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Supplementary Information. 
 
Systematic comparison of heterocellular subtypes to known intrinsic 
subtypes in multiple cancer types 
 
Ovarian cancer 
 
We compared six intrinsic OV subtypes1 with CRC heterocellular subtypes 
(Supplementary Figure 3E, Supplementary Table 1L-N). There were 
significant associations (FDR<0.05) between intrinsic ovarian cancer 
subtypes and four CRC heterocellular subtypes except for the enterocyte 
subtype, reflecting low enrichment due to sample size. The stroma-rich C1 
subtype was associated with its counterpart stem-like heterocellular subtype; 
the immune-rich C2 subtype with the inflammatory subtype; the low malignant 
potential (LMP) secretory cell-type enriched C3 and high-grade C4 with the 
goblet-like subtype; and Wnt signature-high C5 and C6 subtypes with the TA 
subtype (high Wnt signalling). As expected, both the C1 subtype and stem-
like subtypes have poor prognosis, the C2 and inflammatory subtypes have 
intermediate prognosis, and the C5 and C6 subtypes and the TA subtype 
have good prognosis. 
 
HNSC 
The four intrinsic subtypes described for HNSC2 were significantly associated 
with heterocellular subtypes (Supplementary Figure 3F and Supplementary 
Table 1L-N). The mesenchymal HNSC subtype was associated with the 
stem-like heterocellular subtype, while the atypical (human papilloma virus-
positive) HNSC subtype was associated with goblet-like and enterocyte 
heterocellular subtypes, reflecting their well-differentiated status. The classical 
HNSC subtype enriched for the TA CRC heterocellular subtype and, of note, 
xenobiotic metabolic genes similar to the exocrine-PC subtype3 and known to 
be associated with the TA CRC heterocellular subtype. Finally, the basal 
HNSC subtype was significantly enriched for the inflammatory heterocellular 
subtype. 
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Other cancer types 
 
Among the other cancer types, the “mitotic” UCEC subtype4 was significantly 
enriched for the inflammatory, and less significantly with the stem-like, 
subtypes (Supplementary Figure GD and Supplementary Table 1L-N). 
Similarly, the “hormonal” UCEC subtype with increased progesterone receptor 
was significantly enriched for the TA followed by the goblet-like subtypes, 
reflecting “well-differentiated” genes. Finally, the immunoreactive UCEC 
subtype was significantly enriched for stem-like, and less significantly with the 
goblet-like, subtypes, which might reflect different sets of immune cells 
enriched in these subtypes compared to inflammatory CRC heterocellular 
subtypes.  
 
In BLCA, the “cluster I” subtype5 with papillary histology and FGFR3 
aberrations was significantly enriched for the FGFR3-high TA subtype and 
less significantly with differentiated goblet-like and enterocyte subtypes 
(Supplementary Figure 3H and Supplementary Table 1L-N). The “cluster 
III” subtype with increased basal genes KRT5 and KRT14 was enriched for 
the inflammatory subtype, and the ERBB2/HER2 aberration containing 
“cluster IV” was enriched, albeit non-significantly, for the inflammatory 
subtype. The urothelial differentiated “cluster II” subtype was significantly 
enriched for the stem-like subtype, representing potential heterogeneity 
similar to that of the PP/classical PC subtype.  
 
In KIRC, the ”m4” subtype6 with increased base-excision repair gene 
expression was enriched for the inflammatory CRC heterocellular subtype, 
possibly representing a hypermutated subtype (Supplementary Figure 3I 
and Supplementary Table 1L-N). Similarly, the “m2” subtype was enriched 
for the inflammatory subtype, the “m1” subtype was enriched for the TA 
subtype representing a potential chromatin-remodelling process. Finally, the 
“m3” subtype with CDKN2A deletion was enriched for the stem-like subtype, 
similar to some of the QM-PCs enriched for a stem-like subtype associated 
with cell lines derived from the CDKN2A/ARF-deleted PC mouse model. 
 
Among the lung cancer histological subtypes7, the well-differentiated 
adenocarcinoma subtype was significantly associated with the goblet-like 
subtype whereas the squamous subtype was primarily and significantly 
associated with a poorly differentiated and poor prognostic stem-like subtype 
(Supplementary Figure 3J and Supplementary Table 1L-N). However, 
there was a non-significant association between the squamous subtype and 
the TA CRC heterocellular, possibly representing a differentiation pathway in 
certain squamous lung tumours. To understand this further, we compared the 
TCGA LUAD intrinsic transcriptomic subtypes with CRC heterocellular 
subtypes (Supplementary Figure 3K), which revealed that a proximal 
proliferative (PRP) subtype was enriched for goblet-like and TA subtypes. 
These PRP subtypes were also enriched for KRAS mutations, similar to the 
overrepresentation of KRAS mutations in CMS3/goblet-like subtypes. 
Interestingly, we also observed that good prognosis terminal respiratory unit 
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(TRU) was associated with good prognosis enterocyte and goblet-like CRC 
heterocellular subtypes.  
 
 
Supplementary Methods 
 
Gene expression data processing. The raw data (CEL files) containing 
patient tumour gene expression profiles generated using Affymetrix 
GeneChip® Human Genome U133 Plus 2.0 arrays were downloaded 
from Gene Expression Omnibus8 (GEO) (Supplementary Table 6A). 
The CEL files were pre-processed and normalized using robust multi-
array normalization (RMA) from bioconductor9 packages - affy10. The 
following criteria were applied to select only those good quality 
microarrays with reduced repetitive samples. The Normalized Unscaled 
Standard Error (NUSE11; from affyPLM12 package) median score 
(1±0.05) was used to select only high quality arrays. Repeated samples 
were removed based on the information from GEO, original publications 
or those two samples with Pearson correlation coefficient equal to or 
greater than 0.99. The cell lines gene expression profile data from lung, 
colorectal (large intestine) and pancreatic cancers were obtained from 
Cancer Cell Line Encyclopedia (CCLE)13 as RMA processed probe level 
(Affymetrix GeneChip® Human Genome U133 Plus 2.0 array) data 
(Supplementary Table 6D). Next, the genes corresponding to each 
probe for Affymetrix GeneChip® Human Genome U133 Plus 2.0 array 
were annotated with Human Genome Organisation (HUGO) Gene 
Nomenclature Committee (HGNC)14 identifiers using the R package - 
hug133plus2db15. Finally, a highly variable probe was selected for those 
genes associated with multiple Affymetrix GeneChip® probes, as 
described previously16-18. We used the following primary tumour datasets 
for different cancer types - GSE4256819 (BRCA; n=104), GSE1433320 
(CRC; n=288) GSE377457 (LUAD/LUSC; n=168), GSE98911 (OV; 
n=177), GSE1547121 (PC; n=36), GSE3580922 (GC-1; n=68), 
GSE3494222 (GC-2; n=56) and GSE1545922 (GC-4; n=182). 
 
The processed and normalized TCGA Pan-Cancer gene expression 
profile data (log2 transformed upper quartile normalized RSEM data) for 
12 cancer types from Hoadley. et al23 were obtained from Sage 
Bionetworks using the synapse id (syn1715755; Supplementary Table 
6B). Those genes with missing values (a value of zero from log 
transformed RSEM data) in greater than 30% of the samples were 
removed, as described23. The repetitive samples from certain Pan-
Cancer tumour types were removed based on the TCGA sample 
identifiers information. Again, those processed and normalized ICGC 
pancreatic cancer24 and TCGA gastric cancer (STAD)25 data were 
obtained from the original publications. Ensembl transcript identifiers 
from ICGC data were mapped to HGNC gene identifiers from the 
Ensembl26 using web-based BioMart27 (Supplementary Table 6C). The 
TCGA STAD data was log2 transformed (transformed was added to the 
expression values before the logarithmic transformation) before further 
analysis.  
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Single sample classification: For the single sample classification, the 
“similarity-to-centroids” based approach was used, which is similar to the 
CRCAssigner and CMSclassifier28. The published17 CRCassigner PAM 
centroids, for each subtype, were used to correlate the gene expression 
profiles of each sample to the centroids of each subtype. Using the 
Pearson correlation as a similarity measure, the samples were then 
assigned to one of the five CRCassigner subtypes based on highest 
correlation coefficient. Due to the existence of tumour heterogeneity only 
the high-confidence classification results were selected for downstream 
analysis. This approach of selecting high-confidence samples had been 
used previously for the CMS classification28. For the high-confidence 
classification, each sample must meet two criteria (i) the highest Pearson 
correlation coefficient should be greater than 0.15 and (ii) the difference 
between the highest and the second highest correlation coefficient must 
be greater than 0.06. Any sample that did not follow these criteria was 
classified as “mixed samples”.  
 
Before predicting CRCassigner subtypes using single sample 
classification approach, the following steps were performed: (i) the 
probes/identifiers without gene annotation were filtered out, (ii) genes 
having zero standard deviation across samples were removed, (iii) the 
genes were median centred across samples for each datasets 
separately, and (iv) only the genes in the CRCassinger classifier were 
selected. Due to gene annotations and platform differences, the selection 
of CRCassigner genes resulted in 750 (for microarrays), 643 (for Pan-
Cancer), 721 (ICGC pancreatic cancer) and 757 (for TCGA gastric 
cancer) genes in different datasets.  
 
Distance to the CRCassigner PAM centroids: A correlation analysis 
was performed to understand which heterocellular subtypes (from each 
cancer types) were closely associated with the CRCassigner subtypes. 
First, common CRCassigner genes were selected from the gene 
expression datasets from each cancer type. Next, the “mixed samples” 
(described above) were removed, and the genes were median centred 
across samples for each cancer/dataset. Subsequently, the median gene 
expression values (for all the CRCassigner genes) for five subtypes in 
each organ/datasets were obtained. Later, these median values were 
correlated (Pearson) with CRCassigner PAM centroids. The correlation 
coefficient score was used as an indicator to assess the similarity of 
heterocellular subtypes (from multiple cancers) to colon. 
 
Tissue-specific gene analysis: The PAM centroid scores (for 786 
CRCassinger genes and five subtypes) were used to assign a gene to 
one of the five subtypes. A gene was assigned to a subtype if it had the 
highest PAM score whilst the remaining subtypes have 0 or negative 
PAM scores. This process yielded 564 subtypes specific genes and the 
remaining 222 genes that were shared between subtypes. Next, the 
tissue specific gene expression29 (TiGER; considering the genes in the 
expressed sequence tags) database was used to identify the colon 
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specific genes in each subtypes. Subsequently, the colon specific genes 
in CRCassinger classifier were estimated (for each subtype). 
 
Visualisation of gene expression data: For heatmap visualisation, the 
following steps were performed: (i) CRCassigner genes (performed 
separately for each cancer type) were selected from gene expression 
data, (ii) “mixed samples” were removed, (iii) genes were median centred 
across samples, and (iv) samples were ordered by subtypes. Next, the 
genes were clustered (hierarchical clustering) using the java-based 
application cluster 3.030 with default settings. Finally, the clustered results 
were visualised using another java-based application called GENEE 
(https://software.broadinstitute.org/GENE-E/index.html), from the Broad 
Institute. The gene expression values were scaled to +/-3 for 
visualisation in GENEE.   
  
Reconciliation of subtypes. The intrinsic subtype classifications for 
each sample were downloaded from the respective published studies 
(Supplementary Table 6E). Next, the association between the intrinsic 
and the heterocellular subtypes were performed via sample enrichment 
using the hypergeometric test31. The p-value from the hypergeometric 
was corrected using false discovery rate (FDR) approach; the FDR was 
used to access the significance of association. Due to the unavailability 
of the intrinsic classification for the breast cancer data (GSE42568), the 
samples were classified to the intrinsic breast cancer subtypes using the 
R package - genefu32. 
 
Enrichment of stromal genes in PC: Following steps were performed 
on the pre-processed ICGC data (considering all the genes): (i) mixed 
samples were removed;  (ii) gene-wise median centring was performed; 
(iii) highly variable genes were selected using the SD cut-off of 1. Later, 
these selected genes and samples were used to perform the GSEA 
between the stem-like versus all other subtypes using the Reactome33 
genesets. Additionally, a box plot was created to demonstrate the 
expression of some of the commonly sought after genes in 
immunotherapy34 using the published ICGC data. 
 
Heterogeneity of luminal A subtypes: The heterogeneity in stem-like 
luminal A subtypes and other heterocellular subtypes in luminal A was 
explored using gene set enrichment analysis (GSEA). The GSEA was 
performed between the two classes - stem-like (luminal A) and the other 
4 heterocellular (luminal A) subtypes. Before GSEA, the following steps 
were performed: (i) all genes (n=14712) present in Pan-Cancer BRCA 
datasets were considered, (ii) only the luminal A samples from the Pan-
Cancer BRCA data were selected, (iii) highly variable genes using the 
standard cut-off (SD) of 1.5 were selected, which yielded 876 genes and 
131 samples.  
 
Subsequently, the genes were median centred and the hierarchical 
clustering of genes was performed. The data was visualised via 
heatmaps using GENEE software. Additionally, published35 classification 
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for the luminal A copy number subtypes (for samples in Pan-Cancer 
BRCA datasets) were associated with the heterocellular classification. 
 
Comparing the microsatellite status across cancers: Microsatellite 
status for three cancers – CRC, STAD and UCEC - from the three 
published4,25,36 studies were used to classify samples as microsatellite 
instable (MSI) and stable (MSS) (Supplementary Table 6E). 
Subsequently, the following steps were performed: (i) all the genes 
(n=14712) in each dataset were considered; (ii) microsatellite instability 
high (MSI-H) and low (MSI-L) were combined as MSI; (iii) mixed samples 
were removed; (iv) MSI samples in inflammatory and goblet-like were 
selected; (v) genes were median centred; and (vi) highly variable genes 
using the SD cut-off of 1 were selected for GSEA. Next, GSEA37 was 
performed between the MSI inflammatory and the MSI goblet-like using 
published immune markers38 as a geneset. For the additional validation, 
the Level 4 RPPA data from The Cancer Proteome Atlas (TCPA)39 were 
used to compare the PDL-1 expression between MSI inflammatory and 
MSI goblet-like.  
 
Prediction of KRAS dependency status and pathway analysis: The 
KRAS (Supplementary Table 6F) mutant samples (removing the 
“mixed” samples) from CRC, PC, and LUAD (analysis was performed 
separately for each datasets) were selected. Next, the KRAS 
dependency status for the KRAS mutant samples was predicted using 
the published40 signature and the Nearest Template Prediction41 (NTP) 
algorithm using default settings. Only those predictions having FDR less 
than 0.2 (as described in our previous publication17) were selected from 
NTP classification. Sample enrichment analysis between the 
heterocellular subtypes and the predicted KRAS dependency status 
(from NTP) were performed using the hypergeometric test. Based on the 
hypergeometric results, KRAS-dependent goblet-like (KD-GL) and the 
KRAS-independent (KID-SL) samples were selected to identify the 
commonly enriched pathways across the 3 cancer types. Before GSEA, 
the following steps were performed: (i) all the genes (n=14712) in each 
datasets were considered; (ii) only the samples in KD-GL and KID-SL 
were selected from each datasets; (iii) the data were median centred; (iv) 
highly variable genes using the SD cut-off of 1 were selected; and (v) 
GSEA was performed using the Hallmarks42 and oncogenic37 genes sets. 
 
 
Supplementary Figure Legends and Tables. 
 
Supplementary Figure 1: A. Proportions of mixed subtypes in CRC-1 
(GSE1433320; n=288), GC-1 (GSE3580922; n=68), OV-1 (GSE98911; 
n=177), PC-1 (GSE1547121; n=36) and BRCA-1 (GSE4256819, n=104) 
and LUAD/LUSC (GSE377457; n=168). B. Proportions of mixed subtypes 
in additional gastrointestinal cancers - gastric [(GC-2/GSE3494222; n=56) 
and GC-4/GSE1545922; n=182)], GC-325 ( gastric data from TCGA; 
n=239) and pancreatic cancer24 (including PC and other histological 
subtypes from ICGC; PC-2; n=96). C. Proportions of mixed subtypes in 
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TCGA Pan-cancer datasets23 (syn1715755) – CRC-2 (n= 262); OV-2 
(n=259); BLCA (n=122), LUAD (n=351); KIRC (n=480); HNSC (n=303), 
BRCA-2 (n=835), LUSC (n=257), UCEC (n=370). D. Heatmap showing 
correlation coefficient comparing CRCassigner PAM centroids and 
median values of the corresponding genes across samples within each 
subtype and cancer type (considering all the cancers used in this study). 
E. Venn diagram showing the number of colon-specific genes (from 
TiGER29 database) present in CRCassigner gene signature. F. 
Proportion of CRC heterocellular subtypes in different cancer types from 
all the data sources used in this study. G-I. Heatmaps showing the 
variability in CRCassigner genes in three different cancer types – (G.) 
gastric cancer22 (GC-1/GSE35809), (H.) PC21 (PC-1/GSE15471) and (I.) 
breast cancer19 (BRCA-1/GSE42568).  
 
Supplementary Figure 2: A. Bar plot showing the proportions of 
Bailey’s24 subtypes in PDAassigner43 subtypes using ICGC datasets. B-
C. Heatmap showing hypergeometric test-based FDR comparing 
PDAassigner subtypes (x-axis) with the published (B) Bailey’s subtypes24 
(y-axis) using ICGC dataset24 and (C) CRC heterocellular subtypes (y-
axis) using GSE1547121 datasets. D-E. Proportions of different PC 
histotypes in (D) CRC heterocellular subtypes (ICGC24 datasets), (E) 
goblet-like subtype. F. Proportions of CRC heterocellular subtypes (ICGC 
dataset) in different PC histotypes. G. Proportions of Bailey’s subtypes24 
in CRC heterocellular subtypes (ICGC dataset). H. GSEA analysis 
showing enrichment of collagen formation (reactome33,42 gene set) 
representing increased desmoplastic reaction in stem-like PC subtype. I. 
Heatmap showing the expression of highly variable (SD>1) marker genes 
associated with immunogenic, inflammatory, stem-like and goblet-like 
subtypes.  
 
Supplementary Figure 3: A-C. Heatmap showing hypergeometric test-
based FDR values comparing CRC heterocellular subtypes (y-axis) with 
intrinsic gene expression subtypes from Lei et al.22 in two different gastric 
cancer datasets (x-axis) (A.) GSE3580922 and (B) GSE3494222 and (C) 
integrative subtype25 from TCGA gastric cancer. D. Kaplan-Meier survival 
curve showing significant prognostic (overall survival) difference between 
surgery (n=72) and adjuvant 5-FU (n=22) treatment groups in combined 
data consisting of stem-like, inflammatory, TA and the mixed subtype. E-
L. Heatmap showing hypergeometric test-based FDR values comparing 
CRC heterocellular subtypes (y-axis) with intrinsic gene expression 
subtypes (x-axis) from (E.) ovarian (GSE98911), (F.) HNSC2 (TCGA), 
(G.) UCEC4 (TCGA), (H.) BLCA5 (TCGA), (I.) KIRC6 (TCGA), (J.) 
LAUD/LUSC (GSE377457), (K) LUAD44 (TCGA) and (L) LUSC45 (TCGA). 
M. GSEA results showing the enrichment of macrophages in MSI 
inflammatory samples from CRC, GC and UCEC. Note: Immuno reactive 
(IR), chromatin remodelling (CR), base excision repair (BER), 
genomically stable (GS), Epstein-Barr virus (EBV), chromosomal 
instability (CIN). 
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Supplementary Figure 4: A. Enrichment of hallmarks42 genesets in 
KRAS-independent stem-like subtypes compared to the KRAS-
dependent goblet-like in CRC36, PC24 and LUAD44. B. Proportion of 
KRAS-independent and dependent cell lines in goblet-like and stem-like 
subtypes in PC and LUAD. The KRAS dependency status for cell lines 
was consolidated from the published studies by Collission et al.43 and 
Singh et al.40, which used KRAS lentiviral assay to suppress KRAS 
expression followed by proliferation analysis in KRAS mutant cell lines 
across lung and PC cell lines. C. Proportion of KRAS-independent and -
dependent CRC cell lines in stem-like and goblet-like subtypes. D. Status 
of PIK3CA in KRAS dependent and independent CRC cell lines present 
in Singh et al40. 
 
Supplementary Figure 5: 
A. Heatmap showing hypergeometric test-based FDR values comparing 
CRC heterocellular subtypes (y-axis) with intrinsic gene expression 
BRCA from GSE4256819 (x-axis). Due to the unavailability of the original 
subtypes in BRCA (GSE4256819) the samples were reclassified using the 
genefu32 package.  B. Kaplan-Meier survival curve showing recurrence 
free survival (RFS) difference between Luminal-A stem-like (n=34) 
versus the other subtypes (n=37). C. GSEA plot showing enrichment of 
stem cell genes in stem-like subtype of luminal A BRCA compared to the 
other CRC-SET subtypes of luminal A. D. Heatmap showing the 
expression of top highly variable genes (SD>1.5; n=876) between stem-
like and other subtypes within luminal A BRCA subtype. 
 
Legends for the Tables: 
 
Supplementary Table 1: A-F. Results from the supervised classification 
of multiple cancers to CRC heterocellular subtypes in all the datasets 
used in this study. G. Comparison of the similarities of the heterocellular 
subtypes from multiple cancers to the CRCassigner subtypes. H. 
Assessing the subtype-specific genes in the CRCassigner-786 gene 
signature. I. Colon-specific genes present in the TiGER database. J. 
Assessment of the tissue-specific genes in the CRCassigner signatures. 
K. Chi-square test comparing the CRC heterocellular subtypes with the 
intrinsic subtypes from cancers percentage of tissue specific genes 
CRCassigner signatures. L-N. Table showing the counts, proportions and 
hypergeometric test results comparing the intrinsic classification with the 
CRC heterocellular classification. 
 
Supplementary Table 2: A-B. Results showing the comparison of CRC 
heterocellular subtypes from PC with the histological subtypes. C. GSEA 
results showing the enrichment of Reactome genesets in stem-like 
heterocellular subtypes compared to the others. D. Expression of 5 
common immune genes in immunogenic and inflammatory samples. E. 
Custom genesets created using the published immune markers. F. 
GSEA results showing the enrichment of these immune markers in 
inflammatory compared to the immunogenic subtypes.  
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Supplementary Table 3: A-I. Results showing the microsatellite status 
(counts of proportions) in CRC heterocellular subtypes from CRC, GC 
and UCEC. J-L. GSEA results showing the enrichment of immune 
pathways in inflammatory MSI compared to the goblet-like MSI samples 
in CRC, GC and UCEC. M. RPPA data showing the expression of PDL1 
proteins in 3 cancers. 
 
Supplementary Table 4: A-F. Results showing the KRAS mutation 
status in CRC, LUAD and PC. G-L. KRAS dependency status predicted 
using the NTP. M-O. GSEA enrichment analysis showing the enrichment 
of hallmark genesets in stem-like KRAS independent versus the goblet-
like KRAS dependent in 3 cancers. P-R. KRAS enrichment status 
detected using the lentiviral assay in cell lines from 3 cancers.  
  
Supplementary Table 5: A. Results showing the GSEA enrichment 
analysis between the luminal A stem-like versus all other luminal A 
subtypes. B-D. Counts and proportions comparing the luminal A copy 
number subtypes with the CRC heterocellular subtypes.  
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