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CLN025

CLN025 (PDB ID: 5AWL) is a 10-residue protein designed by Honda et al. 1 based on

the structure of chignolin.2 CLN025 has the sequence sequence TYR-TYR-ASP-PRO-GLU-

THR-GLY-THR-TRP-TYR.

PREPARATION OF FOLDING@HOME SIMULATION DATA

1 from __future__ import print_function

2 from simtk.openmm import app

3 import simtk.openmm as mm

4 from simtk import unit

5 from sys import stdout

6 import os

7 import argparse

8

9 parser = argparse.ArgumentParser(description="equilibrate

10 denatured protein via input ff")

11 parser.add_argument("--pdb", type=str , help="pdb")

12 parser.add_argument("--pff", type=str , help="protein ff")

13 parser.add_argument("--wff", type=str , help="water ff")

14 args = parser.parse_args ()

15

16 # read in system pdb

17 ref = args.pdb

18 pdb = app.PDBFile(ref)

19 topology = pdb.getTopology ()

20 positions = pdb.getPositions ()

21 # set force field

22 pff = args.pff

23 wff = args.wff

24

25 ff = app.ForceField(pff , wff)

26 platform = mm.Platform.getPlatformByName("CUDA")

27 properties = {"CudaPrecision": "mixed"}

28 integrator = mm.LangevinIntegrator(t_eq*unit.kelvin ,

29 1.0/ unit.picoseconds , 2.0* unit.femtoseconds)

30 integrator.setConstraintTolerance (0.00001)

31 system = ff.createSystem(topology , nonbondedMethod=app.PME ,

32 nonbondedCutoff =1.0* unit.nanometers , constraints=app.HBonds ,

33 rigidWater=True , ewaldErrorTolerance =0.0005 ,

34 vdwCutoff =1.2* unit.nanometer)

35 simulation = app.Simulation(topology , system , integrator ,

36 platform , properties)

37 simulation.context.setPositions(positions)

38

39 # minimize

40 simulation.minimizeEnergy(maxIterations =50)

41 # set temperature

42 t_eq = 340

43 simulation.context.setVelocitiesToTemperature(t_eq*unit.kelvin)

44 # eq for 1 ns

45 simulation.step (500000)

46

47 # randomize velocities , save state

48 intial_conditions = []

49 for i in range (100):

50 simulation.context.setVelocitiesToTemperature(t_eq*unit.kelvin)

51 state = simulation.context.getState(getPositions=True , getVelocities=True ,

52 getForces=True , getEnergy=True , getParameters=True ,

53 enforcePeriodicBox=True)

54 intial_conditions.append(state)
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MODEL SELECTION

For the baseline model, the CHARMM22* dataset was featurized into the sines and cosines of

the α dihedral angles (i.e. the dihedrals along the α-carbon backbone) and transformed using

the tICA algorithm3,4 with a lag time of 128 ns and the kinetic mapping5 weighting scheme.

All 14 components of the tICA solution were retained and clustered into 704 microstates

using mini-batch k-means. A Markov state model (MSM) was constructed on the entire

dataset with a MSM lag time of 50 ns based on the lag time reported by Beauchamp et al. 6

for the same dataset. The tICA lag time, whether or not to use kinetic mapping, and the

number of clusters were optimized by randomly searching relevant parameter spaces and

then evaluating the average GMRQ7,8 for the top two dynamical timescales of the resulting

MSM over five iterations of shuffle-split cross-validation with 50% of the data used for the

validation set. All tICs were included based on previous analysis showing that retaining all

tICs when using kinetic mapping does not decrease the GMRQ (Husic et al. 9 , supplementary

materials). These optimizations were performed for the simulation strided at 2 ns. The

search space is given in Table S1.

TABLE S1. Search space for CHARMM22* model parameters.

Parameter Min Max Scale

tICA lag time (ns) 20 500 Log

Number of microstates 10 1000 Uniform
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MODEL PROJECTION

The resulting baseline MSM was fit on the CHARMM22* dataset (strided at 1 ns). For all

other datasets, the baseline model was used to predict the location of each frame along the

tICs defined by the baseline model and then the microstate assignment of that frame based

on its tICA coordinates. Each projected MSM was built from these predicted assignments.

By using projected MSMs, the tICs and microstates are the same for all models. For each

model, 100 bootstrapped Markov state models were created to determine model statistics.

MSM lag time can be validated for all models by observing that the implied timescales

have leveled off at a lag time of 50 ns, indicating that at a lag time of 50 ns the model is

Markovian (Fig. S1). Note that when the plots overlap the identity function this signifies

that the longest dynamical process is shorter than the selected lag time.
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FIG. S1. Implied timescales for three protein and water force field combinations.

4



MODEL VALIDATION

To evaluate the self-consistency of a model it is standard to assess whether it adheres to the

Chapman-Kolmogorov property.10–12 This test is an evaluation of whether [T̂ (τ)]k ≈ T̂ (kτ),

i.e. whether the transition probabilities determined from raw trajectory data approximately

match the corresponding probabilities produced from the model. To perform the Chapman-

Kolmogorov test for our models we chose two macrostates and then evaluated the probabil-

ities of finding the system in each macrotate at time kτ as predicted by (1) a model created

at lag time τ and (2) an independent model created with lag time kτ . Figures S2-4 show the

Chapman-Kolmogorov test for three models. 95% confidence intervals were estimated by

constructing Bayesian MSMs.13 This analysis was performed using the PyEMMA software

package.14
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FIG. S2. Chapman-Kolmorgorov test for the CHARMM22*-m3p model.
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FIG. S3. Chapman-Kolmorgorov test for the ILDN-3p model.
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ALTERNATIVE BASELINE MODELS

The baseline MSM used in this study was fit on the CHARMM22* dataset as described

above. The qualitative conclusions are independent of the basis chosen. In Fig. S5, we

show the 1-dimensional free energy plot from Fig. 1 in the main text using the AMBER

ff99SB-ILDN and AMBER-FB15 bases (left and right, respectively). The tICA lag time

was 20 ns and the MSM lag time was 50 ns. 200 models were made with these parameters

to optimize the number of microstates based on 10 iterations of shuffle-split cross-validation

for each model. 663 microstates were used for the AMBER ff99SB-ILDN model and 157

microstates were used for the AMBER-FB15 model based on these results. The same shapes

and relative basin depths are observed when using either AMBER basis set when compared

to the CHARMM22* basis set analyzed in the main text. We expect that this correspondence

is related to the choice of α dihedral angles as the features, since the backbone dynamics

are expected to be the same across force fields.
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FIG. S5. 1-dimensional free energy landscapes for CLN025 folding when using AMBER ff99SB-

ILDN (left) or AMBER-FB15 (right) for the baseline model. Each model is zeroed to the energetic

minimum of the baseline model, so the heights are offset when comparing the baseline model free

energy landscapes.
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MEAN FIRST PASSAGE TIME ANALYSIS

The mean first passage time (MFPT) analysis was performed using the projected models

described above. MFPTs can be compared across models because the states are the same

but the populations and pairwise transition probabilities differ. To calculate the MFPT to a

macrostate, the microstates characterizing that macrostate must be selected. To determine

the folded state, all microstate free energies were offset by the minimum free energy in

the (baseline) CHARMM22* model. After this offset, the minimum free energy in the

CHARMM22* model is 0. Next, the 267 microstates with free energies of 1 kcal/mol or

smaller in the CHARMM22* model were selected as the folded state. These microstates

were used to define the folded state for all models, and the MFPT to the folded state for

each model was calculated using these 267 states as sinks.

MFPT analysis was also performed to the metastable unfolded state corresponding to free

energy basins in the 1D reaction coordinate in the main text. The unfolded state was initially

characterized unfolded state free energy basin in the (projected) AMBER-FB15 model. The

59 microstates with free energies lower than 1 kcal/mol (after zeroing with the CHARMM22*

model) were selected as the unfolded state. These microstates were also chosen to comprise

the AMBER ff99SB-ILDN unfolded state since they overlap the smaller free energy basin

present in the AMBER ffSB-ILDN model. For the CHARMM22* model, the maximum free

energy of the AMBER ff99SB-ILDN microstates composing the unfolded state was used as

a cutoff to characterize the CHARMM22* unfolded state. All 123 microstates with free

energies lower than the cutoff established by the AMBER ff99SB-ILDN unfolded basin were

used to define the CHARMM22* unfolded state. We note that MFPT results and trends are

robust to other sensible definitions of the folded and unfolded states, and that this strategy

was motivated by choosing the most similar folded and unfolded states possible given the

projected MSM framework. The microstates selected for the folded and unfolded microstates

are depicted in Fig. S6.

8



2 1 0 1 2 3

0.2

0.1

0.0

0.1

0.2

R
e
a
ct

io
n
 c

o
o
rd

in
a
te

 2
CHARMM22*

2 1 0 1 2 3

0.2

0.1

0.0

0.1

0.2

AMBER ff99SB-ILDN

2 1 0 1 2 3

0.2

0.1

0.0

0.1

0.2

AMBER-FB15

2 1 0 1 2 3

Reaction coordinate 1

0.2

0.1

0.0

0.1

0.2

R
e
a
ct

io
n
 c

o
o
rd

in
a
te

 2

2 1 0 1 2 3

Reaction coordinate 1

0.2

0.1

0.0

0.1

0.2

2 1 0 1 2 3

Reaction coordinate 1

0.2

0.1

0.0

0.1

0.2

1

0

1

2

3

4

5

6

7

8

Fr
e
e
 e

n
e
rg

y
 (

kc
a
l/
m

o
l)

FIG. S6. Top: Free energy surfaces for each protein force field from the baseline (CHARMM22*)

and projected (AMBER datasets) models. Bottom: The same free energy surfaces with all mi-

crostates shown. The cyan microstates indicate the folded state and are the same in all three

datasets. The gold microstates represent the unfolded state. The unfolded states are the same for

the AMBER datasets.
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STRUCTURAL CHARACTERIZATION OF FOLDED AND DENATURED

ENSEMBLES

Each global (folding) MSM was sampled in order to generate a statistically representative

70 ms trajectory sampled at 50 ns steps. From these trajectories, backbone dihedral angles

for all pairs of adjacent residues were computed. This data was then partitioned into folded

and denatured states. The dihedral distributions for this data are shown below.
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FIG. S7. Distribution of backbone dihedral angles as a function of force field, residue pair, and

ensemble.
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HAND-SELECTED FEATURES FOR DYNAMICAL SUBPROCESSES

Structural characterization of the collapsed state was accomplished by monitoring the

radius of gyration of two terminal residues. Characterization of the turn and beta sheet zip

motifs were analyzed using distances between pairs of hydrogen bonds found in the 5AWL

crystal structure. These features are summarized in Table S2. For the hydrogen bond pairs,

the listed residue number, atom name, and atom numbers correspond to those listed in the

5AWL crystal structure.

TABLE S2. Table of features used to represent dynamical subprocesses in the folding of CLN025.

Hydrophobic collapse Turn formation Beta sheet zip

Rg(TYR1) ASP3 O (28) - GLY7 N (56) TYR1 N (1) - TYR10 OXT (93)

Rg(TYR10) ASP3 OD1 (31) - GLU5 N (40) TYR1 O (4) - TYR10 N(81)

ASP3 OD1 (31) - THR6 N (49) ASP3 N (25) - THR8 O (63)

ASP3 OD2 (32) - GLU5 N (40) a TYR1 N (1) - TYR10 O (84) b

ASP3 OD2 (32) - THR6 N (49) c

a Pair symmetrically equivalent to native bond
b Pair symmetrically equivalent to native bond
c Pair symmetrically equivalent to native bond

We expect that these feature sets are not completely independent and that there exists

some degree of coupling between the collapse and turn processes. Furthermore, only certain

varieties of turn geometries may lead to beta sheet formation15. Note that although the

ASP3 O (28) - GLY7 N (56) bond corresponds to the experimental fast rate (related to

hydrophobic collapse and beta sheet formation), this bond is present in the turn region of the

crystal structure. We do not expect our feature sets to completely isolate each subprocess.

Rather, they are structurally motivated and informed by the native state contacts.
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REPRESENTATIVE TRAJECTORY SELECTION

Representative trajectories selected for mechanism analysis were obtained using transition

path theory (TPT)11,16? . The microstates characterizing the folded state selected for the

MFPT analysis above were used as sinks. For each dataset, the most extended state accord-

ing to the sum of the radii of gyration of all 10 residues was used as the source. Then, using

TPT, the top 4 paths from the extended state to any of the folded states were enumerated for

the CHARMM22* and AMBER ff99SB-ILDN datasets and the top 8 paths were enumerated

for the AMBER-FB15 dataset. Each trajectory dataset was searched for single trajectories

that contained a pathway between the most extended state (for that trajectory) and the sink

identified from the TPT analysis. This analysis found 43 paths for CHARMM22*, 40 paths

for AMBER ff99SB-ILDN, and 13 paths for AMBER-FB15. It is likely that fewer paths

were found for AMBER-FB15 due to population of the most extended state in the projected

MSM. Representative trajectories for Fig. 3 in the main text were chosen to contain a single

folding event and were truncated soon after folding if the single folded microstate specified

was not reached within 10-20 ns of folding (as long as the system remained folded until it

reached the specified folded microstate). The first fifteen paths for CHARMM22* and AM-

BER ffSB-ILDN and all thirteen paths for AMBER-FB15 are shown below (Figs. S8-S10).

The pathways included in the main text are indicated with an asterisk. Multiple asterisks

mean the same path was identified for more than one pair of start and end states.
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FIG. S8. 15 trajectories for CHARMM22* from the top 3 paths.
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FIG. S9. 15 trajectories for AMBER ff99SB-ILDN from the top 2 paths.
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FIG. S10. All 13 trajectories for AMBER-FB15 from the top 8 paths.
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MSMS FOR RELAXATION TIMESCALES

When constructing a MSM each frame of each trajectory in a dataset is “featurized” from its

raw Cartesian coordinates into informative vectors containing such information as dihedral

angles and/or pairwise contact distances. If the modeler wishes to analyze the dynamical

processes of the trajectory it is crucial to use features that optimally encode the degrees of

freedom of the system.9 However, a MSM can also be used to interrogate a specific dynam-

ical process by deliberately choosing features that isolate the relevant degrees of freedom.

The latter methodology was utilized to determine the relaxation timescales corresponding to

turn formation and hydrophobic collapse in the mechanism of CLN025 folding. The MSM

eigenfunctions correspond to the dynamical processes present in the MD dataset, and their

associated timescales indicate the time it takes for the process to decay to the stationary

distribution that characterizes the MSM. The relative ordering of MSM timescales are ex-

pected to correspond to the relative ordering of relaxation timescales reported in the T-jump

experiments performed by Davis et al. 17 .

In order to capture the degrees of freedom related to turn formation, the five distances

between the hydrogen bond contacts of the native state turn region reported in Table S2 and

their associated dihedral angles were measured. In order to isolate the degrees of freedom

that track the hydrophobic collapse of CLN025, the radii of gyration of the two terminal,

hydrophobic tyrosines were used as the only two features. The model specifications were

TABLE S3. Optimized model parameters for process-isolating MSMs.

Protein force field Water model tICA lag time (ns) Number of microstates

Turn formation

CHARMM22* mTIP3P 57.6 30

AMBER ff99SB-ILDN TIP3P 12 923

AMBER-FB15 TIP3P-FB 16.4 53

Hydrophobic collapse

CHARMM22* mTIP3P 3 751

AMBER ff99SB-ILDN TIP3P 14.6 208

AMBER-FB15 TIP3P-FB 1.6 141
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optimized using the average GMRQ over 10 cross-validation iterations using shuffle split

for 500 choices of tICA lag time and microstate number pairs. Models were optimized at

200 ps strides, retained all tICA components, used the kinetic mapping weighting scheme,5

were defined at a lag time of 50 ns, and were evaluated on the slowest 5 timescales. The

optimized model parameters are provided in Table S3. The dependence of the model score

on the optimized parameters is shown in Figs. S11 and S12. The optimization search space

is provided in Table S4.
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FIG. S11. The effect of tICA lag time and number of microstates on the turn formation model

GMRQ score. Steps are 200 ps.
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FIG. S12. The effect of tICA lag time and number of microstates on the hydrophobic collapse

model GMRQ score. Steps are 200 ps.

TABLE S4. Search space for relaxation timescale model parameters. The same search space was

used to optimize both turn formation and hydrophobic collapse MSMs.

Parameter Min Max Scale

tICA lag time (ns) 1 100 Uniform

Number of microstates 10 1000 Uniform
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Analysis of implied timescales was performed on these models. The implied timescale

plots in Fig. S13 show the flattening of the timescale curves. A lag time of 50 ns was used

for further analysis based on the lag time reported by Beauchamp et al. 6 . A longer choice

would not be appropriate since the timescales of interest are on the same order of magnitude.

The conclusions in our study are based on the relative duration of the turn and hydrophobic

collapse timescales for each model.
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FIG. S13. Implied timescales for turn formation. The line at 50 ns indicates the lag time at which

the model was optimized and used for analysis. Steps are 200 ps.
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FIG. S14. Implied timescales for hydrophobic collapse. The line at 50 ns indicates the lag time at

which the model was optimized and used for analysis. Steps are 200 ps.
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BOOTSTRAPPED MSM OBJECTS

Bootstrapped MSMs were created using MSMBuilder 3.818. These objects have been

included in the SI require the MSMBuilder software and its dependencies (see http:

//msmbuilder.org). Table S5 contains filenames and information about each MSM. To

load a MSM, the code required is:

1 from msmbuilder.msm import MarkovStateModel

2 from msmbuilder.utils import load

3

4 bmsm = load(’./ bootstrap_msm_baseline_charmm22star.pkl’)

5 msm = bmsm.mle_

where bmsm is the boostrapped MSM object and msm is the model created from the origi-

nal data. The MSM contains such attributes as state populations, transition probabilities,

eigenvalues, and eigenfunctions associated with the MSM. Please see the MSMBuilder docu-

mentation for more information regarding the use of these model objects and their attributes.

TABLE S5. Filename key for bootstrapped MSM objects. All model specifications have been

described in the relevant sections of the SI.

Filename Relevant section

bootstrap msm baseline charmm22star.pkl Thermodynamics and kinetics of folding

Mechanism of beta-hairpin formation

bootstrap msm projection amberfb15.pkl Thermodynamics and kinetics of folding

Mechanism of beta-hairpin formation

bootstrap msm projection amberff99sbildn.pkl Thermodynamics and kinetics of folding

Mechanism of beta-hairpin formation

bootstrap msm hc charmm22star.pkl Rate-determining process

bootstrap msm hc amberff99sbildn.pkl Rate-determining process

bootstrap msm hc amberfb15.pkl Rate-determining process

bootstrap msm turn charmm22star.pkl Rate-determining process

bootstrap msm turn amberff99sbildn.pkl Rate-determining process

bootstrap msm turn amberfb15.pkl Rate-determining process
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5F. Noé and C. Clementi, J. Chem. Theory Comput. 11, 5002 (2015).

6K. A. Beauchamp, R. McGibbon, Y.-S. Lin, and V. S. Pande, Proc. Natl. Acad. Sci. 109,

17807 (2012).
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and F. Noé, J. Chem. Phys. 134, 174105 (2011).
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