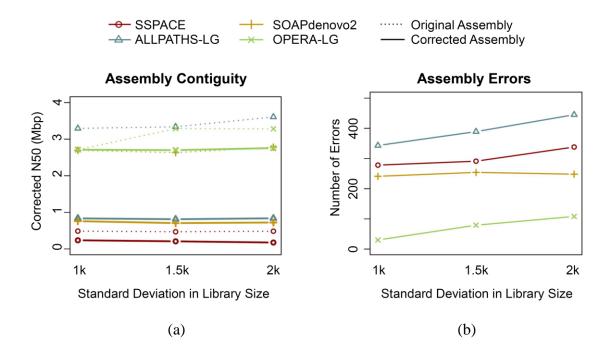

## **OPERA-LG: Efficient and exact scaffolding of large,** repeat-rich eukaryotic genomes with performance guarantees

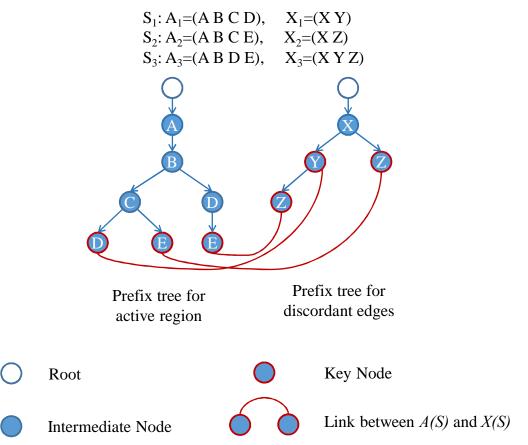

Song Gao<sup>1\*</sup>, Denis Bertrand<sup>1\*</sup>, Niranjan Nagarajan<sup>1</sup>



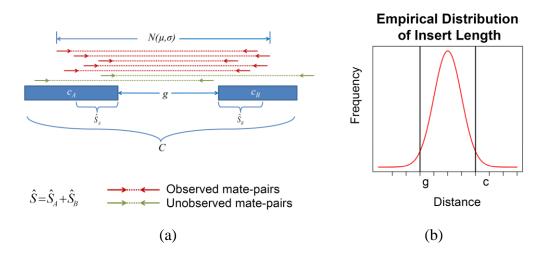
**Supplementary Figure 1**: **Key algorithmic steps in OPERA-LG.** a) Memoized Search: the search procedure in OPERA-LG is akin to a depth-first search where previously visited partial scaffolds (the tail of which is defined by a list of contigs i.e. "Active Region" or AR and a set of incident edges i.e. "Dangling Edges" or DE) are "memoized" (as <AR, DE> pairs defining an equivalence class of partial scaffolds and not re-searched). b) Graph Contraction: the subgraph demarcated by dotted lines is independently solved in Opera, allowing for significant runtime improvements. Border contigs are large contigs (longer than library size) such that no concordant scaffold edges can span them. c) Gap-size Optimization: gap sizes are jointly optimized in Opera by minimizing the quadratic function depicted in the figure.



**Supplementary Figure 2: Assembly performance as a function of library information and sequencing depth.** (a) Assembly errors as a function of the mate-pair libraries that were provided as input. (b) Assembly errors as a function of sequencing depth. Results shown here are for the *C. elegans* dataset.




**Supplementary Figure 3**: Assembly performance as a function of library quality. Results shown are for the *D. melanogaster* dataset using 10 kbp libraries.


| ScaffoldWithRepeat(S', p)                                                                                |
|----------------------------------------------------------------------------------------------------------|
| <b>Require:</b> A scaffold graph $G = (V, E)$ and a partial scaffold S' with at most p discordant edges. |
| <b>Ensure:</b> Return a scaffold S of G with at most p discordant edges and where $S'$                   |
| is a prefix of S                                                                                         |
| 1: if S' is a scaffold of G, then                                                                        |
| 2: return $S'$                                                                                           |
| 3: end if                                                                                                |
| 4: for every $c \in V - V_{S'}$ in each orientation <b>do</b>                                            |
| 5: Let $S''$ be the scaffold formed by concatenating $S'$ and $c$ ;                                      |
| 6: If a confirmed repeat $r$ should be removed then                                                      |
| 7: trace back to the contig before $r$ ;                                                                 |
| 8: else                                                                                                  |
| 9: Let A be the active region of $S''$ ;                                                                 |
| 10: Let D be the set of dangling edges of $S''$ ;                                                        |
| 11: Let k be the number of discordant edges in $S''$ ;                                                   |
| 12: <b>if</b> $(A, D, k)$ is unmarked, <b>then</b>                                                       |
| 13: Mark $(A, D, k)$ as processed;                                                                       |
| 14: <b>if</b> $k \le p$ , <b>then</b>                                                                    |
| 15: $S''' \leftarrow \text{ScaffoldWithRepeat}(S'', p);$                                                 |
| 16: <b>if</b> $S''' \neq$ FAILURE, return $S'''$ ;                                                       |
| 17: <b>end if</b>                                                                                        |
| 18: <b>end if</b>                                                                                        |
| 19: <b>end if</b>                                                                                        |
| 20: end for                                                                                              |
| 21: Return FAILURE;                                                                                      |

Supplementary Figure 4: An algorithm for generating a minimal-repeat optimal scaffold with at most p discordant edges.

Partial Scaffolds:



Supplementary Figure 5: An example of the prefix tree data structure used to record visited partial scaffolds. The example here records the partial scaffolds  $S_1$ ,  $S_2$  and  $S_3$  shown at the top of the figure, where  $A_i$  and  $X_i$  represent the active region (list of contigs in the tail of the scaffold) and discordant edges, respectively, of the partial scaffolds.



**Supplementary Figure 6**: **Observed and un-observed read-pairs.** (a) Graphical depiction of the phenomena of mate-pairs connecting contigs coming from a truncated distribution defined by contig lengths ( $c_A$  and  $c_B$ ) and gap size (g). (b) Empirical distribution of the distance between observed mate-pairs (mean  $\mu$  and standard deviation  $\sigma$ ) and region of truncation (defined by g and C).

|                 |             | Contigs | Scaffolds |
|-----------------|-------------|---------|-----------|
| Development     | SSPACE      | 87      | 92        |
|                 | SOAPdenovo2 | 86      | 95        |
| D. melanogaster | OPERA-LG    |         | 92        |
|                 | ALLPATHS-LG | 89      | 94        |
| C alas ma       | SSPACE      | 88      | 107       |
|                 | SOAPdenovo2 | 86      | 102       |
| C. elegans      | OPERA-LG    |         | 100       |
|                 | ALLPATHS-LG | 94      | 100       |
|                 | SSPACE      | 71      | 112       |
| 11              | SOAPdenovo2 | 66      | 94        |
| H. sapiens      | OPERA-LG    |         | 106       |
|                 | ALLPATHS-LG | 79      | 93        |

**Supplementary Table 1.** Assembly size for results reported in Figure 3a-d. The numbers presented here show the total length of contigs and scaffolds (longer than 500 bp) in each assembly, reported as a percentage of genome length. Note that scaffold lengths include gaps and can exceed 100% due to the use of a lower bound for gap sizes in many scaffolders.

|                 |             | Indel | Inversion | Relocation | Translocation |
|-----------------|-------------|-------|-----------|------------|---------------|
| D. melanogaster | SSPACE      | 376   | 33        | 87         | 40            |
|                 | SOAPdenovo2 | 196   | 106       | 104        | 30            |
|                 | OPERA-LG    | 30    | 0         | 29         | 1             |
| C. elegans      | SSPACE      | 854   | 126       | 630        | 39            |
|                 | SOAPdenovo2 | 493   | 323       | 253        | 71            |
|                 | OPERA-LG    | 67    | 0         | 123        | 0             |
| H. sapiens      | SSPACE      | 9600  | 1209      | 8504       | 676           |
|                 | SOAPdenovo2 | 26408 | 1033      | 24442      | 1430          |
|                 | OPERA-LG    | 7297  | 60        | 4758       | 94            |

Supplementary Table 2. Number of scaffold errors as depicted in Figure 3b.

|                 |             | Indel | Inversion | Relocation | Translocation |
|-----------------|-------------|-------|-----------|------------|---------------|
| D. melanogaster | ALLPATHS-LG | 208   | 38        | 84         | 49            |
|                 | SOAPdenovo2 | 194   | 107       | 101        | 31            |
|                 | OPERA-LG    | 34    | 0         | 29         | 1             |
| C. elegans      | ALLPATHS-LG | 332   | 19        | 119        | 37            |
|                 | SOAPdenovo2 | 490   | 322       | 258        | 73            |
|                 | OPERA-LG    | 67    | 0         | 123        | 1             |
| H. sapiens      | ALLPATHS-LG | 18652 | 243       | 5925       | 3216          |
|                 | SOAPdenovo2 | 26833 | 1187      | 24485      | 1754          |
|                 | OPERA-LG    | 7310  | 63        | 4761       | 161           |

Supplementary Table 3. Number of assembly errors (including contig and scaffold errors) as depicted in Figure 3d.

|             | N50 (Mbp) | Corrected N50 (Mbp) | # of errors |
|-------------|-----------|---------------------|-------------|
| SSPACE      | 1.4       | 0.3                 | 555         |
| SOAPdenovo2 | 7.0       | 0.8                 | 574         |
| ALLPATHS-LG | 12.0      | 1.1                 | 432         |
| OPERA-LG    | 12.0      | 12.0                | 14          |

**Supplementary Table 4. Impact of long reads on assembly results.** The results reported here are based on redoing the analysis reported in **Figure 3c** for *D*. *melanogaster*, where 250 bp reads were simulated (instead of 80 bp and genome coverage was kept the same) for the paired-end read library (fragment size 400 bp).