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Conditional mean and variance

If X is a discrete random variable with values between 0 and 1, its mean conditional on

X 6∈ {0, 1} can be calculated as follows

E [X | X 6∈ {0, 1} ] =
∑

x:x 6∈{0,1}

x · P (X = x | X 6∈ {0, 1} )

=
∑

x:x 6∈{0,1}

x · P (X = x )

P (X 6∈ {0, 1} )

=
1

P (X 6∈ {0, 1} )

∑
x:x 6∈{0,1}

x · P (X = x )

=
1

P (X 6∈ {0, 1} )
(E [X ]− 0 · P (X = 0 )− 1 · P (X = 1 ))

=
E [X ]− P (X = 1 )

P (X 6∈ {0, 1} )
.

Similarly, we obtain

E
[
X2 | X 6∈ {0, 1}

]
=
E [X2 ]− P (X = 1 )

P (X 6∈ {0, 1} )

=
Var (X ) + E [X ]2 − P (X = 1 )

P (X 6∈ {0, 1} )
,

from which

Var (X | X 6∈ {0, 1} ) = E
[
X2 | X 6∈ {0, 1}

]
− E [X | X 6∈ {0, 1} ]2

=
Var (X ) + E [X ]2 − P (X = 1 )

P (X 6∈ {0, 1} )
− E [X | X 6∈ {0, 1} ]2 .

Derivation of mean and variance of Xt

To calculate the mean and variance of Xt under the Wright-Fisher model, we rely on the

laws of total mean and variance, respectively. Recall that Xt = Zt/2N and

Zt+1 | Zt = zt ∼ Bin(2N, g(xt)),

where xt = zt/2N . The evolutionary pressures g(x) verify that 0 ≤ g(x) ≤ 1 for all 0 ≤ x ≤

1. In the following, g is a linear function in the allele frequency, g(x) = (1 − a)x + b. The

2



parameters a and b verify that 0 ≤ b ≤ a < 1 and typically, a << 1. We note that if a = 0,

then b = 0. In the derivations below, we condition implicitly on X0 = x0, population size

2N and evolutionary pressures.

Let us start with the mean and variance of Xt+1 conditional on Xt = xt, given by

E [Xt+1 | Xt = xt ] =
1

2N
E [Zt+1 | Zt = zt ]

=
1

2N
2N g(xt)

= g(xt),

Var (Xt+1 | Xt = xt ) =
1

4N2
Var (Zt+1 | Zt = zt )

=
1

4N2
2N g(xt) (1− g(xt))

=
1

2N
g(xt) (1− g(xt)).

First, using the law of total expectation, we have that

E [Xt ] = E [E [Xt | Xt−1 ] ]

= E [ g(Xt−1) ]

= E [ (1− a)Xt−1 + b ]

= (1− a)E [Xt−1 ] + b

= (1− a)E [E [Xt−1 | Xt−2 ] ] + b

= . . .

= (1− a)t x0 + b

t−1∑
i=0

(1− a)i.

When a = b = 0, the mean becomes

E [Xt ] = x0.

If a 6= 0,

t−1∑
i=0

(1− a)i =
1− (1− a)t

a
,
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and this gives

E [Xt ] =
b

a
+ (1− a)t

(
x0 −

b

a

)
.

We use a similar approach to determine the variance of Xt, this time relying on the law

of total variance

Var (Xt ) = E [ Var (Xt | Xt−1 ) ] + Var (E [Xt | Xt−1 ] )

= E

[
1

2N
g(Xt−1) (1− g(Xt−1))

]
+ Var ( g(Xt−1) )

=
1

2N
E [ g(Xt−1) ]− 1

2N
E
[
g(Xt−1)2

]
+ Var ( g(Xt−1) )

=
1

2N
E [ g(Xt−1) ]− 1

2N
Var ( g(Xt−1) )− 1

2N
E [ g(Xt−1) ]2 + Var ( g(Xt−1) )

=
1

2N
E [ g(Xt−1) ] (1− E [ g(Xt−1) ]) +

(
1− 1

2N

)
Var ( g(Xt−1) )

=
1

2N
E [Xt ] (1− E [Xt ]) +

(
1− 1

2N

)
(1− a)2 Var (Xt−1 ) .

Iterating the above,

Var (Xt ) =
1

2N

t∑
i=1

(1− a)2(t−i)
(

1− 1

2N

)t−i
E [Xi ] (1− E [Xi ]).

Let us observe that, for any c,

1

2N

t∑
i=1

(1− a)c (t−i)
(

1− 1

2N

)t−i
=

1

2N
· 1− (1− a)c t

(
1− 1

2N

)t
1− (1− a)c

(
1− 1

2N

)
=

1− (1− a)c t
(
1− 1

2N

)t
2N − (1− a)c (2N − 1)

.

When a = b = 0 and using c = 0 in the above, the variance becomes

Var (Xt ) = x0(1− x0)

[
1−

(
1− 1

2N

)t]
.

If a 6= 0,

E [Xi ] (1− E [Xi ]) =
b

a

(
1− b

a

)
+

(
1− 2b

a

)
(1− a)i

(
x0 −

b

a

)
− (1− a)2i

(
x0 −

b

a

)2

,

4



and using c = 1 and c = 2, respectively, we obtain the variance

Var (Xt ) =
b

a

(
1− b

a

)
1

2N

t∑
i=1

(1− a)2(t−i)
(

1− 1

2N

)t−i
+

(
1− 2b

a

)(
x0 −

b

a

)
(1− a)t

1

2N

t∑
i=1

(1− a)t−i
(

1− 1

2N

)t−i
−
(
x0 −

b

a

)2

(1− a)2t 1

2N

t∑
i=1

(
1− 1

2N

)t−i
=
b

a

(
1− b

a

)
1− (1− a)2t

(
1− 1

2N

)t
2N − (1− a)2 (2N − 1)

+

(
1− 2b

a

)(
x0 −

b

a

)
(1− a)t

1− (1− a)t
(
1− 1

2N

)t
2N − (1− a) (2N − 1)

−
(
x0 −

b

a

)2

(1− a)2t

(
1−

(
1− 1

2N

)t)
.

See the parameter scaling section for a comparison with the derivations obtained by

Sirén (2012). We note that Sirén (2012) relies on approximations resulting from the infinite

population limit, while the above equations hold for any population size.

The derivations for the mean and variance use the linearity of the evolutionary pressures

through the simplification that

E [ (1− a)Xt + b ] = (1− a)E [Xt ] + b,

Var ( (1− a)Xt + b ) = (1− a)2 Var (Xt ) .

When g(x) is a polynomial of higher order, such as in the case of selection, the derivation

requires higher moments of Xt, leading to an explosion in the moments needed and rendering

the above approach untractable in such situations.

Derivation of loss and fixation probabilities of Xt

To determine P (Xt+1 = 0 ) and P (Xt+1 = 1 ), we use the law of total probability in an

approach similar to the above. Additionally, we rely on the approximation that Xt follows
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a known f ?B beta with spikes distribution to obtain

P (Xt+1 = 0 ) =

∫ 1

0

P (Xt+1 = 0 | Xt = x ) · f ?B(x; t) dx

= P (Xt+1 = 0 | Xt = 0 ) · P (Xt = 0 ) + P (Xt+1 = 0 | Xt = 1 ) · P (Xt = 1 )

+ P (Xt 6∈ {0, 1} ) ·
∫ 1

0

P (Xt+1 = 0 | Xt = x ) · x
α?t−1(1− x)β

?
t−1

B (α?t , β
?
t )

dx

= P (Xt = 0 ) · (1− g(0))2N + P (Xt = 1 ) · (1− g(1))2N

+ P (Xt 6∈ {0, 1} ) ·
∫ 1

0

(1− g(x))2N · x
α?t−1(1− x)β

?
t−1

B (α?t , β
?
t )

dx,

where B (α, β ) is the beta function.

To calculate the above integral for linear evolutionary pressures, we rely on the hyper-

geometric function. Let 2F1(−m, b; c; z) ((Erdélyi et al. 1953), 2.1.3) be the hypergeometric

function for m ∈ N, c, d ∈ R+ and z ∈ R, given by

2F1(−m, c; c+ d; z) =
1

B ( c, d )

∫ 1

0

xc−1(1− x)d−1(1− z x)m dx.

We have that (recall that 0 ≤ b < 1)∫ 1

0

(1− g(x))2N · x
α?t−1(1− x)β

?
t−1

B (α?t , β
?
t )

dx

=
1

B (α?t , β
?
t )

∫ 1

0

((1− b)− (1− a)x)2Nxα
?
t−1(1− x)β

?
t−1 dx

=
(1− b)2N

B (α?t , β
?
t )

∫ 1

0

(
1− 1− a

1− b x
)2N

xα
?
t−1(1− x)β

?
t−1 dx

= (1− b)2N
2F1

(
−2N,α?t ;α

?
t + β?t ;

1− a
1− b

)
,

leading to the full expression for the loss probability

P (Xt+1 = 0 ) = P (Xt = 0 ) · (1− b)2N + P (Xt = 1 ) · (a− b)2N

+ P (Xt 6∈ {0, 1} ) · (1− b)2N · 2F1

(
−2N,α?t ;α

?
t + β?t ;

1− a
1− b

)
.
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Similarly, for b 6= 0 (if b = 0, see below), we obtain the fixation probability

P (Xt+1 = 1 ) = P (Xt = 0 ) · b2N + P (Xt = 1 ) · (1− a+ b)2N

+ P (Xt 6∈ {0, 1} ) · b2N · 2F1

(
−2N,α?t ;α

?
t + β?t ;−

1− a
b

)
.

Approximation for small a and b The hypergeometric function can be cumbersome and

slow to evaluate. Typically the parameters a and b are small and we can use that

1− g(x) = (1− a)(1− x) + a− b ≈ (1− a)(1− x),

g(x) = (1− a)x+ b ≈ (1− a)x,

to more easily reduce the above integrals to∫ 1

0

(1− g(x))2N · x
α?t−1(1− x)β

?
t−1

B (α?t , β
?
t )

dx ≈ (1− a)2N ·
∫ 1

0

xα
?
t−1(1− x)β

?
t +2N−1

B (α?t , β
?
t )

dx

= (1− a)2N · B (α?t , β
?
t + 2N )

B (α?t , β
?
t )

,∫ 1

0

g(x)2N · x
α?t−1(1− x)β

?
t−1

B (α?t , β
?
t )

dx ≈ (1− a)2N · B (α?t + 2N, β?t )

B (α?t , β
?
t )

,

from which

P (Xt+1 = 0 ) ≈ P (Xt = 0 ) · (1− b)2N + P (Xt = 1 ) · (a− b)2N

+ P (Xt 6∈ {0, 1} ) · (1− a)2N · B (α?t , β
?
t + 2N )

B (α?t , β
?
t )

,

P (Xt+1 = 1 ) ≈ P (Xt = 0 ) · b2N + P (Xt = 1 ) · (1− a+ b)2N

+ P (Xt 6∈ {0, 1} ) · (1− a)2N · B (α?t + 2N, β?t )

B (α?t , β
?
t )

.

For the results reported in the main text and below (in numerical accuracy and inference

of divergence times sections), we used the above approximation for small a and b.

Approximation for large N A widely used assumption in the derivations based on the

Wright-Fisher model, such as the diffusion limit, is that the population size N is large, and

a and b are small such that

lim
N→∞

2Na = A, lim
N→∞

2Nb = B.
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Additionally, the time is scaled by the population size, τ = t/2N . We set ∆ = 1/2N .

Because a and b are small, we build on the previous approximation.

Let Γ(c) be the Gamma function and note that, for large N ((Erdélyi et al. 1953), 1.18),

Γ(N + c)

Γ(N + c+ d)
≈
(

1

N

)d(
1− d (c+ 2d− 1)

2N

)
.

We then have

B (α?t , β
?
t + 2N )

B (α?t , β
?
t )

=
Γ(α?t ) Γ(β?t + 2N)

Γ(α?t + β?t + 2N)
· Γ(α?t + β?t )

Γ(α?t ) Γ(β?t )

=
Γ(α?t + β?t )

Γ(β?t )
· Γ(2N + β?t )

Γ(2N + α?t + β?t )

≈ Γ(α?t + β?t )

Γ(β?t )
·
(

1

2N

)α?t
·
(

1− α?t (2α?t + β?t − 1)

4N

)
=

Γ(α?t + β?t )

Γ(β?t )
·∆α?t ·

(
1− 1

2
∆α?t (2α?t + β?t − 1)

)
,

and, similarly,

B (α?t + 2N, β?t )

B (α?t , β
?
t )

≈ Γ(α?t + β?t )

Γ(α?t )
·∆β?t ·

(
1− 1

2
∆ β?t (α?t + 2β?t − 1)

)
.

Using that

lim
N→∞

(1− a)2N = e−A, lim
N→∞

(1− b)2N = e−B,

lim
N→∞

(1− a+ b)2N = e−(A−B), lim
N→∞

(a− b)2N = 0,

we obtain the recursion in scaled time for loss and fixation probabilities to be

P (Xτ+∆ = 0 ) ≈ P (Xτ = 0 ) · e−B

+ P (Xτ 6∈ {0, 1} ) · e−A · Γ(α?τ + β?τ )

Γ(β?τ )
·∆α?τ ·

(
1− 1

2
∆α?τ (2α?τ + β?τ − 1)

)
,

P (Xτ+∆ = 1 ) ≈ P (Xτ = 1 ) · e−(A−B)

+ P (Xτ 6∈ {0, 1} ) · e−A · Γ(α?τ + β?τ )

Γ(α?τ )
·∆β?τ ·

(
1− 1

2
∆ β?τ (α?τ + 2β?τ − 1)

)
.
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Parameter scaling

As noted above, one common assumption is that the population size N is large and a and

b are small. One central result of the diffusion limit is that the allele frequency distribution

is entirely determined by the scaled time τ = t/2N and parameters A = 2Na and B = 2Nb

(Ewens 2004). The same holds for the beta distribution. Using that

(1− a)t ≈ e−Aτ , 2N − (1− a)(2N − 1) ≈ 1 + A,(
1− 1

2N

)t
≈ e−τ , 2N − (1− a)2(2N − 1) ≈ 1 + 2A,

we obtain the mean and variance as a function of the scaled parameters to be

E [Xτ ] =

 x0 if a = b = 0,

B
A

+ e−Aτ
(
x0 − B

A

)
otherwise,

Var (Xτ ) =



x0(1− x0) (1− e−τ ) if a = b = 0,

B
A

(
1− B

A

)
1−e−(2A+1)τ

1+2A

+
(
1− 2B

A

) (
x0 − B

A

)
e−Aτ 1−e−(A+1)τ

1+A

−
(
x0 − B

A

)2
e−2Aτ (1− e−τ )

otherwise.

The above equations are equivalent to the ones by Sirén (2012) (up to some minor typo-

graphical errors, as confirmed by correspondence with the author).

The same property holds for the beta with spikes, as shown in the above derivation

for large N , where the loss and fixation probability are written as functions of the scaled

parameters.

Discretization of beta and beta with spikes

For the presented results, the beta and beta with spikes distributions need to be discretized

in K + 1 bins. We chose bins that, expect for the first and last bin, are centered around k
K

for 1 ≤ k ≤ K − 1, given by[
0,

1

2K

]
,

[
1

2K
,

3

2K

]
, . . . ,

[
2k − 1

2K
,

2k + 1

2K

]
, . . . ,

[
2K − 3

2K
,

2K − 1

2K

]
,

[
2K − 1

2K
, 1

]
,
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Next to the K + 1 probabilities corresponding to each bin, the beta with spikes distribution

contains two extra spike probabilities for 0 and 1.

Numerical accuracy of the beta and beta with spikes models

To investigate how well the beta with spikes approximates the true distribution of allele

frequency (DAF) and, in particular, if it provides a better approximation than the beta

distribution, we compared the two with the DAF calculated directly from the Wright-Fisher.

For this purpose, we discretized the approximated distributions using K = 2N . This leads

to a unique mapping between the true discrete allele frequencies k/2N , 0 ≤ k ≤ 2N and the

bins. As the first and last bins correspond to frequencies 0 and 1, respectively, and the beta

with spikes contains explicit probabilities for these two frequencies, we merged the first and

last two bins to
[
0, 3

4N

]
and

[
4N−3

4N
, 1
]

for calculating the discrete probability for frequencies

1
2N

and 2N−1
2N

, respectively.

We used a population size 2N = 200 and for a range of initial frequencies x0, times t and

parameters a and b, we calculated the Hellinger distance between the true and approximated

distributions. For two discrete distributions P = (p1, . . . , pk) and Q = (q1, . . . , qk), the

Hellinger distance is given by

h(P,Q) =
1√
2

√√√√ k∑
i=1

(
√
pi −
√
qi)

2.

The Hellinger distance lies between 0 and 1, with 0 indicating perfect match between the

two distributions, while the value of 1 is achieved when P assigns probability zero to every

set where Q assigns a positive probability, and vice versa.

The Hellinger distance for the beta and beta with spikes is given in Figure S1 and shows

that the beta with spikes provides a better approximation than the beta, for the whole

considered range of parameter values, initial frequencies and times. It is apparent from the

figure that the beta distribution approximates well the true DAF when this is not close to

the boundaries: either the initial frequency is close to 0.5 and the time is not too large, or

10



0.00 0.15 0.30

A 4Nb 0 10−2 1 4Na

0

2 × 10−2

2

0.00

0.25

0.50

0.75

1.00

t/2N

0.00

0.25

0.50

0.75

1.00

t/2N

0.00

0.25

0.50

0.75

1.00

0.1 0.3 0.5 0.7 0.9
x0

t/2N

0.1 0.3 0.5 0.7 0.9
x0

0.1 0.3 0.5 0.7 0.9
x0

B 4Nb 0 10−2 1 4Na

0

2 × 10−2

2

0.00

0.25

0.50

0.75

1.00

t/2N

0.00

0.25

0.50

0.75

1.00

t/2N

0.00

0.25

0.50

0.75

1.00

0.1 0.3 0.5 0.7 0.9
x0

t/2N

0.1 0.3 0.5 0.7 0.9
x0

0.1 0.3 0.5 0.7 0.9
x0

Figure S1: Numerical accuracy. The heatmaps show the Hellinger distance between the true

DAF and the beta (A) and beta with spikes (B) as a function of x0 and t/2N . Each row and

column corresponds to specific values of the scaled parameters 4Na and 4Nb.
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the parameters a or b are large enough to keep the allele frequency away from 0 and 1. The

beta with spikes has a more consistent behavior, as the corresponding Hellinger distance

does not vary as much as for the beta distribution.

Likelihood calculation on a tree

The probability of observing the data for a given tree is a function of the scaled branch

lengths, denoted here as Θ, and π, the DAF at the root. We are interested in calculating

the likelihood L(D; Θ, π) of the data D = {(zij, nij) | 1 ≤ i ≤ I, 1 ≤ j ≤ J}, for I SNPs

in J populations. The SNPs are assumed to be realizations of independent and identically

distributed random variables (of dimension J). Then the full likelihood of the data can be

written as a product over the independent sites

L(D; Θ, π) =
I∏
i=1

L(Di; Θ, π),

where Di = {(zij, nij) | 1 ≤ j ≤ J} is the observed data for SNP i. We therefore present

below how to calculate the likelihood for one SNP and, for notation simplicity, drop the

index i.

Full data Assuming Hardy-Weinberg equilibrium, the probability of observing z alleles

in a sample of size n, given the population allele frequency x, follows from the binomial

distribution

P ( z | n, x ) =

(
n

z

)
xz (1− x)n−z .

However, the allele frequencies xj, 1 ≤ j ≤ J , are unobserved and the likelihood of the

data is obtained by integrating over the unknown allele frequencies

L(D; Θ, π) =

∫ 1

0

∫ 1

0

. . .

∫ 1

0

f(X1, X2, . . . , XJ | Θ, π)

·
J∏
j=1

P ( zj | nj, Xj ) dX1 dX2 . . . dXJ ,

12



where f(X1, X2, . . . , XJ | Θ, π) is the joint distribution of the Xj’s at the leaves. The joint

distribution is, in turn, an integral over the allele frequencies in the ancestral populations,

represented as internal nodes in the tree. To calculate the likelihood and the joint distribu-

tion, we discretize the allele frequencies in K + 1 bins as detailed above. Let bin number

0 ≤ k ≤ K from before be [lk, uk] (i.e. lk = max{0, 2k−1}/2K and uk = min{2k+1, 1}/2K).

Then, for each branch length t/2N we can calculate the discrete transition probabilities as

P (Xj ∈ [lk, uk] | Xl = k0/K, t/2N ) =

∫ uk

lk

f(x; k0/K, t,N) dx,

where f(x; k0/K, t,N) is the DAF over t generations in a population of size 2N , conditional

on a initial frequency k0/K, 0 ≤ k0 ≤ K. The distribution f is replaced by either fB for the

beta, or f ?B for the beta with spikes. When using the beta with spikes, we use two additional

probabilities for Xj = 0 and Xj = 1. With these transition probabilities at hand, we can

efficiently calculate the joint distribution using a peeling algorithm (Felsenstein 1981).

For the tree depicted in Figure 2, Θ =
(

(t/2N)5�3, (t/2N)5�4, (t/2N)4�1, (t/2N)4�2

)
and

conditional on the allele frequency in the ancestral population (at the root) to be k5/K, we

obtain

L(D; Θ | k5/K) =

(
K∑

k3=0

P (X3 ∈ [lk3 , uk3 ] | X5 = k5/K, (t/2N)5�3 ) P ( z3 | n3, k3 )

)

·
(

K∑
k4=0

P (X4 ∈ [lk4 , uk4 ] | X5 = k5/K, (t/2N)5�4 )

·
(

K∑
k2=0

P (X2 ∈ [lk2 , uk2 ] | X4 = k4/K, (t/2N)4�2 ) P ( z2 | n2, k2 )

)

·
(

K∑
k1=0

P (X1 ∈ [lk1 , uk1 ] | X4 = k4/K, (t/2N)4�1 ) P ( z1 | n1, k1 )

))
,

and the full likelihood is obtained by summing over all possible ancestral frequencies

L(D; Θ, π) =
K∑

k5=0

π(k5/K)L(D; Θ | k5/K).

The sums are slightly different when using beta with spikes, in order to correctly account

for the loss and fixation probabilities.
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Due to the binning, the above calculation provides an approximation which converges to

the true likelihood as K increases.

Polymorphic data The above likelihood calculation assumes that the data contains both

sites that are polymorphic, and sites that are fixed or lost in all populations. However,

SNP data is restricted to polymorphic sites. We can calculate the likelihood of the data

conditional on observing only polymorphic sites as follows

L(D; Θ, π | polymorphism) =
L(D; Θ, π)

P ( polymorphism | Θ, π )
,

P ( polymorphism | Θ, π ) = 1− L(D0; Θ, π)− L(D1; Θ, π),

where D0 and D1 are the data corresponding to the site being lost or fixed, respectively, in

all samples from all populations

D0 = {(0, nj) | 1 ≤ j ≤ J}, D1 = {(nj, nj) | 1 ≤ j ≤ J}.

The DAF at the root Let us assume that the DAF at the root is a beta with spikes

distribution, with the sum of the spikes equal to pmono (i.e. the probability that the allele

has either frequency 0 or 1). Let π denote the beta distribution over (0, 1). In the following,

we show that the likelihood conditional on polymorphic data is independent of pmono.

We note that the probability of observing polymorphic data is zero if the allele frequency

at the root is 0 or 1

L(D; Θ | 0) = L(D; Θ | 1) = 0,

from which

L(D; Θ, π, pmono) = (1− pmono)
K−1∑
k5=1

π(k5/K)L(D; Θ | k5/K),

Similarly, for the unobserved monomorphic data we have that

L(D0; Θ | 0) = L(D1; Θ | 1) = 1, L(D0; Θ | 1) = L(D1; Θ | 0) = 0,

14



from which

L(D0; Θ, π, pmono) + L(D1; Θ, π, pmono)

= pmono + (1− pmono)

(
K−1∑
k5=1

π(k5/K)L(D0; Θ | k5/K) +
K−1∑
k5=1

π(k5/K)L(D1; Θ | k5/K)

)
,

P ( polymorphism | Θ, π, pmono )

= 1− L(D0; Θ, π)− L(D1; Θ, π)

= (1− pmono)

(
1−

K−1∑
k5=1

π(k5/K)L(D0; Θ | k5/K)−
K−1∑
k5=1

π(k5/K)L(D1; Θ | k5/K)

)
.

Using the above, we obtain the likelihood conditional on polymorphism to be

L(D; Θ, π, pmono | polymorphism)

=
L(D; Θ, π, pmono)

P ( polymorphism | Θ, π, pmono )

=

(1− pmono)
K−1∑
k5=1

π(k5/K)L(D; Θ | k5/K)

(1− pmono)

(
1−

K−1∑
k5=1

π(k5/K)L(D0; Θ | k5/K)−
K−1∑
k5=1

π(k5/K)L(D1; Θ | k5/K)

)

=

K−1∑
k5=1

π(k5/K)L(D; Θ | k5/K)

1−
K−1∑
k5=1

π(k5/K)L(D0; Θ | k5/K)−
K−1∑
k5=1

π(k5/K)L(D1; Θ | k5/K)

= L(D; Θ, π | polymorphism).

We note that for all the simulations and inference results reported here and in the main

text, we used only polymorphic data and the above conditional likelihood.

Inference of divergence times: a simulation study

Given a topology, we estimated the scaled branch lengths (under pure drift) and the DAF

at the root by numerically maximizing the likelihood using the L-BFGS-B algorithm (Byrd
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Table S1: Summary of normalized differences.

min 5th per median mean 95th per max

Scenario I

Beta 0.0002 0.0063 0.0537 0.0623 0.1453 0.1702

Beta with spikes 0.0005 0.0027 0.0198 0.0257 0.0629 0.1096

Kim Tree 0.0010 0.0037 0.0761 0.0910 0.2006 0.2254

Scenario II

Beta 0.0026 0.0241 0.1508 0.2947 0.8582 0.8753

Beta with spikes 0.0015 0.0250 0.0922 0.1056 0.2536 0.4073

Kim Tree 0.0015 0.0063 0.1184 0.2134 0.5735 0.6544

The table shows the summary of the distribution of the absolute normalized difference (|1− τest/τ |) between

the inferred (τest) and true (τ) scaled branch lengths, for the two simulation scenarios and beta, beta with

spikes and Kim Tree. For beta and beta with spikes, we used T = 30 and K = 25 and K = 20 for scenarios

I and II, respectively.

et al. 1995) implemented in SciPy (Jones et al. 2001). For this, we treat the DAF at the

root as a nuisance parameter assumed to be a beta distribution and estimated the two shape

parameters.

To estimate the scaled branch lengths, we fixed the number of generations on each branch,

estimated the population size and then reported the resulting scaled time. As presented in

the parameter scaling section, if the population size is large enough, this approach should

provide similar estimates independent of the chosen number of generations per branch.

For the tree depicted in Figure 2 in the main text, we set the total height (number of

generations from the root to the present) to a given T and the generations per branches to

be t5�4 = t4�1 = t4�2 = T/2 and t5�3 = T . We simulated data using two different scenarios

(Table 1 in the main text).

A comparison between beta, beta with spikes and Kim Tree (Gautier and Vitalis 2013)

is reported in the main text (Figure 3). Table S1 contains the summary of the quality of

the estimates for all three methods for both simulation scenarios. Here, we discuss in more
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details the effect of the chosen height T and number of bins K.

Figure S2 (A and B) illustrates the quality of the estimates from beta and beta with

spikes, for different tree heights T and number of bins K. One of the trends that is clear in

the figure is that beta with spikes has a lower variance than beta in the estimated branches

lengths. This is probably a result of the variability between the different simulated data sets

of the number of sites that are close to being fixed or lost. This should have a stronger effect

on the beta than the beta with spikes, as these sites require accurate probabilities close to

the boundaries.

For scenario I, Figure S2 A indicates that using K = 25 bins is enough to obtain a good

approximation for the likelihood, as, for a fixed tree height T , the beta with spikes has similar

performance for K = 25 and larger values of K. The lower K = 10 decreases the quality of

the estimates just slightly for the beta with spikes, but the effect is more noticeable in the

quality of the beta approximation. The different behavior of the beta and beta with spikes

when comparing K = 10 and K = 25 might indicate that the likelihood approximation is

more robust to the number of bins, provided that the boundary probabilities are treated

separately (as in the case of the beta with spikes). For values of K larger than 10, the beta

distribution provides worse and worse estimates with an increased number of bins. This

is most likely due to the more fine grained bins increasing the importance of accurately

modeling the boundary probabilities, rendering worse results from the beta approximation.

We generally observe the same trends for both simulation scenarios (Figure S2 A and

B), with the noticeable differences that: the average performance of beta and beta with

spikes is lower for scenario II than scenario I; and the beta distribution has a surprisingly

good performance for K = 5 bins under scenario II. However, the likelihood of the inferred

branches under the beta distribution with K = 5 is approximately 30,000 units lower than

the one under K = 20, indicating a much lower support for the branches inferred using

K = 5.

The beta approximation provides just as good estimates regardless of the tree height T
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Figure S2: Effect of tree height T and number of bins K. Absolute value of the normalized

difference between the estimated branch length τest and the true τ , given by |1 − τest/τ |, for beta

(circle) and beta with spikes (triangle), for scenarios I (A) and II (B). The plot indicates the mean

over all 50 replicates for all four branch lengths, together with the 5th and 95th percentiles as error

bars. (C) Loss probability as calculated from the Wright-Fisher (black) using 2N = 200, initial

frequency x0 = 0.2 and generation times t up to t/2N = 0.2, and beta with spikes using different

maximum generation times T and corresponding population sizes 2N such that T/2N = 0.2.
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used, while the beta with spikes is more sensitive to the tree height. In this case, different

tree heights would correspond to different scaling and ∆, which is essentially a time step

in a time discretization. The taller the tree, the more iterations are used in the recursion,

allowing for more errors to accumulate from one iteration to the next. On the other hand,

a tree that is too short leads to less accurate branch length inference. Here, a tree height

of T = 30 provided the best inference for both simulation scenarios, which contained trees

with different true heights (Table 1 in main text), indicating that this height might be a

good general choice regardless of the true underlying tree. Figure S2 C shows the effect of

T on the loss probability, illustrating that T = 30 leads to the most accurate approximation

of the loss probability.

For the results reported in Figure 3 and Table S1, we used T = 30, K = 25 and K = 20

for scenarios I and II, respectively. As scenario II was built to generate chimpanzee-like data,

we also used T = 30 and K = 20 for the results on the chimpanzee exome data reported in

Figure 4 and Table 2.

We note here that the likelihoods reported in the main text in Table 2 were numerically

maximized over the root DAF, while the branch lengths were kept constant.
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