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1. Supplementary Notes 
1.1. Religious Orders Study and Memory and Aging Project  
 
Gene expression data1. Gene expression data were generated using RNA-

sequencing from Dorsolateral Prefrontal Cortex (DLPFC) of 540 individuals, at an 

average sequence depth of 90M reads. Detailed description of data generation 

and processing was previously described2 (Mostafavi, Gaiteri et al., under 

review). Samples were submitted to the Broad Institute’s Genomics Platform for 

transcriptome analysis following the dUTP protocol with Poly(A) selection 

developed by Levin and colleagues3. All samples were chosen to pass two initial 

quality filters: RNA integrity (RIN) score >5 and quantity threshold of 5 ug (and 

were selected from a larger set of 724 samples). Sequencing was performed on 

the Illumina HiSeq with 101bp paired-end reads and achieved coverage of 150M 

reads of the first 12 samples. These 12 samples will serve as a deep coverage 



reference and included 2 males and 2 females of nonimpaired, mild cognitive 

impaired, and Alzheimer's cases. The remaining samples were sequenced with 

target coverage of 50M reads; the mean coverage for the samples passing QC is 

95 million reads (median 90 million reads). The libraries were constructed and 

pooled according to the RIN scores such that similar RIN scores would be pooled 

together. Varying RIN scores results in a larger spread of insert sizes during 

library construction and leads to uneven coverage distribution throughout the 

pool. RNA-seq data were processed by our parallelized pipeline. This pipeline 

included trimming the beginning and ending bases from each read, identifying 

and trimming adapter sequences from reads, detecting and removing rRNA 

reads, aligning reads to reference genome (using Bowtie4) and quantification of 

transcript expression levels (using RSEM5). Specifically, RNA-Seq reads in 

FASTQ format were inspected using FASTQC program6. Barcode and adapter 

contamination, low quality regions (8bp at beginning and 7bp at ending of each 

fastq reads) were trimmed using FASTX-toolkit. To remove rRNA contamination, 

we aligned trimmed reads to rRNA reference (rRNA genes were downloaded 

from UCSC genome browser selecting the RepeatMask table) by BWA then 

extracted only paired unmapped reads for transcriptome alignment. rRNA 

depleted reads were then mapped to transcriptome reference (gencode v14) 

using Trinity package with RSEM as output option. Gene expression FPKM 

values were estimated by “rsem-calculate-expression” from RSEM. Samples 

from 494 individuals were used in the eQTL analysis, which include those that 

had QC’d genotype and pass the expression outlier test (a D-statistic below 

0.99).  

 

DNA methylation data7. DNA methylation data were generated using the 450K 

Illumina array from DLPFC of 740 individuals. Detailed description of data 

acquisition and QC are previously published7. Briefly, methylation probes that 

coincided with common polymorphic sites were removed. Initial normalization of 

CpG probes to account for differences between type I and type II probes, was 

performed using the BMIQ algorithm from the Watermelon package8 and beta-



values were extracted for further analysis. The SNM approach9 was then used to 

regress out the effects of batch, PMI, sex, age at death, and a previously 

published estimate of proportion of neurons present in each sample7. The 

samples from 468 individuals were analyzed for which gene expression data was 

also available2. As described below, this decision was made to enable using 

gene expression data to estimate the proportions of the five major brain cell 

types. This correction for cell type proportions was done in addition to the 

regression approach for removing the effect of generic neuronal proportions 

based on DNAm marks7. 

 

Histone modification data1. Histone modification data were generated using 

H3K9Ac ChIP-sequencing from DLPFC of 714 individuals. Single-end reads 

were aligned by the BWA algorithm10, and peaks were detected in each sample 

separately using the MACS2 algorithm (using the broad peak option and a q-

value cutoff of 0.001). A series of QC steps were employed to identify and 

remove low quality reads, and samples that did not reach (i) ≥ 15x106 unique 

reads, (ii) non-redundant fraction ≥ 0.3, (iii) cross correlation ≥ 0.03, (iv) fraction 

of reads in peaks ≥ 0.05 and (v) ≥ 6000 peaks were removed. Cross correlation 

was defined as the maximum Pearson’s correlation between the read coverage 

on the negative and positive strand after binning reads into 10bp bins11. Cross 

correlation was calculated after shifting the reads on the negative strand by s 

base pairs for s = 0, 10, 20, ..., 1000, and the maximum cross correlation was 

reported. In total, 669 samples passed quality control. H3K9Ac domains were 

defined by calculating all genomic regions that were detected as a peak in at 

least 100 of the 669 samples (15%). Regions within 100bp from each other were 

merged and very small regions of less than 100bp were removed. Reads were 

then extended towards the 3' end to the fragment size of the respective sample. 

The fragment size was estimated by the shift smax that maximized the cross 

correlation (mean smax = 271bp). Finally, the number of extended reads in each 

H3K9Ac region was determined for each sample. Only uniquely mapped distinct 

reads were considered. Quantified histone acetylation data were quantile 



normalized to account for variability in sequencing depth across individuals. 

Samples from 433 individuals for which gene expression data were available 

were used in our analysis. 

 

1.2 Mount Sinai Brain Bank Alzheimer’s Disease Data 

Brain specimens were obtained from the Mount Sinai/JJ Peters VA Medical 

Center Brain Bank (MSBB) which holds over 1,700 samples. This cohort was 

assembled after applying stringent inclusion/exclusion criteria and represents 

the full spectrum of disease severity. Neuropathological assessments are 

performed according to the Consortium to Establish a Registry for Alzheimer's 

Disease (CERAD) protocol12 and include assessment by hematoxylin and eosin, 

modified Bielschowski, modified thioflavin S, and anti-β amyloid (4G8), anti-tau 

(AD2) and anti-ubiquitin (Daka Corp.). Each case is assigned a Braak AD-staging 

score for progression of neurofibrillary neuropathology Braak et al.13. Quantitative 

data regarding the density of neuritic plaques in the middle frontal gyrus, orbital 

frontal cortex, superior temporal gyrus, inferior parietal cortex and calcarine 

cortex are also collected as described14. Clinical dementia rating scale (CDR) 

and mini–mental state examination (MMSE) severity tests are conducted for 

assessment of dementia and cognitive status. Final diagnoses and CDR scores 

are conferred by consensus. Based on CDR classification15, subjects are 

grouped as no cognitive deficits (CDR = 0), questionable dementia (CDR = 0.5), 

mild dementia (CDR = 1.0), moderate dementia (CDR = 2.0), and severe to 

terminal dementia (CDR = 3.0–5.0). This tissue source was used to perform two 

separate experiments. RNA sequencing data was generated across 3 brain 

regions - selected based on the pilot experiment - across 196 individuals. 

Additional data is being generated for the primary study to include additional 

samples as well as whole exome sequencing data. 

Tissue preparation and RNA isolation. This distribution contain 1030 samples 

collected from 301 individuals from Brodmann Areas 10, 22, 36 and 40. The 



specific brain regions, Brodmann areas, were dissected while frozen from flash 

frozen never-thawed ~8 mm thick coronal tissue blocks using a dry ice cooled 

reciprocating saw. The dissected regions were then pulverized to a fine powder 

consistency in liquid nitrogen cooled mortar and pestle and distributed into 50 mg 

aliquots. All aliquots were barcoded and stored at -80oC until RNA isolation. The 

total RNA were isolated using RNeasy Lipid Tissue Mini Kit from Qiagen 

(cat#74804) according to the manufacturer's protocol (The RNeasy Lipid Tissue 

Mini Kit Handbook, Qiagen 104945, 02/2009). 

MSBB RNA-seq protocol. Preparation of samples for RNA-Seq analysis was 

performed using the TruSeq RNA Sample Preparation Kit v2 (Illumina, San 

Diego, CA). Briefly, rRNA was depleted from total RNA using the Ribo-Zero 

rRNA Removal Kit (Human/Mouse/Rat) (Illumina, San Diego, CA) to enrich for 

coding RNA and long non-coding RNA. The cDNA was synthesized using 

random hexamers, end-repaired and ligated with appropriate adaptors for 

sequencing. The library then underwent size selection and purification using 

AMPure XP beads (Beckman Coulter, Brea, CA). The appropriate Illumina 

recommended 6-bp bar-code bases are introduced at one end of the adaptors 

during PCR amplification step. The size and concentration of the RNAseq 

libraries was measured by Bioanalyzer (Agilent, Santa Clara, CA) and Qubit 

fluorometry (Life Technologies, Grand Island, NY) before loading onto the 

sequencer. The Ribo-Zero libraries were sequenced on the Illumina HiSeq 2500 

System with 100 nucleotide single end reads, according to the standard 

manufacturer’s protocol (Illumina, San Diego, CA). 

Alignment and quantification. The raw sequence reads were aligned to human 

genome hg19 with the star aligner (v2.3.0e). Ensembl gene annotation model 

version GRCh37.70 was utilized to assist with the mapping of reads onto known 

human genes. Then the gene and exon level expression (read counts) were 

quantified by featureCounts16 (v1.4.4) from the Subread package. 

 



1.3 CommonMind Consortium Dataset 
Detailed description of CMC consortium RNA-seq data generation and 

processing was previously described in Fromer et al.17. 

 
Post-mortem samples. Data generated for this study came from post-mortem 

human brain specimens originating from the tissue collections at the three brain 

banks described below. All samples were shipped to the Icahn School of 

Medicine at Mount Sinai (ISMMS) for nucleotide isolation and data generation.  
 

Selection criteria. Post-mortem tissue from schizophrenia (SCZ) and bipolar or 

other affective/mood disorder (AFF) cases were included if they met the 

appropriate diagnostic DSM-IV criteria, as determined in consensus conferences 

after review of medical records, direct clinical assessments, and interviews of 

family members or care providers. Cases were excluded if they had 

neuropathology related to Alzheimer's disease and/or Parkinson's disease, acute 

neurological insults (anoxia, strokes and/or traumatic brain injury) immediately 

before death, or were on ventilators near the time of death. Three case samples 

(2 with leucotomies, and 1 with a history of a head injury before diagnosis) were 

included; these were not outliers on any metrics that we used to evaluate our 

samples. 

 

“MSSM” sample: Mount Sinai NIH Brain Bank and Tissue Repository (NBTR) 

(http://icahn.mssm.edu/research/labs/neuropathology-and-brain-banking). The 

Mount Sinai Brain Bank was established in 1985. The NBTR obtains brain 

specimens from the Pilgrim Psychiatric Center, collaborating nursing homes, 

Veteran Affairs Medical Centers and the Suffolk County Medical Examiner's 

Office. Diagnoses are made based on DSM-IV criteria and are obtained through 

direct assessment of subjects using structured interviews and/or through 

psychological autopsy by extensive review of medical records and informant and 

caregiver interviews18,19. Informed consent is obtained from the next of kin. The 

brain bank procedures are approved by the ISMMS IRB and exempted from 



further IRB review due to the collection and distribution of postmortem 

specimens. All samples for the study were dissected from the left hemisphere of 

fresh frozen coronal slabs cut at autopsy from the dorsolateral prefrontal cortex 

(DLPFC) from Brodmann areas 9/46. Immediately after dissection, samples were 

cooled to −190 °C and dry homogenized to a fine powder using an L-N2 cooled 

mortar and pestle. Tissue was transferred on dry ice to ISMMS as a dry powder 

for DNA and RNA extraction. 

 

“Pitt” sample: The University of Pittsburgh Brain Tissue Donation Program. 

Brain specimens from the University of Pittsburgh Program are obtained during 

routine autopsies conducted at the Allegheny County Office of the Medical 

Examiner (Pittsburgh) following the consent of the next of kin20. An independent 

committee of experienced research clinicians makes consensus DSM-IV 

diagnoses for all subjects on the basis of medical records and structured 

diagnostic interviews conducted with the decedent's family member21. All 

procedures for Pitt samples have been approved by the University of Pittsburgh's 

Committee for the Oversight of Research involving the Dead and Institutional 

Review Board for Biomedical Research. At autopsy, the right hemisphere of each 

brain is blocked coronally, immediately frozen, and stored at −80 °C22. Samples 

for this study contained only the gray matter of DLPFC, where Brodmann area 

9/46 was cut on a cryostat and collected in tubes appropriate for DNA or RNA 

extraction. The DNA and RNA tubes were shipped on dry ice to ISMMS as 

homogenized tissue in Trizol for RNA extraction and thinly sliced tissue for DNA 

extraction. Specimens from Pitt were provided as matched case/control pairs. 

These were perfectly matched for sex, and as closely as possible for age (73% of 

pairs were matched within 5 years, and 95% within 10 years) and race (71% of 

pairs were matched for race). Members of a pair were always processed together 

for RNA-seq. Tissue for 10 of the Pitt controls was extracted in duplicate, once as 

part of a SCZ pair and once as part of a bipolar pair. 

 



“Penn” sample: University of Pennsylvania Brain Bank of Psychiatric illnesses 

and Alzheimer's Disease Core Center 

(http://www.med.upenn.edu/cndr/biosamples-brainbank.shtml). Brain specimens 

are obtained from the Penn prospective collection. Disease diagnoses were 

made based on DSM-IV criteria and obtained through a clinical interview by 

psychiatrist and review of medical records. All procedures for Penn are approved 

by the Committee on Studies Involving Human Beings of the University of 

Pennsylvania, and the use of control postmortem tissues was considered 

exempted research in accordance with CFR 46.101 (b), item 65 of Federal 

regulations and University policy. At autopsy, the right or left hemisphere of each 

brain is blocked into coronal slabs, which are immediately frozen and stored at 

−80 °C. For this study, Brodmann areas 9/46 were dissected from either the left 

or right hemisphere and pulverized in liquid nitrogen. The tissue was shipped in 

tubes appropriate for DNA or RNA extraction to ISMMS as homogenized tissue 

in Trizol for RNA extraction and as dry pulverized tissue for DNA extraction. 

 

Tissue, RNA and DNA preparation. Total RNA was isolated from approximately 

50 mg homogenized tissue in Trizol using the RNeasy kit according to 

manufacturer protocol. Samples were processed in batches of 12, and the Pitt 

matched case/control pairs were always processed in the same batch. The order 

of extraction for SCZ-affected and control samples was assigned randomly with 

respect to brain bank, diagnosis, and all other sample characteristics. Because 

the affective disorder cases (AFF) and matched controls from Pitt were not 

available until after the processing of the SCZ and controls was underway, these 

samples were randomized among the remaining 132 SCZ and control samples 

still queued for extraction at that time. The mean total RNA yield was 15.3 µg (± 

5.7). The RNA Integrity Number (RIN) was determined by fractionating RNA 

samples on the 6000 Nano chip (Agilent Technologies) on the Agilent 2100 

Bioanalyzer. 51 samples with RIN < 5.5 were excluded from the study. Among 

the remaining samples, the mean RIN was 7.7 (± 0.9), and the mean ratio of 

260/280 was 2.0 (± 0.02). 



 

DNA was isolated from approximately 10 mg dry homogenized tissue from 

specimens coming from the MSSM and Penn brain banks. The thinly sliced 

tissue from Pitt was homogenized before DNA isolation. All DNA isolation was 

performed using the Qiagen DNeasy Blood and Tissue Kit according to the 

manufacturer's protocol. DNA yield was quantified using Thermo Scientific's 

NanoDrop. The mean yield was 12.6 µg (± 4.6), the mean ratio of 260/280 was 

2.0 (± 0.1), and the mean ratio of 260/230 was 1.8 (± 0.6). 

 

RNA library preparation and sequencing. Processing order was re-

randomized before ribosomal RNA (rRNA) depletion, and samples were 

processed in batches of 8. To expedite sequencing, processing began before 

extraction was complete and randomization occurred among all available 

extracted samples in sets of 120 to 226. Briefly, rRNA was depleted from about 1 

µg of total RNA using Ribo-Zero Magnetic Gold kit (Illumina/Epicenter Cat # 

MRZG12324) to enrich for polyadenylated coding RNA and noncoding RNA. The 

Pitt case/control pairs were batched together in each processing step, including 

Ribo-Zero depletion, sequence library preparation, and sequencing lane. Ten of 

the Pitt controls were extracted and sequenced as independent duplicates, once 

as part of a SCZ pair and once as part of a bipolar pair. The sequencing library 

was prepared using the TruSeq RNA Sample Preparation Kit v2 (RS-122-2001-

48 reactions) in batches of 24 samples. The insert size and DNA concentration of 

the sequencing library was determined on Agilent Bioanalyzer and Qubit, 

respectively. A pool of 10 barcoded libraries were layered on a random selection 

of two of the eight lanes of the Illumina flow cell bridge amplified to ~250 million 

raw clusters. One hundred base pair paired-end reads were obtained on a HiSeq 

2500. The sequence data were processed for primary analysis to generate QC 

values (reads were mapped to the human reference genome using TopHat. 

Samples with a minimum of 50 million mapped reads (~25 million paired-end 

reads) and less than 5% rRNA-aligned reads were retained for downstream 

analysis. We attempted a single round of resequencing for samples that failed 



these QC criteria. In the end, a total of 15 samples did not meet these 

sequencing criteria and were discarded. 
 

DNA genotyping, QC, ancestral evaluation and polygenic scoring. 
Genotyping was performed on the Illumina Infinium HumanOmniExpressExome 

8 v 1.1b chip (Catalog #: WG-351-2301) using the manufacturer's protocol. 

Samples for genotyping were aliquoted onto 96 well plates, where each plate had 

an internal control from the HapMap project (NA12878, Coriell Institute) in two 

unique locations. Initial QC was performed using PLINK57 to remove markers 

with: zero alternate alleles, genotyping call rate ≤ 0.98, Hardy-Weinberg P value 

< 5 × 10−5, and individuals with genotyping call rate < 0.90. This removed 2 

samples from the analysis. After QC, 668 individuals genotyped at 767,368 

markers were used for imputation. Phasing was performed on each chromosome 

using ShapeIt v2.r79023, and variants were imputed in 5 Mb segments by Impute 

v2.3.124 with the 1,000 Genomes Phase 1 integrated reference panel11 

excluding singleton variants. Note that, in addition to the 22 autosomes, we also 

included chromosome X, split out into pseudoautosomal (PAR) and non-PAR 

genomic regions to properly handle male haploidy in the non-PAR regions. 

 

1.4 Data Availability  
Data from the ROSMAP study were used in this work, and are available at: 

RADC Research Resource Sharing Hub at www.radc.rush.edu, and 

https://www.synapse.org/#!Synapse:syn3219045. The details of the xQTL 

Association Analysis are described in Ng et al. 2. The xQTL results and analysis 

scripts can be accessed through online portal, xQTL Serve, at 

http://mostafavilab.stat.ubc.ca/xQTLServe. 

 

The MSBB RNASeq data is available via the AMP-AD Knowledge Portal at 

https://www.synapse.org/#!Synapse:syn2580853/wiki/409840. 

 



The data and analysis pipeline is described in Fromer et al. 17. The CommonMind 

RNASeq data is available via the CommonMind Consortium Knowledge Portal at 

https://www.synapse.org/#!Synapse:syn2759792/wiki/69613. 

 

 

 
 
  



2. Supplementary Tables 
See separate Excel spreadsheets for Tables. 

 
Supplementary Table 1. Demographic characteristics of ROS and MAP cohort. 

 

Supplementary Table 2. A list of significantly differentially spliced introns 

associated with neuropathologies. 

 

Supplementary Table 3. A list of significantly differential spliced introns 

associated with clinical AD status.  

 

Supplementary Table 4. List of differential spliced introns associated with 

clinical AD status in ROSMAP that replicates in the MSBB dataset.  

 

Supplementary Table 5. A list of splicing QTLs at FDR 0.05 identified in 

ROSMAP dataset.  

 

Supplementary Table 6. Significant TWAS genes with association to IGAP AD 

GWAS. 

 

Supplementary Table 7. Significant TWAS genes with association to meta-

analysis of IGAP and UKBB AD GWAS. 

 

 

 

 

 

  



3. Supplementary Figures 
 

 
Figure S1. Violin and box plots of percent variation in intronic usage explained 
by each neuropathology measure including neuritic plaques (NP), amyloid 
burden, Neurofibrillary tangles (NFTs), global cognitive decline, pathological 
diagnosis of AD (pathoAD) and clinical diagnosis of AD (cAD). This plot is 
generated after accounting for technical and biological covariates (batch, PMI, 
RIN, Ribosomal basses, number of aligned reads, sex, and age of death). Each 
dot represents an intronic usage cluster. The figure was generated using 
variancePartition25. 
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Figure S2. Figure shows the strength of the association between top intronic 
usage PCs and technical and biological confounding factors. Here batch refers to 
the date of RNA preparation. Genotype PCs were computed as the top 4 PCs 
(EV1-EV4) of genotype data. Study index refers to RUSH vs MAP samples. The 
heatmap depicts the -log10(P-value) for correlation coefficient. PMI= postmortem 
interval.  



 
Figure S3. Proportion of sQTLs mapping to different types of variants in relation 
to a transcript. The location and consequence to transcripts for SNPs were 
downloaded from Ensembl Variant Effect Predictor database. 
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Figure S4. hnRNP splicing factors (in yellow) are correlated with intronic excision 
levels of hundreds of genes, many of which are in AD susceptibility loci including 
BIN1, PICALM, APP, AP2A2, PTK2B, MAP1B, TBC1D7, and CLU (in blue).  
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Figure S5. Intronic usage plot for PICALM and HNRNPC CLIP binding sites. 
Shown here are three intronic usage clusters (red, green and blue). Zoomed 
panel shows a region of the intronic excision (Chr11: 85737409-85742511) event 
with HNRNPC CLIP binding sites. 
  



 
Figure S6. Conditional analysis of IGAP AD GWAS results for splicing effects for 
AP2A2. The AD GWAS effect is explained by splicing effect at AP2A2 
(chr11:946963:959437:clu_5363). Shown here are AD GWAS P-value (in blue) 
and conditioned P-value (in grey). The GWAS P-value at AP2A2 is suggestive in 
the original IGAP study (p<10-5). 
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Figure S7. Conditional analysis of IGAP AD GWAS results for splicing effects for 
RABEP1. The AD GWAS effect is explained by splicing effect at RABEP1 
(chr17:5257785:5264503:clu_10832). Shown here are AD GWAS P-value (in 
blue) and conditioned P-value (in grey). The GWAS P-value at RABEP1 is 
suggestive in the original IGAP study (p<10-5). 
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Figure S8. Conditional analysis of IGAP AD GWAS results for splicing effects for 
MAP1B. The AD GWAS effect is mostly explained by splicing effect at MAP1B 
(chr5:71404388:71411525:clu_33875). There seems to be a secondary effect in 
this locus. Shown here are AD GWAS P-value (in blue) and conditioned P-value 
(in grey). The GWAS P-value at MAP1B is suggestive in the original IGAP study 
(p<10-5). 
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Figure S9. Conditional analysis of IGAP AD GWAS results for splicing effects for 
SH3YL1. The AD GWAS effect is mostly explained by splicing effect at SH3YL1 
(chr2:243562:247538:clu_40805). Shown here are AD GWAS P-value (in blue) 
and conditioned P-value (in grey).  
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Figure S10. Conditional analysis of IGAP AD GWAS results for splicing effects 
for CLEC3B. The AD GWAS effect is mostly explained by splicing effect at 
CLEC3B (chr3:45067963:45072319:clu_38309). Shown here are AD GWAS P-
value (in blue) and conditioned P-value (in grey). The GWAS P-value at CLEC3B 
is suggestive in the original IGAP study (p<10-5). 
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Figure S11. Conditional analysis of IGAP AD GWAS results for splicing effects 
for NDUFA2. The AD GWAS effect is mostly explained by splicing effect at 
NDUFA2 (chr5:140025303:140026841:clu_34750). Shown here are AD GWAS 
P-value (in blue) and conditioned P-value (in grey). The GWAS P-value at 
NDUFA2 is suggestive in the original IGAP study (p<10-5). 
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Figure S12. Conditional analysis of IGAP AD GWAS results for splicing effects 
for FUS. The AD GWAS effect is mostly explained by splicing effect at FUS 
(chr16:31194180:31195179:clu_15168). Shown here are AD GWAS P-value (in 
blue) and conditioned P-value (in grey). The GWAS P-value at FUS is suggestive 
in the original IGAP study (p<10-4). 
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Figure S13. Conditional analysis of IGAP AD GWAS results for splicing effects 
for PICALM. The AD GWAS effect is mostly explained by splicing effect at 
PICALM (chr11:85737409:85742511:clu_7404). There is a secondary effect in 
this locus. Shown here are AD GWAS P-value (in blue) and conditioned P-value 
(in grey).  
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Figure S14. Conditional analysis of IGAP AD GWAS results for splicing effects 
for MTCH2. The AD GWAS effect is mostly explained by splicing effect at 
MTCH2 (11:47627806:47637515:clu_6184). Shown here are AD GWAS P-value 
(in blue) and conditioned P-value (in grey).  
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