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Cα Cβ H Hα

Training X X X
Test X
NMR 52.38 19.21 8.57 4.36
Uncertainty 0.90 1.03 0.45 0.22

ff96 52.12 19.98 8.61 4.62
ff96 MVN 52.32 ± 0.20 19.57 ± 0.23 8.59 ± 0.12 4.55 ± 0.04
ff96 dirichlet 52.29 ± 0.17 19.64 ± 0.20 8.60 ± 0.11 4.56 ± 0.04
ff96 maxent 52.21 ± 0.14 19.76 ± 0.18 8.62 ± 0.11 4.58 ± 0.04

ff99 52.82 17.97 8.32 4.62
ff99 MVN 52.44 ± 0.35 18.67 ± 0.59 8.38 ± 0.23 4.60 ± 0.07
ff99 dirichlet 52.49 ± 0.34 18.71 ± 0.60 8.41 ± 0.19 4.61 ± 0.06
ff99 maxent 52.47 ± 0.25 18.75 ± 0.56 8.43 ± 0.12 4.65 ± 0.06

ff99sbnmr-ildn 52.42 18.34 8.18 4.54
ff99sbnmr-ildn MVN 52.43 ± 0.05 18.34 ± 0.12 8.18 ± 0.03 4.54 ± 0.01
ff99sbnmr-ildn dirichlet 52.42 ± 0.05 18.35 ± 0.12 8.18 ± 0.03 4.54 ± 0.01
ff99sbnmr-ildn maxent 52.43 ± 0.05 18.35 ± 0.12 8.18 ± 0.03 4.54 ± 0.01

charmm27 52.52 18.24 8.25 4.56
charmm27 MVN 52.53 ± 0.22 18.37 ± 0.44 8.24 ± 0.14 4.53 ± 0.05
charmm27 dirichlet 52.52 ± 0.22 18.45 ± 0.46 8.25 ± 0.14 4.54 ± 0.05
charmm27 maxent 52.43 ± 0.19 18.56 ± 0.45 8.25 ± 0.14 4.55 ± 0.05

oplsaa 52.19 19.64 8.59 4.60
oplsaa MVN 52.32 ± 0.15 19.43 ± 0.24 8.59 ± 0.09 4.56 ± 0.03
oplsaa dirichlet 52.28 ± 0.14 19.51 ± 0.19 8.58 ± 0.09 4.57 ± 0.03
oplsaa maxent 52.22 ± 0.14 19.62 ± 0.19 8.57 ± 0.08 4.58 ± 0.03

Table S1: Predicted observables (chemical shifts) for each force field and BELT model. The
row “Uncertainty” refers to the estimated prediction error for the physical models of chemical
shifts. The uncertainties for each BELT prediction refer to the standard deviation of the
MCMC trace of each observable.
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1J(NCα) 3J(HαC′) 3J(HNCβ) 3J(HNC′) 3J(HNHα) 2J(NCα)
Training Set X X X
Test Set X X X
NMR 11.34 1.84 2.39 1.13 5.68 8.45
Uncertainty 0.53 0.44 0.22 0.30 0.36 0.48

ff96 11.32 1.99 1.53 1.49 6.59 8.51
ff96 N 11.20 ± 0.27 1.74 ± 0.17 2.28 ± 0.19 1.23 ± 0.22 5.63 ± 0.55 8.42± 0.21
ff96 D 11.31 ± 0.23 1.74 ± 0.15 2.26 ± 0.19 1.22 ± 0.21 5.67 ± 0.53 8.50 ± 0.15
ff96 M 11.54 ± 0.22 1.74 ± 0.14 2.26± 0.20 1.22 ± 0.20 5.69 ± 0.50 8.61 ± 0.09

ff99 10.37 2.23 0.79 1.78 7.47 6.41
ff99 N 11.52 ± 0.26 1.69 ± 0.19 2.41 ± 0.22 1.13 ± 0.29 5.56 ± 0.71 8.26± 0.32
ff99 D 11.47 ± 0.26 1.70 ± 0.19 2.37 ± 0.22 1.15 ± 0.28 5.59 ± 0.69 8.17 ± 0.35
ff99 M 11.84 ± 0.36 1.70 ± 0.17 2.31 ± 0.23 1.20 ± 0.26 5.61 ± 0.61 8.50 ± 0.40

ff99sbnmr-ildn 11.48 1.84 2.29 0.99 6.07 8.47
ff99sbnmr-ildn N 11.47 ± 0.06 1.83 ± 0.07 2.31 ± 0.10 1.00 ± 0.08 6.02 ± 0.24 8.45 ± 0.07
ff99sbnmr-ildn D 11.49 ± 0.05 1.83 ± 0.07 2.30 ± 0.10 1.00 ± 0.08 6.03 ± 0.25 8.48 ± 0.06
ff99sbnmr-ildn M 11.48 ± 0.06 1.82 ± 0.07 2.31 ± 0.10 1.00 ± 0.08 6.01 ± 0.25 8.47 ± 0.07

charmm27 11.23 2.03 1.79 1.36 6.34 8.10
charmm27 N 11.30 ± 0.20 1.83 ± 0.17 2.32 ± 0.20 1.15 ± 0.24 5.70 ± 0.60 8.24 ± 0.27
charmm27 D 11.34 ± 0.21 1.81 ± 0.18 2.33 ± 0.20 1.14± 0.24 5.69 ± 0.60 8.30 ± 0.28
charmm27 M 11.65 ± 0.24 1.78 ± 0.17 2.32 ± 0.22 1.15 ± 0.24 5.68 ± 0.58 8.57 ± 0.22

oplsaa 11.09 2.16 1.89 0.88 7.03 8.12
oplsaa N 11.11 ± 0.19 2.04 ± 0.23 2.23 ± 0.17 0.92 ± 0.20 6.29 ± 0.50 8.15 ± 0.22
oplsaa D 11.14 ± 0.18 1.99 ± 0.16 2.20 ± 0.17 0.89 ± 0.19 6.40 ± 0.46 8.20 ± 0.20
oplsaa M 11.28 ± 0.23 1.95 ± 0.13 2.22± 0.18 0.84 ± 0.18 6.45± 0.43 8.37 ± 0.24

Table S2: Predicted observables (scalar couplings) for each force field and BELT model. The
row “Uncertainty” refers to the estimated prediction error for the physical models of scalar
couplings. The uncertainties for each BELT prediction refer to the standard deviation of
the MCMC trace of each observable. Note: to save space, we have abbreviated the priors
Normal, Dirichlet, and maximum entropy as N, D, and M, respectively.
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maxent dirichlet MVN

ff96 0.71 0.68 0.67
ff99 0.69 0.63 0.67
ff99sbnmr-ildn 0.68 0.68 0.68
charmm27 0.71 0.62 0.60
oplsaa 0.69 0.64 0.63

maxent dirichlet MVN

ff96 0.07 0.08 0.10
ff99 0.13 0.12 0.11
ff99sbnmr-ildn 0.04 0.04 0.04
charmm27 0.10 0.11 0.11
oplsaa 0.08 0.08 0.08

Table S3: Predicted PPII populations (top) and uncertainties (bottom).
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maxent dirichlet MVN

ff96 0.27 0.26 0.25
ff99 0.24 0.19 0.18
ff99sbnmr-ildn 0.24 0.25 0.24
charmm27 0.23 0.22 0.22
oplsaa 0.22 0.21 0.20

maxent dirichlet MVN

ff96 0.07 0.07 0.06
ff99 0.09 0.07 0.07
ff99sbnmr-ildn 0.04 0.03 0.03
charmm27 0.08 0.07 0.07
oplsaa 0.06 0.06 0.05

Table S4: Predicted β populations (top) and uncertainties (bottom).
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maxent dirichlet MVN

ff96 0.02 0.05 0.08
ff99 0.07 0.19 0.15
ff99sbnmr-ildn 0.07 0.07 0.08
charmm27 0.04 0.13 0.15
oplsaa 0.08 0.12 0.12

maxent dirichlet MVN

ff96 0.04 0.07 0.09
ff99 0.14 0.13 0.12
ff99sbnmr-ildn 0.03 0.02 0.03
charmm27 0.08 0.10 0.10
oplsaa 0.08 0.07 0.07

Table S5: Predicted αr populations (top) and uncertainties (bottom).
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maxent dirichlet MVN

ff96 0.01 0.01 0.01
ff99 0.00 0.00 0.00
ff99sbnmr-ildn 0.00 0.00 0.00
charmm27 0.02 0.02 0.03
oplsaa 0.01 0.02 0.04

maxent dirichlet MVN

ff96 0.01 0.02 0.02
ff99 0.00 0.00 0.00
ff99sbnmr-ildn 0.00 0.00 0.00
charmm27 0.01 0.02 0.02
oplsaa 0.01 0.03 0.05

Table S6: Predicted αl populations (top) and uncertainties (bottom).
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all train test

ff96 2.55 2.91 1.99
ff96 MVN 0.58 0.35 0.93
ff96 dirichlet 0.55 0.35 0.86
ff96 maxent 0.58 0.38 0.88

ff99 10.80 12.94 7.59
ff99 MVN 0.98 0.63 1.51
ff99 dirichlet 0.95 0.63 1.43
ff99 maxent 0.98 0.58 1.58

ff99sbnmr-ildn 0.39 0.31 0.50
ff99sbnmr-ildn MVN 0.43 0.35 0.55
ff99sbnmr-ildn dirichlet 0.44 0.35 0.57
ff99sbnmr-ildn maxent 0.42 0.35 0.54

charmm27 1.44 1.65 1.13
charmm27 MVN 0.74 0.60 0.95
charmm27 dirichlet 0.73 0.58 0.96
charmm27 maxent 0.73 0.53 1.04

oplsaa 2.26 1.10 4.01
oplsaa MVN 0.94 0.48 1.64
oplsaa dirichlet 1.00 0.50 1.76
oplsaa maxent 1.06 0.52 1.87

Table S7: Reduced χ2 for MD simulations and BELT ensembles. The ‘all‘, ‘training‘, and
‘test‘ datasets have 10, 6, and 4 measurements, respectively.
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Figure S1: Ramachandran plots (2D histograms) of MD simulations and BELT models.

13



(a) (b)

(c)

14



(d) (e)

(f)

15



(g) (h)

(i)

16



(j) (k)

(l)

17



(m) (n)

(o)

Figure S2: MCMC traces of first component of α.
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Figure S3: Cross validated reduced χ2. Cross validation was performed using twenty-fold
subsampled trajectory data to make calculations computationally tractable.
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Appendix S1. Connecting BELT, Maximum Entropy,

and Hyperensembles

Bayesian Energy Landscape Tilting generalizes a recent maximum entropy formalism (1) to
include statistical uncertainty. Here, we outline the previous results and detail the connec-
tion between BELT and the previous maximum entropy formalism. We also show how a
hyperensemble formalism of Crooks (2) naturally leads to BELT-like models.

Outline of Maximum Entropy Formalism

The previous work (1) used Jaynes’ maximum entropy arguments (3) to derive a new ap-
proach to constraining simulations. Here we outline those arguments for the case of a single
observable.

The maximum entropy formalism relies on finding the least informative probability dis-
tribution that is compatible with some known constraints. The information entropy is used
as the metric for quantifying the information content of a distribution:

S(p) = −
∫
p(x) log(p(x))dx

The method of Chodera and Pitera uses three constraints on p(x). First, p(x) must be a
well-defined probability distribution: ∫

p(x)dx = 1

Second, p(x) must give the correct average potential energy:∫
U(x)p(x)dx =

3

2
NkBT

Finally, we assume that we have access to an ensemble-average measurement F and a
function f(x) that predicts the observable as a function of atomic coordinates:∫

f(x)p(x)dx = F

This constrained optimization problem is solved via Lagrange multipliers, eventually
leading to the following gradient condition:

∂S

∂p
− λ0

∂g0

∂p
− λ1

∂g1

∂p
− λ2

∂g2

∂p
= 0

Here, the functions g0, g1, and g2 are the following constraint equations:

g0 =

∫
dxp(x)− 1

g1 =

∫
dxU(x)p(x)− 3

2
NKBT
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g2 =

∫
dxf(x)p(x)− F

The solution to this optimization problem is given by

p(x) ∝ exp(−βU(x) + αf(x))

Sampling the potential U(x)+αf(x) provides the least biased ensemble that is consistent
with the measurement F . To determine α, Chodera and Pitera minimize an objective func-
tion Λ, which is related to the α dependent partition function Z(α) and the experimental
measurements Fi:

Λ = logZ(α) + αF

Z(α) =

∫
dx exp(−βU(x) + αf(x))

They also extend their calculation to include multiple measurements, leading to the
following objective function:

Λ = logZ(α) +
∑
i

αiFi

To minimize Λ, we calculate the gradient and set it to zero:

dΛ

dαk
= −〈fk〉α + Fk

The obvious solution, when feasible, is the choice of α such that 〈fi(x)〉α = Fi.
To illustrate this approach, consider the case of a single observable f1(x) (and therefore a

single parameter α1). Suppose the molecule of interest shows a bimodal observable with two
equally populated states. If we let α1 = 0, then the biasing potential is 0 everywhere and
our reweighted ensemble simply returns the results of the MD simulation (Fig. S4b). If we
let α1 = −1, conformations with large values of f1(x) are upweighted, while conformations
with lower values of f1(x) are downweighted (Fig. S4a). Finally, if α1 = 1, the ensemble
shifts in the opposite direction (Fig. S4c).

Connecting BELT and Maximum Entropy

In BELT, we sample the following log posterior distribution:

LP (α) = −
∑
i

1

2σ2
i

(〈fi〉α − Fi)2 + logP (α)

If we instead maximize the posterior probability, the problem becomes equivalent to
setting the derivative of LP to zero. Assuming that the prior distribution is constant, the
derivative is calculated to be the following:
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Figure S4: (a, b, c): Raw (α1 = 0) and reweighted (e.g. tilted) histograms of a one dimen-
sional observable. (d, e, f): The same, but plotted as free energies (e.g. −kT log(p)).

dLP

dαk
= −

∑
i

1

σ2
i

(〈fi〉α − Fi)
d〈fi〉α
dαk

= 0

As before, if we find a value of α such that 〈fi(x)〉α = Fi, we will maximize the posterior
probability. Thus, under ideal conditions, we expect similar results using the maximum
entropy approach and BELT.

Connecting BELT and Hyperensembles

It has been argued (2) that a non-equilibrium ensemble ρ ought to be characterized by the
distance from equilibrium, as measured by the relative entropy. Here we derive the BELT
model using this entropic prior as a starting point. In that work, Crooks defines a probability
distribution on ensembles given by

P (ρ) =
1

Z(λ)
exp(−λD(ρ||ρ0))

In the above expression, D(ρ||ρ0) refers to the KL divergence of ensembles ρ and ρ0,
while λ is a parameter that characterizes the distance from equilibrium. Note that the KL
divergence, D(ρ||ρ0), can be expressed as a sum over the conformational states j = 1, ...,m:
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D(ρ||ρ0) = 〈log(
ρ

ρ0
)〉ρ =

∑
j

ρj log
ρj
ρ0
j

We let ρ0 be a reference Boltzmann ensemble, which in our case will be simulation
performed in a particular force field. Now, let us suppose that we have a single measurement
F that can be calculated via the ensemble average 〈f(x)〉ρ. Suppose that the likelihood of
some measurement is given by

P (F |ρ) ∼ N(〈f〉ρ, σ2)

By Bayes’ Theorem, we have that:

P (ρ|F ) ∝ P (F |ρ)P (ρ)

Letting C be a normalizing constant, we have:

P (ρ|F ) = C exp(− 1

2σ2
(〈f〉 − F )2) exp(−λD(ρ||ρ0))

For convenience, let φ denote the ensemble average, in the ensemble ρ, of the experimental
observable of interest:

φ = 〈f〉ρ =
∑
j

fjρj

Suppose that ρ∗(φ) is the maximum entropy ensemble (in the sense of (1); see “Outline
of Maximum Entropy Formalism”) such that 〈f〉ρ∗ = φ. The set of {ρ∗(φ)} is a small subset
of the set of all ensembles. We now wish to see what happens when we integrate out or
marginalize over the larger class of ensembles.

We now wish to express the arbitrary ensemble ρ as a perturbation from the maximum
entropy ensemble ρ∗(φ). We introduce a perturbation variable ∆j = ρj − ρ∗j and change
variables from {ρj} to (φ, {∆j}), where ∆ is a correction to the maximum entropy ensemble
ρ∗(φ). We express the posterior probability in the new variables φ and ∆:

P (φ,∆|F ) = C|J1(φ,∆)| exp(− 1

2σ2
(〈f〉 − F )2) exp(−λD(φ,∆||ρ0))

In the above expression, J1(φ,∆) is the Jacobian of the coordinate transformation. With
the above assumptions, the probability can be simplified:

P (φ,∆|F ) = C|J1(φ,∆)| exp(− 1

2σ2
(φ− F )2) exp(−λD(φ,∆||ρ0))

For a given value of φ, ρ∗(φ) (e.g. ∆ = 0) maximizes the entropy. This suggests a
quadratic approximation to the entropy:

D(φ,∆||ρ0) = 〈log(
ρ

ρ0
)〉 ≈ D(φ, 0||ρ0) +

1

2
∆TH(φ)∆

Here, Hij(φ) = ∂2D
∂∆j∂∆j

, evaluated at the point of the maximum entropy ensemble (∆ = 0).

Inserting this expression in the probability gives:
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P (φ,∆|F ) = C|J1(φ,∆)| exp(− 1

2σ2
(φ− F )2) exp(−λD(φ, 0||ρ0)− λ

2
∆TH(φ)∆)

From the perspective of BELT, ∆ is a nuisance parameter—we want an ensemble that
is described by a more parsimonious representation. We therefore integrate over ∆ (e.g.
marginalize) to achieve a probability that depends entirely on φ.

P (φ|F ) = C

∫
|J1(φ,∆)| exp(− 1

2σ2
(φ− F )2) exp(−λD(φ, 0||ρ0)− λ

2
∆TH(φ)∆)d∆

P (φ|F ) = C exp(− 1

2σ2
(φ− F )2) exp(−λD(φ, 0||ρ0))

∫
|J1(φ,∆)| exp(−λ1

2
∆TH(φ)∆)d∆

For an analytically tractable calculation, J1(φ,∆) must be independent of ∆, so that we
can remove it from under the integral. To see that this is true, we first explicitly list all free
parameters in the two representations. In the ρ representation, the free parameters are ρ1,
..., ρm−1; ρm can then be calculated as ρm = 1 −

∑m−1
j=1 ρj. In the new representation, the

free parameters are ∆1, ...,∆m−2, φ; the remaining terms can be calculated by noting that∑m
j ∆j = 0 and

∑m
j ∆jfj = 0. The transformation between these coordinate systems is

explicitly given by

∆1 → ρ1 − ρ∗1
...

∆m−2 → ρm−2 − ρ∗m−2

φ→
m−1∑
j=1

ρifi + (1−
m−1∑
j=1

ρj)fn

This transformation is linear in ρj, so the Jacobian is constant. The integral therefore
simplifies as:

P (φ|F ) = C exp(− 1

2σ2
(φ− F )2) exp(−λD(φ, 0||ρ0))|J1|

∫
exp(−λ1

2
∆TH(φ)∆)d∆

The above expression requires integrating subject to the constraints −ρ∗j(φ) ≤ ∆j ≤
1 − ρ∗j(φ). We assume that the likelihood is peaked around ∆ = 0, so that the likelihood
vanishes as we move far from ∆ = 0. We can therefore replace the constrained integral to
one over all space:

P (φ|F ) = C exp(− 1

2σ2
(φ−F )2) exp(−λD(φ, 0||ρ0))|J1|

∫ ∞
−∞

exp(−λ1

2
∆TH(φ)∆)d∆1...d∆m−2
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P (φ|F ) = C exp(− 1

2σ2
(φ− F )2) exp(−λD(φ, 0||ρ0))|J1|

√
(2π)m−2

1

λm−2 det(H(φ))

To connect to BELT, we now change variables from φ to α (the tilting parameter of a
BELT model), which introduces another Jacobian J2(α)

P (α|F ) = C exp(− 1

2σ2
(〈f〉α−F )2) exp(−λD(α, 0||ρ0))|J1||J2(α)|

√
(2π)m−2

1

λm−2 det(H(α))

To gain perspective in the comparison to BELT, we calculate the logarithm and drop all
terms that are independent of α:

logP (α|F ) = − 1

2σ2
(〈f〉α − F )2 − λD(α, 0||ρ0) + log |J2(α)| − 1

2
log detH(α)

Assuming that our conformational samples were drawn from the Boltzmann ensemble ρ0,
the first two terms are identical to BELT with the maxent prior. The remaining terms are
corrections that account for the entropic cost of restricting our ensemble to be described by
α, rather than the entire space of possible ensembles. The advantage of working with α is
the dramatic reduction in the size of the parameter space. In the limit of λ→∞ and σ → 0
(and the approximations made above), the non-BELT terms vanish from the log likelihood.

Another property to note is that the χ2 log likelihood is the only term dependent on F .
This implies that we can collect all the terms independent of F and label them an effective
prior:

logP (α|F ) = − 1

2σ2
(〈f〉α − F )2 + logPeff (α)

Improved priors on α could possibly have the effect of correcting for the approximations
(e.g. σ → 0, λ → ∞) used here in deriving BELT. In practice, however, we found that
deriving corrections to BELT using this approach did not lead to improved performance,
possibly because of the simplifications used in the present derivation.

Appendix S2. Derivation of Reweighting

Here we derive the population estimator used in BELT. As in the main text, we use sub-
scripted angle brackets to indicate ensemble averages in reweighted ensembles: 〈h(x)〉α
is the ensemble average of h(x) in an ensemble that is perturbed by a biasing potential
∆(x;α) =

∑
i αifi(x):

〈h(x)〉α =
1

Z(α)

∫
h(x)dx exp[−U(x)−∆(x)]
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Z(α) denotes the partition function for the α ensemble. To proceed, we first note a simple
Zwanzig identity that allows us to relate samples taken from different ensembles:

〈h(x)〉α =
1

Z(α)

∫
h(x)dx exp[−U(x)−∆(x)] =

Z(0)

Z(α)
〈h(x) exp[−∆(x;α)]〉0

In the above expression, 〈〉0 denotes an unperturbed ensemble (e.g. α = 0) and Z(0) is the
partition function of the unbiased ensemble (α = 0). Now we sample from the unperturbed
ensemble to statistically estimate the expectation

〈h(x) exp[−∆(x;α)]〉0 =
1

m

m∑
j=1

exp[−∆(xj;α)]h(xj)

By letting h(x) = 1, we can estimate the partition function Z(α) up to the constant
factor Z(0):

Z(α)

Z(0)
=

1

m

∑
j

exp[−∆(xj;α)]

Combining these equations, we have

〈h(x)〉α =
∑
j

h(xj)πj(α)

where πj(α) give estimates of the conformation weights at a particular value of α:

πj(α) =
1∑

k exp[−∆(xk;α)]
exp[−∆(xj;α)]

Thus, BELT is essentially exponential averaging applied to a weighted combination of
experiment-derived biasing potentials. However, the present work has introduced two key
advances. First, the use of Markov chain Monte Carlo allows rigorous uncertainty analy-
sis. Second, regularization reduces the high variance previously associated with exponential
averaging.
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Appendix S3. Alternative Error Models

The model presented in the main text assumes independent normal deviations between mea-
surements and the predicted ensemble. This model is a useful approximation that leads to
a straightforward χ2 likelihood. However, in some situations, one might expect correlation
between ensemble measurements. Detecting this correlation would require additional exper-
imental measurements. However, it is possible to modify the χ2 likelihood to account for
correlations between the predicted observables. The net result is a modified log likelihood:

LL(α) =
1

2
zTP−1z

where P is the correlation matrix of the observables: Pij = Cor(fi(x), fj(x)) and z is the
deviation between the α ensemble and the measurement, measured in units of the known
uncertainty σi: zi = 〈fi〉α−Fi

σi
. Using this model will likely lead to increased estimates of

uncertainties.
Other possible error models involve modifying the assumption of normality. A nor-

mal model penalizes models by the squared deviation from the experimental measurements.
However, expert knowledge may sometimes suggest different error models. For example, one
could imagine a model where small deviations are not penalized at all. Such models could
be inserted into the same MCMC framework with little extra effort.
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Appendix S4. Choice of Prior

Maximum Entropy (maxent) Prior

As described in the main text, the maximum entropy prior is given by

logP (α) = −λ
m∑
j

πj(α) log
πj(α)

π0
j

Typically the reference populations are uniform; that is, π0
j = 1

m
. This form of regular-

ization has previously been used in a formalism for modeling SAXS ensembles (4).

Dirichlet Prior

We also consider the Dirichlet prior. Dirichlet priors are commonly used as conjugate priors
to multinomial random variables—that is, when dealing with counts and probabilities of
categorical data. The Dirichlet distribution is nonzero on the unit simplex and has the
following functional form:

f(π; s) =
1

B(s)

∏
j

π
sj−1
j

In the above equation, s is a vector of hyperparameters that are represent prior “pseudo-
counts” on frames, while B(s) is a normalization constant containing a product of gamma
functions:

B(s) =

∏
i Γ(si)

Γ(
∑

i si)

The Dirichlet prior is an obvious choice for BELT, because the object of interest is
the probability distribution on conformations. However, in BELT, we must restrict the
distribution to the subset of probability distributions that can be achieved via reweighting.
Thus, instead of πj, we have πj(α):

f(α; s) =
1

B(s)

∏
j

πj(α)sj−1

For our MCMC calculations, we work with the log probability:

log f(α; s) = − log(B(s)) +
∑
j

(sj − 1) log πj(α)

Note that the constant term is unimportant, as MCMC relies on the difference in log
probabilities:

log f(α; s) ≈
∑
j

(sj − 1) log πj(α)
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In practice, the Dirichlet prior has a large number of hyperparameters—the pseudocounts
si on each conformation. To avoid the need for many hyperparameters, we assume that

sj − 1 = λπ0
j

Thus, we assume that the pseudocounts are proportional to the raw MD simulation
populations, which for constant temperature MD should be a uniform distribution. For
practical implementation in an MCMC sampler, we can drop terms that do not depend on
α, which leads to the following:

log f(π; s) = λ
∑
j

π0
j log πj(α)

Note that this can be rearranged into the following form, which better illuminates the
connection between the maxent and Dirichlet priors:

logP (α) = −λ
∑
j

π0
j log

π0
j

πj(α)

Notice that this functional form is quite similar to the maxent prior that we previously
discussed. The difference between the maxent and Dirichlet priors can be explained in terms
of the relative entropy between two distributions P and Q. The relative entropy is given by

DKL(P ||Q) =
∑
i

Pi log
Pi
Qi

The relative entropy is not a symmetric relationship—that is, DKL(P ||Q) 6= DKL(Q||P ).
The maxent and Dirichlet priors are simply the relative entropy between π(α) and a reference
distribution π0, calculated in either direction. For equilibrium molecular dynamics, the
reference distribution is simply uniform ( 1

m
).

Multivariate Normal (MVN) Prior

In the MVN prior, α ∼ N(µ,Σ). We let µ = 0 to center the MVN around α = 0. This
places the highest prior density on the raw simulation and allows regularization of α. To
pick Σ, we note that the simple choice of Σij = δij leads to a prior that depends on the
units of α; this dependence on the unit system is undesirable. However, if we choose Σij =
λCov(fi(x), fj(x)), the units of αi and fi(x) cancel out in the MVN likelihood, leaving a
result that is unit-invariant. We have also introduced a scaling factor λ to tune the amount
of regularization.

Jeffrey’s Prior

Another choice of prior would be to use the Jeffrey’s prior, which is uninformative and
invariant under reparameterization. We found Jeffrey’s prior to be less desirable, however,
because it does not necessarily place the prior maximum at α = 0—thus, Jeffrey’s prior was
unable to provide regularization.
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Appendix S5. Determining Prior Strength Via Cross-

Validation

Each prior in this work contains a single free parameter, λ, which controls the level of
regularization. At least two different approaches can help select an appropriate value of λ:

1. Cross validation on simulation data (used in main text)

2. Cross validation on experimental data

Cross validation on simulation data

We first discuss cross-validating on the simulation data. The underlying idea is that too
little regularization (λ = 0) leads to models that overfit the available simulation data and
generalize poorly—that is, repeating or extending the MD simulations would lead to a differ-
ent result. At the other extreme, underfit models (λ = ∞) will simply report the unbiased
simulations, leading to poor agreement with experiment. To perform this form of cross-
validation, first separate the simulation data into several independent subsets. Mark one
subset as the “test” set and fit the model on the remaining data (the “training” set). The χ2

score is evaluated on the test data. We then repeat the process, letting the test set be equal
to each of the other subsets. The final χ2 square is averaged over each of these iterations.
The value of λ is chosen to minimize the test set error.

When using MD to generate conformations, one must perform cross-validation using un-
correlated subsets of the data. This precludes the typical standard cross-validation approach
that uses randomly selected subsets of your data—randomly selected folds will be tainted
by correlation between the folds. As a thought experiment, suppose one cross validates
by dividing your trajectory into even and odd frames. Because of time-correlation in the
data, the even and odd subsets will essentially contain the same information—ruining the
cross-validation. To avoid these perilous correlations, we recommend that you split the tra-
jectory into time-contiguous blocks. For the present work, we divided each trajectory into
two halves.

Cross validation on experimental data

Cross validating on experimental data instead sets aside experimental measurements that
can then be used to evaluate model quality. One key difficulty with this approach, however,
is that experimental datasets are often sparse—that is, there are often only few information-
rich measurements. This can lead to difficulties defining meaningful training and test sets.

Cross Validation Results

Here we summarize the values of λ used in this work. These values were determined by
cross-validating on the simulation data.
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λ

prior MVN dirichlet maxent
forcefield
ff96 6.0 7.0 10
ff99 1 1.25 4
ff99sbnmr-ildn 100 100 100
charmm27 4 4 6
oplsaa 12.0 13.0 15

The corresponding cross-validated reduced χ2 scores are given below. These scores were
generated using the training set of experimental measurements, but done in the setting of
cross-validation on the simulation data. Thus, the models were fit to half the trajectory data
and evaluated on the other half. As before, we see similar performance with all priors. Full
sweeps of λ are depicted in Fig. S3. To some extent, we expect similar performance between
the priors. This is because the relative entropy of normal distributions reduces to a weighted
Euclidean distance between the means (5). However, the observables in the present work are
non-normal, so the priors are not expected to give identical results.

For the amber99sbnmr-ildn results, cross validation recommends the use of large amounts
of regularization. This implies two things. First, this forcefield is already in excellent agree-
ment with experiment, so almost no reweighting is desired. This may also indicate limitations
in our estimates of the uncertainties in the chemical shifts and scalar couplings. As a prac-
tical note, when large amounts of regularization are used, the resulting MCMC traces will
contain essentially no variance. It is thus necessary to use Bayesian Bootstrapping to get
meaningful error bars. For cases with less regularization, Bayesian Bootstrapping is less
critical because the MCMC traces account for the majority of the uncertainty.

For ff99 with the maxent prior, we found that calculations with very low amounts of
regularization suffer from occasional numerical instabilities. Essentially, it appears that the
regularization does not sufficiently penalize αi → ±∞.

1
n
χ2 (cross-validated)

prior MVN dirichlet maxent
forcefield
ff96 0.39 0.37 0.39
ff99 0.71 0.70 0.67
ff99sbnmr-ildn 0.35 0.35 0.34
charmm27 0.62 0.59 0.54
oplsaa 0.53 0.57 0.55
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Appendix S6. Bayesian Bootstrapping

The BELT model presented in the main text does not directly model simulation uncertainty.
This effect, however, can be introduced using a resampling technique known as Bayesian
bootstrapping (6). In Bayesian bootstrapping, every data point (e.g. conformation) is
associated with a Dirichlet random variable that models the effect of resampling the given
data points. In effect, each conformation is given a “prior” population that is allowed to
fluctuate around its average value of 1

n
.

One additional complication arises when using molecular dynamics simulations, which
produce a correlated time series. Because of this, it is not sufficient to simply use a Dirichlet
whose dimension is the same as the number of snapshots—such a procedure will significantly
underestimate uncertainties due to correlation between frames. Instead, one must first divide
the trajectory into independent blocks. The Dirichlet random variable is then chosen to
sample the relative weights of each of the independent blocks. Choosing the length of each
block can be done by applying Bayesian bootstrapping to the un-reweighted trajectory.
Given some observable of interest, O, one calculates O(B) for a sequence of block lengths,
choosing the value of B that maximizes the estimated uncertainty of O. The block length
could also be calculated using other blocking methods (7) or by statistical inefficiency analysis
(8).

In practice, applying Bayesian bootstrapping involves repeating several BELT calcula-
tions using different values of “prior” conformational populations that were drawn from a
Dirichlet random variable. The MCMC traces of each run are then pooled.
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Appendix S7. Convergence Analysis

Although more sophisticated convergence tests are available, we evaluated convergence of
MCMC traces by visual analysis. A properly sampled and thinned model will appear similar
to white noise, as observed in Fig. S2. A few interesting features are worth noting. The
charmm27 and ff99 forcefields with MVN prior seem to suffer from increased correlation in
their MCMC traces.

Based on this and our other experience, we offer some suggestions for achieving converged
traces. First, it seems that the maxent and Dirichlet priors are better able to achieve
independent MCMC samples than the MVN prior. Second, poorer force fields (e.g. ff99,
charmm27, and oplsaa) seem more prone to correlated MCMC samples. This is likely because
the sampler is forced to explore “extreme” models—that is, models that lie further from the
raw forcefield. Finally, we find that adding additional measurements—particularly ones that
are correlated to previous measurements—leads to increased correlation within the MCMC
traces. We think these observations should help guide users towards achieving convergence
without excessive computational resources.
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