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1 Additional file 1 — Supplementary Informa-
tion

This file (AdditionalFile1.pdf) describes supplementary results, methods, data,
figures and short Tables.

1.1 Supplementary Results

1.1.0.1 Simulation case-control data only

To evaluate the performance of the approximate CC model for different parame-
ter values, we simulated a single CC sample with either one or two variant/anno-
tation classes. We tested sample sizes ranging from that of the available data,
1,092 each cases and controls (ASD), and 3,157 cases and controls (SCZ), to
larger sample sizes of 10,000 cases and controls, and 20,000 cases and controls.
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Overall, high correlations (∼ 1) between estimated and simulated parameter
values indicate little bias in inference based on CC data (Figure S4 and S6).
Slight over estimation was observed for the sample size of 1092, especially for
risk-gene proportions.

An additional analysis was carried out to assess the performance of specific
simulated values. Correlations were calculated for each mean RR and π value.
For one CC class, mean RRs were estimated well by the model with correla-
tions ∼ 1 (Figure S5). However, the proportion of risk genes was affected by
mean RRs. They were estimated well when mean RRs were between 1.5 and
3.5, but underestimated with smaller mean RRs and slightly overestimated with
larger mean RRs (Figure S5). For two CC classes, high correlations (≥ 0.97)
between simulated and estimated values were seen for all parameters. In ad-
dition, small mean RRs of a given class did not directly affect the estimated
values of proportions of risk genes (Figure S7).

The issue of poor estimation for one class, but good estimation for > one
class was expected. This was an advantage of using multiple classes compared
to using only one class in the estimation process when the clustering signal was
not very strong. Small mean RRs could result in difficulties in the calculation
process to differentiate between a risk gene (mean RR > 1) and a non-risk gene
(mean RR ∼ 1). If one class was used then many risk genes would be considered
to be non-risk genes. If more than one class was used, such risk genes would
be assigned as genuine risk genes due to the information available from other
classes.

1.2 Supplementary methods

1.2.1 Analysis of SCZ data

1.2.1.1 Obtaining non-heterogeneous population samples for case-
control data of SCZ

The case-control data sets were divided into three big populations: Finland,
United Kingdom and Sweden. For the Sweden population, this was a large data
set and was also sequenced at different centers Genovese et al. (2016), therefore
we divided this population as follows.

A simple combination between a clustering process using a multivariate nor-
mal mixture model and a data analyzing strategy using linear and generalized
linear models was used to divide the Sweden data into non-heterogeneous pop-
ulations. Genovese et al. (2016) recently analyzed all case-control data sets
by adjusting for multiple covariates: genotype gender of individuals (SEX), 20
principal components (PCs), year of birth of individuals (BIRTH), Aligent kit
used in wet-labs (KIT) by using linear regression and generalized linear regres-
sion models as in Equation 1. They reported significant results for NoExAC
LoF and MiD variants; therefore, this information was used in this step. We
defined homogeneous populations as populations which were not much affected
by the covariates. Thus, for the populations, analyzing results using Equation
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1 (adjusting covariates) would not be much different from those results using
Equation 2 (not adjusting covariates). The mclust package Version 5.2 Fraley
and Raftery (1999) which uses a multivariate normal mixture model was used to
divide 11,161 samples (4,929 cases and 6,232 controls) into different groups. To
see all situations of the grouping process, we used mclust with three strategies
on 11,161 samples: grouping all 20 PCs, grouping all 20 PCs and total counts,
and grouping only the first three PCs. The number of groups were set between
2 and 6. For each clustering time, Equation 1 and 2 were used to calculate p
values for each variant category of each group from the clustering results (p1
and p2 respectively); then, Spearman correlation Spearman (1904) between p-
value results from the two Equations (cPvalue) was calculated. Next, to filter
reliable results from the clustering process, we set criteria:

• cPvalue ≥ 0.85 and p-values for NoExAC ≤ 0.005.

• Ratio p1/p2 from Equation 1 and 2 had to between 0.1 and 1.

From results satisfied the above criteria, we manually chose groups which
had similar results between Equation 2 and 1.

logit(P (SCZ = 1)) ∼ count+ countAll + sex+ birth+ kit+
20∑
i=1

PCi

count ∼ SCZ + countAll + sex+ birth+ kit+
20∑
i=1

PCi

(1)

SCZ ∼ count
count ∼ SCZ (2)

For the data from the UK10K project Singh et al. (2016), we divided the
data into two separate populations England and Finland, and tested NoExAC
variants in these populations by calculating sample-size-adjusted ratios between
cases and controls. The ratios were 0.91 and 0.95 for the UK data. Regarding
the Finland data, the ratio for MiD variants was only 0.41 which were extremely
low. This could be a special case for the population or might be because of other
technical reasons. We did not use this population in the next stage because it
showed a different trend with other populations.

1.2.2 extTADA pipeline: extended transmission (case-control) and de
novo analysis

This section describes more details the pipeline.

1.2.2.1 extTADA for one de novo population and one case/control
population

extTADA is summarized in Table S3 and Figure S2. There,
xdn ∼ Pois(2Ndµ, γdn), xca ∼ Pois(qN1γcc), xcn ∼ Pois(qN0), and
γdn ∼ Gamma(γ̄dnβdn, βdn), γcc ∼ Gamma(γ̄ccβcc, βcc), q ∼ Gamma(ρ, ν).
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Let K be the number of categories (e.g., LoF, MiD), and xi = (xi1, .., xiK)
be the vector of counts at the ith given gene. The Bayes Factor for each jth

category to test two hypotheses: H0 : γ = 1 versus H1 : γ 6= 1 was:

Bij =
P (xij |H1)
P (xij |H0)

=
∫
P (xij |γ,q)P (q|H1)P (γ|H1)dqdγ∫
P (xij |γ,q)P (q|H0)P (γ|H0)dqdγ

Because γ = 1for H0

=
∫
P (xij |γ,q)P (q|H1)P (γ|H1)dqdγ∫

P (xij |q)P (q|H0)dq

(3)

In Equation 3, xij = xdn for de novo data and xij = (xca, xcn) for case-
control data. In addition, the integral over q was not applicable for de novo
data because there is no q parameter for de novo data.

As in He et al. (2013), the BF for the ith gene combining all categories is:

Bi =
K∏
j=1

Bij (4)

To calculate BFs, hyper parameters in Table S3 need to be inferred. Let φ1j

and φ0j be hyper-parameters for H1 and H0 respectively. A mixture model of
the two hypotheses was used to infer parameters using information across the
number of tested genes (m) as:

P (x|φ1, φ0) =
m∏
i=1

[
π

K∏
j=1

P (xij |φ1j) + (1− π)
K∏
j=1

P (xij |φ0j)

]
(5)

Equation 5 was calculated across categories as
in Equation 4.
We used the same approach for the analysis of multiple population samples.

Let Ndnpop, Cdn and Nccpop, Ccc be the number of populations, categories for
de novo and case-control data respectively. The total Bayes Factor of a given
gene was the product of Bayes Factors of all populations as in the main text,
and all hyper parameters were estimated using Equation 2 in the main text.

The hyper-parameters φ1j = (γj(dn), γj(cc), βj(dn), βj(cc), ρj , νj) were esti-
mated using a Hamiltonian Monte Carlo (HMC) Markov chain Monte Carlo
(MCMC) method implemented in the rstan package Carpenter et al. (2015); R
Core Team (2016). However, the model was first simplified by removing q (see
below).

1.2.2.2 Simplified approximate case-control model

For case-control (transmitted) data, q ∼ Gamma(ρ, ν), and hyper-parameters
ρ and ν controlled the mean and dispersion of q; therefore, as in the previous
studies He et al. (2013); De Rubeis et al. (2014), ν was heuristically chosen (200
was used in all analyses) and ρ

ν = the mean frequency across genes in both cases
and controls.
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We simplified the case-control model by expressing it as

P (xca, xcn|Hj) = P (xca|xca + xcn, Hj)P (xca + xcn|Hj) (6)

Because xca ∼ Pois(N1qγcc) and xcn ∼ Pois(N0q), assuming that xca and
xcn were independent, the case data could be modeled as:

xca|xca + xcn, Hj ∼ Binomial(xca + xcn, θ|Hj)

with θ|H1 = N1γcc
N1γcc+N0

and θ|H0 = N1

N1+N0

The marginal likelihood was
P (xca|xca + xcn, Hj) =

∫
P (xca|xca + xcn, γcc, Hj)P (γcc|Hj)dγcc

Based on simulation results, the first part P (xca|xca + xcn, Hj) can be used
to infer mean RRs (γ̄cc); therefore only this part was used in the extTADA

estimation process. However, to calculate Bayes Factors, we used full case-
control models. We changed the order of integrals (Supplementary Methods).

1.2.2.3 Control of an implied proportion of protective variants using
the relative risk dispersion hyper-parameter

If γ̄ and β were small then we could see a high proportion of protective vari-
ants when γ̄ is not large. Although this might be of biological interest, it is
not currently accounted for in the model. To control the proportion of pro-
tective variants, we tested the relationship between β and γ̄ in determining∫
Gamma(γ̄dnβdn, βdn). We set this proportion very low (2%) (Figure S3) and

built a nonlinear relationship β = ea∗γ̄
b+c. The function nls in R was used to

estimate a, b and c, as 6.77,−1.79 and −0.22 respectively.

1.2.2.4 Calculate Bayes Factor for case/control data

At a given gene, Bayes Factor for each class was calculated as BF = P (x1,x0|H1)
P (x1,x0|H0) .

The probability for each model (Hj , j = 0, 1) was calculated in order to rely only
γ parameters as follows.

P (xca, xcn|Hj) = P (xcn|Hj)P (xca|xcn, Hj) (7)

• The first part P (xcn|Hj) was the same as De Rubeis et al. (2014):

P (xcn|Hj) =

∫
P (xcn|q,Hj)P (q|ρ, ν,Hj)dq = NegBin(xcn|ρ,

N0

ν +N0
), j = 0, 1

(8)

• The second part:

P (xca|Hj , xcn) =
∫
P (xca|q, γcc)P (q|Hj , xcn)P (γcc|Hj)dqdγcc

=
∫

[P (xca|q, γcc)P (q|Hj , xcn)dq]P (γcc|Hj)dγcc
=

∫
NegBin(xca|ρ+ xcn,

N0+ν
N1γcc+N0+ν )P (γcc|Hj)dγcc

(9)

To identify the lower and upper limits of γCC for the integral, we randomly
sampled 10,000 times values from the Gamma(γ̄cc ∗ βcc, βcc) and used the min-
imum and maximum values for the lower and upper limits respectively.
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1.2.3 Infer parameters using MCMC results

The rstan package Carpenter et al. (2015) was used to run MCMC processes.
For simulation data, 5,000 times and a single chain were used. For real data,
20,000 times and three independent chains were used. In addition, for SCZ data
we used two steps to obtain final results. Firstly, 10,000 times were run to obtain
parameters. After that, we calculated β values from estimated mean RRs as the
Equation described in Table S3. Finally, extTADA was re-run 20,000 times on
the SCZ data with calculated β values set as constants to re-estimate mean RRs
and the proportions of risk genes. For each MCMC process, a burning period =
a half of total running times was used to assure that chains did not rely on their
initial values. For example, we ran and removed 2,500 burning times before the
5,000 running times for simulation data.

We just chose 1,000 samples of each chain from MCMC results to do further
analyses. For example, with a chain with 20,000 run times, the step to obtain
a sample was 20 run times. For all estimated parameters from MCMC chains,
the convergence of each parameter was diagnosed using the estimated potential
scale reduction statistic (R̂) introduced in Stan Carpenter et al. (2015). To
produce heatmap plots, modes as well as the credible intervals (CIs) of estimated
parameters, the Locfit Loader (2007) was used. The mode values were used as
our estimated values for other calculations.
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1.3 Supplementary Figures

This file includes Sup Figures below.

CC non-heterogenous populations
5,601 cases + 10,634 controls

SCZ case-control (CC) data
6,699 cases + 13,028 controls

Missense damaging (MiD) + Loss 
of function (LoF)  variants

extTADA
(Estimate simultaneously 

genetic parameters)

SCZ genetic parameters

Top SCZ genes
FDR < 0.1: SETD1A, TAF1B, RB1CC1, 
PRRC2A
FDR < 0.3: 
SETD1A,TAF13,RB1CC1,PRRC2A,VPS13C,
MKI67,RARG,ITSN1,KIAA1109, 
DARC, 
URB2,HSPA8,KLHL17,ST3GAL6,SHANK1,E
PHA5,LPHN2,NIPBL,KDM5B,TNRC18,
ARFGEF1,MIF,HIST1H1E,BLNK

Enrichment in 
gene sets

Other disorders 

DD: 4,293 trios
ID: 1,012 trios
ASD: 5,122 trios + 
4,058 CCs
EPI: 356 trios
(731 control families)

1) Genetic 
parameters for DD, 
ID, ASD and EPI
2) Novel genes for 
ID and DD
3) Significant gene 
sets for these orders

SCZ DN data
1,077 families 

(731 control families)

Missense damaging (MiD) + 
Loss of function (LoF) + DHS-
region silent (silentCFPK) 
mutations

FDRs for each gene Predict number of risk genes for different 
sample sizes 

3 populations

Figure S1: Workflow of data analysis.
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Figure S2: Comparison between TADA and extTADA. They both use the same
model for de novo data (xdn and case/control (xca, xcn) data. extTADA combines
all categories to obtain parameters and their credible intervals while TADA is
based on LoF mutations. extTADA uses an approximate model for case-control
data, and constrains β and γ̄ in the estimation process. extTADA is designed to
work for multiple populations. TADA can be used inside extTADA.
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Figure S3: A grid of β and γ̄ values. Points on the red line are corresponding
with the proportion of protective variants less than 2%.
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Figure S4: Correlations between estimated and simulated values for one CC class
with different sample sizes. X and Y axes describe simulated (S) and estimated
(E) values respectively. The top picture is for mean relative risks (MeanRRs)
while the bottom picture is for the proportion of risk genes (π). Legends show
sample sizes and correlations. These estimated values were averaged across
simulation results. Detailed values are presented in Figure S5.
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Figure S5: Correlation between simulated and estimated values for one-category
case/control data.
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Figure S7: Correlation between simulated and estimated values for two-category
case/control data.
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Figure S15: The correlation of gene-set p values (-log(p value)) between mean
posterior profitability (meanPP) based method and permutation based methods.
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Figure S16: GeNets InWeb PPI network for 288 NDD genes, with direct edges
only.
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Figure S17: Evaluation of enrichment of each community from GeNets results
in brain scRNAseq datasets from mouse.
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1.4 Supplementary Tables

This part includes Sup Tables below.

Source Disease DN DN control Case Control

Fromer et al. (2014) SCZ 617
Girard et al. (2011) SCZ 14
Gulsuner et al. (2013) SCZ 105 84
McCarthy et al. (2014) SCZ 57
Xu et al. (2012) SCZ 231 34
Guipponi et al. (2014) SCZ 53
Genovese et al. (2016) SCZ 4954/4248 6239/5865
Singh et al. (2016) SCZ 1745/1353 6789/4769

Deciphering Develop-
mental Disorders Study
(2017)

DD 4293

EuroEPINOMICS-RES
Consortium et al. (2014)

EPI 356

De Ligt et al. (2012) ID 100
Hamdan et al. (2014) ID 41
Rauch et al. (2012) ID 51 20
Lelieveld et al. (2016) ID 820

Turner et al. (2016) ASD 5122
De Rubeis et al. (2014) ASD 404 3654
Iossifov et al. (2012) ASD 343
ORoak et al. (2012) ASD 50
Sanders et al. (2012) ASD 200

Table S1: de novo and case/control data. For ASD studies, Turner et al. (2016)
integrated previous results in their study; therefore only de novo meta data in
their study are shown in the table. In addition, for ASD case-control data, only
one homogeneous Sweden population from De Rubeis et al. (2014) was used.
For case-control data of SCZ, after correcting for the population stratification,
only 4,248 cases (3,157 + 1,091) + 5,865 (4,672 + 1,193) controls from Genovese
et al. (2016) and 1,353 cases + 4,769 controls from Singh et al. (2016) are used
in this study.
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Gene set name Abbreviation Author
Missense constrained genes constrained Samocha et al. (2014)
Loss-of-function tolerance genes pLI90 Lek et al. (2015)
RBFOX2 and RBFOX1/3 genes rbfox2, rbfox13 Weyn-Vanhentenryck

et al. (2014)
FMRP genes fmrp Darnell et al. (2011)
CELF4 genes celf4 Wagnon et al. (2012)
synaptic genes synaptome Pirooznia et al. (2012)
microRNA-137 mir137 Robinson et al. (2015)
PSD-95 complex genes psd95 Bayés et al. (2011)
ARC and NMDA receptors genes nmdarc Kirov et al. (2012)
Essential genes essential Ji et al. (2016)
Human accelerated regions and primate
accelerated regions

HARs, PARS Lindblad-Toh et al. (2011)

Known ID gene sets IDallKnownGenes Lelieveld et al. (2016)
Voltage-gated Calcium Channel Genes vacc
CHD8 promoter targets chd8 hNSC, chd8 hNSC

specific, chd8 human
brain, chd8 hNSC human
brain, chd8 hNSC human
mouse

Cotney et al. (2015)

Allelic-biased expression genes in neu-
rons

AlleleBiasedExpression.NeuronLin et al. (2012)

24 gene sets from 24 modules Module.M1..M24 Johnson et al. (2016)
de novo copy number variants Genovese et al. (2016)
ASD CNV.denovo.gain/loss.asd
Bipolar CNV.denovo.gain/loss.bd
SCZ CNV.denovo.gain/loss.scz
MiD and LoF de novo mutations
DD DD.allDenovoMiDandLoF
ASD ASD.allDenovoMiDandLoF
EPI EPI.allDenovoMiDandLoF
ID ID.allDenovoMiDandLoF

Table S2: Abbreviations of known gene sets used in this study.
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Data model Parameter prior Hyper prior

xdn ∼ P (2Ndnµγdn) γdn ∼ Gamma(γ̄dn ∗ βdn, βdn) γ̄dn ∼ Gamma(¯̄γdn, β̄dn)

βdn = ea∗γ̄
b
dn+c

xca ∼ P (N1qγcc) γcc ∼ Gamma(γ̄cc ∗ βcc, βcc) γ̄cc ∼ Gamma(¯̄γcc, β̄cc)

βcc = ea∗γ̄
b
cc+c

q ∼ Gamma(ρ, ν) ρ
ν = mean(

∑
(xcn + xca))

ν = 200
xcn ∼ P (N0q) q ∼ Gamma(ρ, ν) ρ

ν = mean(
∑

(xcn + xca))
ν = 200

π ∼ Beta(1, 5)

Table S3: Parameter information used in all analyses. Ndn, N1, N0 are sample
sizes of families, cases and controls respectively. γ̄ is mean RRs and β controls
the dispersion of γ. ¯̄γ and β̄ are priors for γ̄ and are set in advance (they are

inferred from simulation data). β is inferred from the equation ea∗γ̄
b+c inside

the estimation process with a = 6.83, b = -1.29 and c = -0.58.

Parameter Q50 Q5 Q95
π 0.02 0.0224 0.0125 0.0253

0.05 0.0535 0.0351 0.0611
0.09 0.0965 0.0752 0.1063
0.13 0.1381 0.11 0.149

γ̄DN 5 4.265 3.5608 4.947
10 8.575 5.7255 10.4417
15 13.23 9.9955 15.925
20 17.07 14.2005 20.3087

γ̄CC 1.5 1.64 1.5938 1.7888
2 2.21 2.1638 2.2662

2.5 2.76 2.7138 2.8575
3 3.225 3.14 3.31

3.5 3.675 3.5812 3.7663

Table S4: Simulated and estimated values of de novo (DN) and case-control
(CC) parameters. Q50, Q5 and Q95 are for quantile values of 0.5, 0.05 and 0.95
respectively.
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pi dn RR cc RR e.pi Q50 Q5 Q95 e.dn RR Q50 Q5 Q95 e.cc RR Q50 Q5 Q95

0.02 5 1.5 0.0126 0.0051 0.0224 4.72 2.65 9.22 1.83 1.70 2.53
0.02 5 2 0.0158 0.0054 0.0394 4.08 2.33 11.88 2.27 1.88 3.01
0.02 5 2.5 0.0230 0.0093 0.0419 3.49 2.05 10.25 2.83 2.22 3.43
0.02 5 3 0.0219 0.0123 0.0355 3.52 2.06 8.49 3.31 2.74 4.25
0.02 5 3.5 0.0269 0.0171 0.0373 3.76 2.10 9.59 3.80 3.15 4.73
0.02 10 1.5 0.0185 0.0085 0.0280 5.72 2.82 10.08 1.80 1.54 2.57
0.02 10 2 0.0176 0.0076 0.0373 5.22 2.55 13.43 2.24 1.85 3.05
0.02 10 2.5 0.0218 0.0118 0.0342 5.13 2.39 17.29 2.80 2.27 3.57
0.02 10 3 0.0227 0.0137 0.0344 7.29 2.35 15.88 3.28 2.64 4.23
0.02 10 3.5 0.0255 0.0163 0.0328 7.87 2.79 14.28 3.73 3.07 4.69
0.02 15 1.5 0.0152 0.0046 0.0315 11.63 4.65 28.84 1.77 1.48 2.67
0.02 15 2 0.0213 0.0091 0.0348 10.19 3.32 23.63 2.25 1.86 2.84
0.02 15 2.5 0.0230 0.0118 0.0377 9.73 4.00 20.84 2.69 2.06 3.50
0.02 15 3 0.0226 0.0128 0.0370 10.51 3.53 21.52 3.18 2.55 4.11
0.02 15 3.5 0.0240 0.0140 0.0364 10.56 3.58 20.62 3.62 3.04 4.70
0.02 20 1.5 0.0138 0.0062 0.0398 14.96 5.47 47.26 1.68 1.35 2.29
0.02 20 2 0.0188 0.0079 0.0363 14.10 4.79 36.13 2.28 1.81 3.20
0.02 20 2.5 0.0233 0.0110 0.0343 13.61 5.67 26.36 2.76 2.12 3.54
0.02 20 3 0.0243 0.0140 0.0371 13.89 6.44 23.95 3.41 2.63 4.30
0.02 20 3.5 0.0240 0.0146 0.0352 14.87 6.90 24.81 3.77 2.96 4.65
0.05 5 1.5 0.0343 0.0120 0.0688 4.55 2.26 14.06 1.71 1.51 2.17
0.05 5 2 0.0479 0.0279 0.0699 4.86 2.32 10.44 2.21 1.88 2.60
0.05 5 2.5 0.0556 0.0351 0.0743 4.59 2.06 8.03 2.81 2.31 3.17
0.05 5 3 0.0558 0.0427 0.0722 4.36 2.08 8.18 3.35 2.91 3.74
0.05 5 3.5 0.0621 0.0435 0.0727 3.65 1.89 7.36 3.73 3.22 4.48
0.05 10 1.5 0.0381 0.0161 0.0723 9.20 3.92 15.41 1.74 1.45 2.18
0.05 10 2 0.0531 0.0293 0.0801 8.71 3.70 12.99 2.26 1.91 2.71
0.05 10 2.5 0.0528 0.0386 0.0727 8.76 4.15 14.48 2.74 2.47 3.11
0.05 10 3 0.0569 0.0416 0.0737 8.22 4.47 13.57 3.25 2.83 3.72
0.05 10 3.5 0.0615 0.0491 0.0733 8.06 3.97 13.17 3.66 3.30 4.29
0.05 15 1.5 0.0406 0.0182 0.0877 13.51 6.94 24.71 1.67 1.43 1.98
0.05 15 2 0.0489 0.0311 0.0723 14.04 8.16 22.70 2.19 1.90 2.61
0.05 15 2.5 0.0522 0.0327 0.0734 13.13 8.28 20.66 2.72 2.38 3.11
0.05 15 3 0.0577 0.0449 0.0732 12.37 7.27 18.59 3.19 2.83 3.75
0.05 15 3.5 0.0607 0.0465 0.0756 11.97 8.23 18.55 3.61 3.11 4.29
0.05 20 1.5 0.0418 0.0205 0.0814 18.37 9.74 32.56 1.63 1.37 1.97
0.05 20 2 0.0482 0.0325 0.0697 17.08 10.14 29.26 2.27 1.91 2.60
0.05 20 2.5 0.0537 0.0406 0.0733 16.59 10.57 23.23 2.77 2.29 3.06
0.05 20 3 0.0569 0.0424 0.0770 16.15 10.37 24.32 3.23 2.84 3.75
0.05 20 3.5 0.0596 0.0449 0.0765 15.50 10.23 21.45 3.75 3.19 4.61
0.09 5 1.5 0.0767 0.0404 0.1207 4.46 2.17 9.59 1.66 1.51 1.97
0.09 5 2 0.0904 0.0666 0.1115 4.52 2.04 7.33 2.23 2.03 2.54
0.09 5 2.5 0.0963 0.0753 0.1256 4.70 2.52 7.54 2.79 2.49 3.11
0.09 5 3 0.1040 0.0879 0.1217 3.90 2.08 6.71 3.19 2.85 3.68
0.09 5 3.5 0.1039 0.0876 0.1211 4.22 2.34 7.93 3.70 3.35 4.13
0.09 10 1.5 0.0778 0.0423 0.1208 10.01 5.56 17.73 1.64 1.46 1.93
0.09 10 2 0.0925 0.0660 0.1196 9.26 5.85 13.45 2.16 1.96 2.49
0.09 10 2.5 0.0963 0.0729 0.1170 9.30 7.16 12.50 2.82 2.40 3.18
0.09 10 3 0.0992 0.0831 0.1189 9.25 6.11 12.76 3.22 2.95 3.61
0.09 10 3.5 0.1070 0.0885 0.1222 8.29 5.81 10.94 3.67 3.36 4.20
0.09 15 1.5 0.0822 0.0507 0.1257 14.59 9.22 22.62 1.61 1.43 1.89
0.09 15 2 0.0911 0.0668 0.1217 14.35 9.39 20.13 2.16 1.94 2.45
0.09 15 2.5 0.0978 0.0754 0.1202 13.77 10.40 17.99 2.72 2.40 3.00
0.09 15 3 0.0997 0.0844 0.1206 13.50 10.60 16.88 3.13 2.82 3.49
0.09 15 3.5 0.1036 0.0861 0.1229 12.95 9.89 16.86 3.60 3.20 4.15
0.09 20 1.5 0.0804 0.0495 0.1236 19.92 13.06 31.58 1.60 1.38 1.82
0.09 20 2 0.0920 0.0694 0.1205 18.18 12.71 24.69 2.21 1.95 2.51
0.09 20 2.5 0.0958 0.0742 0.1166 18.28 13.76 22.90 2.75 2.49 3.05
0.09 20 3 0.0974 0.0816 0.1202 17.55 13.32 22.38 3.28 2.95 3.59
0.09 20 3.5 0.1067 0.0925 0.1171 16.49 13.66 20.83 3.68 3.32 4.21
0.13 5 1.5 0.1163 0.0720 0.1671 4.87 2.51 8.11 1.65 1.49 1.83
0.13 5 2 0.1250 0.0991 0.1603 5.15 2.82 7.72 2.22 2.04 2.53
0.13 5 2.5 0.1387 0.1173 0.1654 4.65 2.51 7.04 2.77 2.52 3.08
0.13 5 3 0.1469 0.1220 0.1649 4.40 2.83 6.17 3.20 2.93 3.47
0.13 5 3.5 0.1467 0.1293 0.1747 4.45 2.46 6.13 3.69 3.36 4.25
0.13 10 1.5 0.1094 0.0707 0.1660 10.69 7.35 17.96 1.68 1.53 1.84
0.13 10 2 0.1306 0.1113 0.1529 9.40 6.89 13.22 2.17 2.01 2.36
0.13 10 2.5 0.1432 0.1197 0.1595 9.15 7.21 11.97 2.73 2.52 3.01
0.13 10 3 0.1457 0.1308 0.1682 8.89 6.64 11.08 3.23 3.00 3.54
0.13 10 3.5 0.1497 0.1320 0.1728 8.54 6.62 10.61 3.60 3.26 3.97
0.13 15 1.5 0.1180 0.0778 0.1677 15.08 10.41 22.63 1.60 1.46 1.80
0.13 15 2 0.1277 0.1044 0.1593 14.45 11.56 18.45 2.15 1.96 2.40
0.13 15 2.5 0.1380 0.1124 0.1625 14.34 11.23 17.93 2.72 2.45 3.04
0.13 15 3 0.1432 0.1254 0.1667 13.41 11.03 16.81 3.13 2.87 3.63
0.13 15 3.5 0.1488 0.1281 0.1674 13.00 10.35 16.30 3.56 3.20 3.98
0.13 20 1.5 0.1203 0.0862 0.1765 19.72 13.93 26.77 1.61 1.48 1.83
0.13 20 2 0.1325 0.1093 0.1546 18.54 15.11 23.43 2.21 1.99 2.39
0.13 20 2.5 0.1351 0.1130 0.1601 18.38 14.63 22.97 2.79 2.50 3.00
0.13 20 3 0.1434 0.1256 0.1645 18.43 14.94 22.27 3.24 2.94 3.60
0.13 20 3.5 0.1488 0.1320 0.1637 16.81 13.99 20.18 3.64 3.34 4.11

Table S5: Estimated values for the cases in Table S4, for each unique set of
parameter values. The first three columns are simulated values. The following
columns show estimated π, de novo mean relative risk (dn RR) and case-contorl
(cc) RR; for each parameter, shown are median (Q50) and 5th and 95th %-iles
(Q5 and Q95) estimates over 100 simulation replicates.
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β̄DN β̄CC e.π e.β̄DN e.β̄CC e.βDN e.βCC FDR0.01 FDR0.05 FDR0.1 FDR0.25 FDR0.5

0.01 0.11 0.0008985 12.16 2.37 0.82 1.38 0 0 0 0 0
0.01 0.14 0.0013925 7.76 2.02 0.84 2.08 0 0 0 0 0
0.01 0.2 0.0011444 7.38 1.66 0.86 3.2 0 0 0 0 0
0.01 0.33 0.0014319 10.32 1.46 0.83 5.06 0 0 0 0 0
0.01 1 0.0010192 6.12 1.26 0.87 24.04 0 0 0 0 0
0.02 0.11 0.0012389 5.7 1.72 0.88 2.07 0 0 0 0 0
0.02 0.14 0.00339 6.25 1.6 0.88 5.1 0 0 0 0 0
0.02 0.2 0.0036757 12.62 1.53 0.83 4.77 0 0 0 0 0
0.02 0.33 0.0040126 3.34 1.32 1.14 15.47 0 0 0 0 0
0.02 1 0.0057346 5.27 1.15 0.92 51.7 0 0 0 0 0
0.03 0.11 0.0012311 7.23 1.63 0.87 2.43 0 0 0 0 0
0.03 0.14 0.0009967 6.37 1.61 0.87 3.88 0 0 0 0 0
0.03 0.2 0.0022818 5.16 1.55 0.92 5.4 0 0 0 0 0
0.03 0.33 0.0110319 4.16 1.35 1.02 16.06 0 0 0 0 2
0.03 1 0.004111 3.75 1.19 1.03 42.34 0 0 0 0 0
0.05 0.11 0.0018204 5.78 1.38 0.9 5.92 0 0 0 0 0
0.05 0.14 0.0015779 7.84 2.04 0.86 2.14 0 0 0 0 0
0.05 0.2 0.0034645 4.75 1.34 0.94 9.15 0 0 0 0 0
0.05 0.33 0.0123621 1.75 1.24 2.27 24.09 0 0 0 0 0
0.05 1 0.0035687 3.63 1.18 1.03 47.33 0 0 0 0 0

Table S6: Estimated values in the case π = 0 and γ̄ = 1. The first two columns
are β̄ values (prior information of γ̄: γ̄ ∼ Gamma(1, β̄)). The third to the
seventh columns are genetic parameters estimated from extTADA. Next columns
are the number of risk genes estimated with the corresponding FDR values in
the header.

Disease Mutation Count Sample size Mutation count per sample size
SCZ silentFCPk 50 1077 0.05

MiD 105 1077 0.1
LoF 116 1077 0.11

ASD MiD 618 5122 0.12
LoF 638 5122 0.12

ID MiD 223 1022 0.22
LoF 225 1022 0.23

EPI MiD 69 356 0.19
LoF 52 356 0.15

DD MiD 1041 4293 0.24
LoF 1066 4293 0.25

Table S7: de novo mutation counts of categories and their mutation counts per
sample size for schizophrenia (SCZ), autism spectrum disorder (ASD), epilepsy
(EPI), intellectual disorder (ID) and developmental disorder (DD).
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Parameters Estimated mode lCI uCI
SCZ pi silentFCPkdn 0.0056 0 0.1977
SCZ hyperGammaMean silentFCPkdn 1.5802 1.001 21.5139
SCZ pi MiDdn 0.012 0 0.2368
SCZ hyperGammaMean MiDdn 1.7486 1 17.8548
SCZ pi LoFdn 0.0548 0.0124 0.2062
SCZ hyperGammaMean LoFdn 11.1857 3.3973 31.3602
SCZ pi MiD+LoFcc 0.069 0.0296 0.1359
SCZ hyperGammaMean MiD+LoFcc 2.0176 1.2133 5.3694
SCZ hyperGammaMean MiD+LoFcc 3.2288 1.2372 17.1478
SCZ hyperGammaMean MiD+LoFcc 1.0691 1.0002 2.9574

Table S8: Genetic parameters for SCZ data if single class is used in the analysis.

Table S9: extTADA results of SCZ risk gene identification (See LongSupTa-
bles.xlsx Download).

Table S10: extTADA risk gene identification results of ID data (See LongSupT-
ables.xlsx Download).

Table S11: extTADA risk gene identification results of DD data (See LongSupT-
ables.xlsx Download).

Table S12: extTADA risk gene identification results of ASD data (See Long-
SupTables.xlsx Download).

Table S13: extTADA risk gene identification results of EPI data (See Long-
SupTables.xlsx Download).
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Parameters Estimated mode lCI uCI
SCZ pi0 9.37 5.47 15.12
SCZ meanRR silentFCPkdenovo 1.3068 1.0005 2.7489
SCZ meanRR MiDdenovo 2.2246 1.0006 5.3491
SCZ meanRR LoFdenovo 15.1491 5.8606 27.3941
SCZ meanRR MiD+LoFccPop1 1.8677 1.0374 3.0736
SCZ meanRR MiD+LoFccPop2 2.2632 1.003 4.9168
SCZ meanRR MiD+LoFccPop3 1.0372 1.0002 1.1807
ASD pi 9.47 7.61 12.27
ASD meanRR MiDdenovo 5.09 2.47 10.51
ASD meanRR LoFdenovo 20.23 12.21 32.31
ASD meanRR LoFcc 2.48 1.48 5.95
ID pi 3.53 2.63 4.56
ID meanRR MiDdenovo 35.29 21.46 51.62
ID meanRR LoFdenovo 105.44 74.58 143.02
DD pi 1.91 1.57 2.37
DD meanRR MiDdenovo 22.72 13.91 34.36
DD meanRR LoFdenovo 99.94 75.39 127.18
EPI pi 1.67 0.96 3.1
EPI meanRR MiDdenovo 71.77 37.15 125.14
EPI meanRR LoFdenovo 94.98 51.73 176.16

Table S14: SCZ and NDD genetic parameters after adjusting mutation rates.

Parameter Mode lCI uCI
pi0 0.0821 0.0487 0.1398
hyperGammaMeanDN[1] 1.2199 1.0001 2.2
hyperGammaMeanDN[2] 1.4407 1.0043 2.9893
hyperGammaMeanDN[3] 11.9591 4.1894 23.9414
hyperGammaMeanCC 1.9498 1.0845 3.2072

Table S15: Estimated genetic parameters for SCZ data with the same mean
RRs for case-control data.

Parameters Estimated mode lCI uCI
SCZ pi 0.0732 0.0306 0.1506
SCZ meanRR silentFCPkdenovo 1.2353 1.0021 3.6086
SCZ meanRR MiDdenovo 1.4459 1.0008 4.7004
SCZ meanRR LoFdenovo 12.0403 4.6136 25.8786
SCZ meanRR MiD+LoFccPop1 1.5856 1.1255 4.0881
SCZ meanRR MiD+LoFccPop2 1.7361 1.0438 4.8856
SCZ meanRR MiD+LoFccPop3 1.0698 1.0001 2.9991

Table S16: SCZ genetic parameters using all variants in and not in ExAC
database (InExAC + NoExAC).
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Table S17: extTADA results of SCZ risk gene identification after adjusting
mutation rates (See LongSupTables.xlsx Download ).
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Gene set GN0 GN0 P value FDR
pLI09 3488 3241 1.00e-05 8.45e-03
rbfox2 3068 2895 1.33e-05 8.45e-03
GGGAGGRR V$ MAZ Q6 2274 2114 3.50e-05 1.33e-02
ACAGGGT,MIR-10A,MIR-10B 123 116 3.00e-05 1.33e-02
chd8.human brain 2798 2601 5.00e-05 1.58e-02
rbfox13 3445 3230 1.70e-04 4.62e-02
FMRP targets 839 792 2.10e-04 4.99e-02

Table S18: Enrichment of gene sets from different databases with SCZ genes
from extTADA results. These p values were obtained by 10,000,000 simulations,
and then adjusted by using the method of Benjamini and Hochberg (1995).
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Table S19: The p values of enrichment tests for known gene sets in SCZ, DD,
ID, ASD and EPI (See LongSupTables.xlsx Download).

Table S20: The p values of enrichment tests for all gene sets in SCZ, DD, ID,
ASD and EPI (See LongSupTables.xlsx Download).

Table S21: Community memberships of the GeNets InWeb PPI 288 NDD genes
network.

Table S22: Enrichment results of GeNets. These are enrichment results of 6
communities obtained from GeNets.
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