MultiQC (http://multiqc.info/) report.

A graphical representation of the WF is shown in figure S3. Note the two parallel
mapping branches and the convergence of the fastQC and samtools steps in the
MultiQC step, which makes the MultiQC step create a report containing data from both
fastQC and both mapping branches.

The structure of the WF and the directories and scripts produced are summarized in
supplementary figure S6 below.

4

Figure S1. NeatSeq-Flow example parameter-file

The parameter file used by NeatSeq-Flow is in YAML format. It includes two main blocks: Global_params

and Step_params. See examples below and package documentation for a complete description of the

expected format.

#################### Parameter file

############## Global definitions:

Global_params:
 ###### QSUB options
 ## It is required that you define a queue on which to run default scripts.
 ## You can override this option in the per-module definitions below
 Qsub_q: queue.q
 ## You can limit the scripts to specific nodes in the queue. Make sure all the nodes are accessible to the
queue defined in Qsub_q!
 ## The node list can be either comma separated or on different Qsub_nodes lines, or both:
 Qsub_nodes: [node1,node2]
 ## You can pass additional default qsub parameters as follows. These will be added to all scripts:
 Qsub_opts: -V -cwd
 ## Default_wait defines the time to wait between steps to ensure the job scheduler registers the jobs
correctly and hence keeps them running in correct order:
 Default_wait: 10

Step_params:

##################################
############### Module definitions:
Module instances are defined in YAML format, along the following guidelines:
1. The instance name (one indent)
2. Within each instance, define the following compulsory elements:
2a. 'module': The module to use to create the scripts
2b. 'base': The base instance from which to take input files ('merge' is the only exception. Since it is
first, you do not define a base).
2c. 'script_path': The full path to the program to be executed.
3. Additional program arguments can be passed to the program within a 'redirects' group. Make sure you keep
the leading '-' and '--' symbols in the parameter name (see examples below)
4. Default qsub parameters can be overriden with parameters within a 'qsub_params' group.
4a. Default queue and nodes can be overriden with 'node' and 'queue' params within the 'qsub_params' group.
5. Some modules require transferring additional information. See module documentation for these options.

merge parameters

 merge1:
 module: merge
 script_path: gzip -cd # When raw files are fastq.gz
 # script_path: cat # When raw files are unzipped fastq
 # script_path: dsrc d -s # When raw files are fastq.dsrc2

trimmo

Sample parameters for regular trimmomatic implementation:
 trim1:
 module: trimmo
 base: merge1
 script_path: java -jar trimmomatic-0.32.jar
 todo: ILLUMINACLIP:TruSeq3-SE.fa:2:30:10 LEADING:20 TRAILING:20 SLIDINGWINDOW:4:15
MINLEN:36
 qsub_params:
 node: node1
 -pe: shared 20
 -threads: 20

fastqc_html

Parameters for fastqc_html function running on the merge results
 fqc_merge1:
 module: fastqc_html

5

 base: merge1
 script_path: /path/to/FastQC/fastqc
 qsub_params:
 -pe shared 15
 redirects:
 --threads 15

Parameters for fastqc_html running on the trimmo results
 fqc_trim1:
 module: fastqc_html
 base: trim1
 script_path: /path/to/FastQC/fastqc
 qsub_params:
 -pe shared 15
 redirects:
 --threads 15

bowtie2_mapper
Sample parameters for bowtie1_mapper
 bwt2_1:
 module: bowtie2_mapper
 base: trim1
 script_path: /path/to/bowtie2
 get_map_log: # Send the log data from stderr to a log file in data/...
 ## The following defines a reference genome INCLUDING THE .fa. MAKE SURE TO BUILD AN INDEX WITH bowtie-
build BEFORE THE ANALYSIS
 ## This is important for downstream steps which might require the reference genome. DON'T NEGLECT!!!
 ref_genome: /path/to/ref_genome.fna
 qsub_params:
 -pe: shared 20
 redirects:
 -q:
 -p: 20
 -x: /path/to/ bowtie2_index/hg19.bt2ind

samtools
Parameters for Samtools function
after running mapper, convert sam to bam, sort and index it.
You can also request removal of old sam and unsorted bam files.
 sam_bwt2_1:
 module: samtools
 base: bwt2_1
 script_path: /path/to/samtools/bin/samtools
 qsub_params:
 -pe: shared 20
 view: -buh -q 30 -@ 20 -F 4 # Here you can list samtools view parameters
 sort: -@ 20 # Here you can list samtools sort parameters
 index:
 flagstat:
 stats: --remove-dups
 idxstats:
 del_unsorted: # Remove unsorted BAM file after sorting
 del_sam: # Remove SAM file after conversion

genomeCoverageBed
Uses the BAM file to create a bedgraph using the genomeCoverageBed program
 genCovBed_bwt2_1:
 module: genomeCoverageBed
 base: sam_bwt2_1
 script_path: /path/to/bedtools/bin/genomeCoverageBed
 redirects:
 -g: /path/to/ref_genome/ref_genome.chrom.sizes

UCSC_BW_wig
Converts a bedgrapg (bdg) file into bigwig (bw) and wiggle (wig) formats with the bedGraphToBigWig and
bigWigToWig scripts of kentUtils, respectively.
Operates on the existing bdg file in the sample, created by genomeCoverageBed
 UCSCmapfiles_bwt2_1:
 module: UCSC_BW_wig
 base: genCovBed_bwt2_1
 script_path: /path/to/kentUtils/bin # This is the bin path, unlike the regular script_path!
 genome: /path/to/ref_genome/ref_genome.chrom.sizes
If you want to pass params to one of these scripts, do it as follows rather than using redirect parameters
 bedGraphToBigWig_params: -blockSize 10 -itemsPerSlot 20
 bigWigToWig_params: -chrom X1 -start X2 -end X3

6

bowtie1_mapper

 bwt1:
 module: bowtie1_mapper
 base: trim1
 script_path: /path/to/bowtie
The following defines a reference genome INCLUDING THE .fa. MAKE SURE TO BUILD AN INDEX WITH bowtie-build
BEFORE THE ANALYSIS
This is important for downstream steps which might require the reference genome. DON'T NEGLECT!!!
 ref_genome: /path/to/ref_genome.fna
 ebwt: /path/to/bowtie1_index/ hg19.bt1ind
 qsub_params:
 -pe: shared 20
 redirects:
 -p 20

samtools
Parameters for Samtools function
after run mapper, convert sam - to - bam, sort and index it
 sam_bwt1_1:
 module: samtools
 base: bwt1
 script_path: /path/to/samtools/bin/samtools
 qsub_params:
 -pe: shared 20
 view: -buh -q 30 -@ 20 -F 4 # Here you can list samtools view parameters
 sort: -@ 20 # Here you can list samtools sort parameters
 index:
 flagstat:
 stats: --remove-dups
 idxstats:
 del_unsorted: # Remove unsorted BAM file after sorting
 del_sam: # Remove SAM file after conversion

genomeCoverageBed
Uses the BAM file to create a bedgraph using the genomeCoverageBed program
 genCovBed_bwt1_1:
 module: genomeCoverageBed
 base: sam_bwt1_1
 script_path: /path/to/bedtools/bin/genomeCoverageBed
 redirects:
 -g: /path/to/ref_genome/ref_genome.chrom.sizes

UCSC_BW_wig
Converts a bedgrapg (bdg) file into bigwig (bw) and wiggle (wig) formats with the bedGraphToBigWig and
bigWigToWig scripts of kentUtils, respectively.
Operates on the existing bdg file in the sample, created by genomeCoverageBed
 UCSCmapfiles_bwt2_1:
 module: UCSC_BW_wig
 base: genCovBed_bwt1_1
 script_path: /path/to/kentUtils/bin # This is the bin path, unlike the regular script_path!
 genome: /path/to/ref_genome/ref_genome.chrom.sizes
If you want to pass params to one of these scripts, do it as follows rather than using redirect parameters
 bedGraphToBigWig_params: -blockSize 10 -itemsPerSlot 20
 bigWigToWig_params: -chrom X1 -start X2 -end X3

 QC_and_map_MultQC:
 module: Multiqc
 # Note that an instance can be based on more than one instance:
 base:
 - fqc_merge1
 - fqc_trim1
 - sam_bwt2
 - sam_bwt1
 script_path: /path/to/multiqc

7

Figure S2. NeatSeq-Flow example sample-file

#################### Sample file

#SampleID Type Path
Sample1 Single Sample1a.fastq
Sample1 Single Sample1b.fastq
Sample2 Single Sample2a.fastq
Sample2 Single Sample2b.fastq

8

Figure S3. Tree structure of an example NeatSeq-Flow
workflow

Each circle represents a step in the workflow. The color represents the module, the name of which also

appears in the circles in brackets. In this case, there are two instances of the fastqc_html module, one

testing the original fastq files and one testing the files produced by the trimmo module. After the

trimmo step, there are two main branches, which are identical but for the fact that one branch (on the

left) uses bowtie (bowtie1_mapper) for aligning the sequences to the genome while the other branch

uses bowtie2 (bowtie2_mapper module).

Results from QC steps and mapping steps are summarized in a graphical report produced by MultiQC

(QC_and_map_MultQC step). To achieve this, QC_and_map_MultQC is based on all steps which produce

input for it, namely both fastqc_html steps and both samtools steps. This is represented by the

convergence of the 4 steps into the Multiqc step.

9

Table S4. Modules currently included in NeatSeq-Flow

Group Module name Program Description

Preparation

merge -
Copies the raw files, decompresses zipped files and concatenates multiple

files.

fastqc_html fastqc Runs the quality checking software FastQC on all fastq files

Trimmo trimmomatic Trims the reads by quality

Read

alignment

bowtie1_mapper bowtie Maps fastq files to genomes with bowtie

bowtie2_mapper bowtie2 Maps fastq files to genomes with bowtie2

bwa_mapper Bwa Maps fastq files to genomes with bwa

bowtie1_builder bowtie-build Builds a bowtie index for fasta files

bowtie2_builder bowtie2-build Builds a bowtie2 index for fasta files

bwa_builder bwa index Builds a bwa index for fasta files

samtools Runs various samtools on the SAM file produced by alignment modules.

genomeCoverageBed bedtools genomecov Computes BEDGRAPH summaries of feature coverage for a given genome.

makeblastdb makeblastdb Creates a BLAST database from project or sample fasta files.

BLAST

blast

Any program from the

BLAST family.

Runs any type of blast using project or sample fasta files as query or

database.

primer_search primer_search_wrapper.R Runs a primer search wrapper available from here

Assembly

spades_assembl SPAdes Assembles reads with SPAdes.

quast quast.py Produces quast report on an assembly.

trinity Trinity assembler
Assemble sample or project reads. Used mainly for assembling

transcriptomes.

add_trinity_tags - Adds tags required by trinity to read names.

UCSC UCSC_BW_wig
bedGraphToBigWig &

bigWigToWig
Creates bigwig and wig coverage files compatible with UCSC

ChIP-seq macs2_callpeak callpeak
Runs callpeak on the BAM files. Note: Requires defining sample:control

pairs in the sample file.

Reporting Multiqc MultiQC
Creates a report for various file formats: FastQC, bowtie2 log, samtools stats

and others.

IGV and

UCSC

IGV_count igvtools count Converts BAM or SAM files into TDF files for viewing in IGV

IGV_toTDF igvtools toTDF Converts wiggle files into TDF files for viewing in IGV

10

Figure S5. NeatSeq-Flow module template

import os
import sys
from PLC_step import Step,AssertionExcept

__author__ = "Author"

class Step_MODULENAME(Step):

 def step_specific_init(self):
 self.shell = "bash" # Can be set to "bash" by inheriting instances

 # Various assertions
 if CONDITION:
 raise AssertionExcept("ERROR MESSAGE\n")

 def step_sample_initiation(self):
 """ A place to do initiation stages following setting of sample_data
 """

 # Testing a condition on each sample
 # Useful for making sure all samples include the input files required by the module.
 for sample in self.sample_data["samples"]: # Getting list of samples out of samples_hash
 if (CONDITION ON sample_data):
 raise AssertionExcept("ERROR MESSAGE\n")

 def create_spec_wrapping_up_script(self):
 """ Define self.script to add a script to be executed after all other scripts have terminated
 """
 pass

 def build_scripts(self):
 """ This is the actual script building function
 Most, if not all, editing should be done here
 """

 # Loop over list of samples out of samples_hash and create script for each sample
 for sample in self.sample_data["samples"]:

 # Make a dir for the current sample:
 sample_dir = self.make_folder_for_sample(sample)

 # Name of specific script:
 self.spec_script_name = "_".join([self.step,self.name,sample])
 self.script = ""

 # This line should be left before every new script. It sees to local issues.
 # Use the dir it returns as the base_dir for this step.
 use_dir = self.local_start(sample_dir)

 # Define location and prefix for output files:
 # You can replace _MODULE_SUFFIX with anything you like.
 output_prefix = use_dir + sample + "_MODULE_SUFFIX"

 # Get constant part of script:
 # Adds lines for environmental variables, script path and redirected parameters
 self.script += self.get_script_const()
 # Specifically add input and output files:
 # This changes per module. The input files MUST BE taken from the sample_data dictionary!
 self.script += "%s \\\n\t" % self.sample_data[sample]["fasta"]["nucl"]
 self.script += "%s \n\n" % output_prefix

 # Put the output file/s in the sample_data dictionary
 # If output file is standard format, put in suitable slot.
 # If not, you can invent a slot for it, in a sensible way.
 self.sample_data[sample][...][...] = output_prefix

11

 self.sample_data[sample][...][...] = ...
 # Mark file for md5 stamping in log files:
 # Repeat for each file created by the module that you wish to stamp
 self.stamp_file(self.sample_data[sample][...][...])

 # Move all files from temporary local dir to permanent base_dir
 self.local_finish(use_dir,sample_dir)

 # Required line. Leave as is.
 self.create_low_level_script()

 def make_sample_file_index(self):
 """ Make file containing samples and target file names.
 see blast module for implementation.
 """
 pass

12

Figure S6. Description of NeatSeq-Flow output directory
structure

1. The main directory structure.

The directories are elaborated on below.

2. The scripts directory.

The 00.pipe.commands.csh scripts executes the entire workflow

The scripts beginning 01.merge… etc. execute entire steps.

The actual scripts running each step per sample or on the entire project are contained in the

equivalent directories 01.merge… etc.

3. The data directory

In the data directory, the analysis outputs are organized by module, by module instance and by

sample. Below is the data directory for the example, showing the tree organization for the

13

bowtie2_mapper and Multiqc modules.

4. The backup directory contains a history of workflow sample and parameter files.

5. The logs directory contains various logging files:

a. version_list. A list of all the versions of the workflow with equivalent comments

b. file_registration. A list of files produced, including md5 signatures, and the script and

workflow version that produced them

c. log_file_plotter.R. An R script for producing a plot of the execution times. (Run

with Rscript and receives a single argument – a log file to plot)

14

d. log_<workflow_ID>.txt. Log of the execution times of the script per workflow

version ID.

e. log_<workflow_ID>.txt.html. Graphical representation of the progress of the

WF execution, as produced by the log_file_plotter.R script.

6. The stderr and stdout directories store the script standard error and outputs, respectively.

These are stored in files containing the module name, module instance, sample name, workflow

15

ID and cluster job ID.

7. The objects directory contains various files describing the workflow: An SVG diagram, an R script

- diagrammer.R – for producing a DiagrammeR diagram of the workflow, and pipedata.json,

containing all the workflow data in JSON format, for uploading to JSON compliant databases etc.

(workflow_graph.html is the output from executing diagrammer.R).

The diagrammer.R script requires installing the 'DiagrammeR' and 'htmlwidgets' packages.

16

References

Bolger,A.M., Lohse,M., et al. (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics,

30, 2114-2120.

Hatakeyama,M., Opitz,L., et al. (2016) SUSHI: an exquisite recipe for fully documented, reproducible and reusable

NGS data analysis. BMC Bioinformatics, 17, 228.

Kent,W.J., Sugnet,C.W., et al. (2002) The Human Genome Browser at UCSC. Genome Res., 12, 996-1006.

Kent,W.J., Zweig,A.S., et al. (2010) BigWig and BigBed: enabling browsing of large distributed datasets.

Bioinformatics, 26, 2204-2207.

Köster,J. and Rahmann,S. (2012) Snakemake—a scalable bioinformatics workflow engine. Bioinformatics, 28,

2520-2522.

Langmead,B. and Salzberg,S.L. (2012) Fast gapped-read alignment with Bowtie 2. Nature methods, 9, 357-359.

Leipzig,J. (2016) A review of bioinformatic pipeline frameworks. Briefings in Bioinformatics, bbw020.

Li,H., Handsaker,B., et al. (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics, 25, 2078-

2079.

Linke,B., Giegerich,R., et al. (2011) Conveyor: a workflow engine for bioinformatic analyses. Bioinformatics, 27,

903-911.

Quinlan,A.R. and Hall,I.M. (2010) BEDTools: a flexible suite of utilities for comparing genomic features.

Bioinformatics, 26, 841-842.

Sadedin,S.P., Pope,B., et al. (2012) Bpipe: a tool for running and managing bioinformatics pipelines.

Bioinformatics, 28, 1525-1526.

Stocker,G., Rieder,D., et al. (2004) ClusterControl: a web interface for distributing and monitoring bioinformatics

applications on a Linux cluster. Bioinformatics, 20, 805-807.

