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1 Introduction

In this document we outline a first-order hidden Markov model (HMM) to estimate identity by

descent (IBD) between pairs of haploid genotypes from within or across populations. Notation

follows hmmIBD code and that of [2]. Consider a pair of haploid genotypes. At each position

along the genome, the pair is considered to be in one of two hidden states, IBD or not IBD. We

use genetic data to infer the hidden states. More specifically, for t = 1, . . . , T genotyped positions,

we observe whether the allelic types of the genotype calls of the first and second sample (GIt and

GIIt , respectively) are the same (homo if GIt = GIIt) or different (het if GIt 6= GIIt), as illustrated

in Table 1, and use the resulting sequence of observations, O = (O1, . . . , OT ), to infer the hidden

states at the corresponding positions, Q = (q1, . . . , qT ). Since the genotype calls may differ from the

true underlying genotypes (gIt , gIIt), we include an error term, ε. The model makes the following

assumptions.

1. Conditional on the t− 1th state, the tth state is independent of the t− 2th, . . . , 1st states.

2. Conditional on underlying genotypes, genotype calls are independent.

3. Underlying genotypes are dependent given IBD and independent otherwise.

4. The probability of an incorrect genotype call (calling one allelic type as another), ε, is constant,

such that the probability of a correct genotype call, (1 − γtε), decreases with the number of

alternative genotypes at the tth position, γt.

5. The recombination rate ρ is uniform across and between genomes.

6. Perfect knowledge of genotype frequencies, fgI = (fgI1 . . . fgIT ) and fgII = (fgII1 . . . fgIIT ),

given frequencies of the observed genotype calls, fGI
= (fGI1

. . . fGIT
) and fGII

= (fGII1
. . . fGIIT

),

where fGI
and fGII

are either based on the observed data or supplied by the user.

7. The number of generations separating a pair of haploid genotypes, k, is constant across the

genome for a given pair of haploid genotypes, such that all IBD segments in a pair of genomes

have experienced the same opportunity for recombination.

8. No mutations have occurred in IBD segments.
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9. If two samples come from different populations, the prior over the ancestral population given

IBD is uniform.

As mentioned above, the model supports pairwise comparisons of samples from the same or

different populations. If the two samples come from the same population, let fGIt
denote the

frequency of the observed genotype at the tth position of the first sample across a given pairwise

comparison, and fGIIt
that of the second sample. If two samples come from the different populations,

let sample one be from the first population with genotype frequency fp1GIt
, and sample two be from

the second population with genotype frequency fp2GII
.

Hypothetical dataset Model inputs for sid1:sid2

t chrom pos sid1 sid2 . . . sidn O d (bp) γ fGI
fGII

1 1 353274 A A . . . A homo ∞ 1 fA = 0.99 fA = 0.99

2 1 537427 T A . . . T het 184153 1 fT = 0.49 fA = 0.51

3 2 217337 T C . . . G het ∞ 3 fT = 0.12 fC = 0.43

...
...

...
...

...
...

...
...

...
...

...
...

T 14 3124991 NA T . . . C NA 107242 2 NA fC = 0.96

Table 1: An example of a hypothetical dataset of n samples from a single population (sid1 to

sidn) genotyped at t = 1, . . . , T positions, and corresponding model inputs for the first sample

pair sid1:sid2. Columns headings, chrom and pos refer to chromosome and chromosome position,

respectively. Model inputs include the observation sequence O, a vector of distances in base pairs

(bp) (d, where dt = post − post−1 if post−1 < post, otherwise ∞), a vector of alternative genotype

counts (γ, where γt = |sid1t, . . . , sidnt| − 1) and vectors of frequencies of genotype calls, fGI
and

fGII , corresponding to genotype calls of sid1 and sid2 at positions t = 1, . . . , T , respectively.

2 Model specification

The HMM is first-order, discrete, and heterogeneous over t = 1, . . . , T . It is fully specified by the

following.

1. N = 2 hidden states: S1 = 0 (IBD), and S2 = 1 (not IBD).

2. M = 2 observation symbols: V1 = homo (if GIt = GIIt) and V2 = het (if GIt 6= GIIt). This

formulation accommodates observations from within population multiple-genotype samples

in which two unphased genotypes reside up to a multiplicative factor of 2.

3. N initial state probabilities, π = (π1, π2), where πi = P(q1 = Si) for i = 1, 2 and
N∑
i=1

(πi) = 1.

These are initially set to 0.5, then updated to the marginal posterior probabilities of the

hidden states, P(S1 | O,λ) =
1

T

∑T
t=1 P(qt = S1 | O,λ) and P(S2 | O,λ) = 1− P(S1 | O,λ),
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as P(S1 | O,λ) is recalculated upon successive fitting iterations of the model, described below

(Section 3).

4. An N by N matrix of transition probabilities, A(t) = {aij(t)}, where aij(t) = P(qt = Sj |
qt−1 = Si) for i, j = 1, 2 and

∑N
j=1 aij(t) = 1. Transition probabilities are dependent on the

genome position because they vary with the distance in base pairs (bp) of the tth observation

from the t− 1th observation, dt. They also depend upon π1 and π2, the generation number,

k, and the recombination rate, ρ (bp−1), which are fixed over t = 1, . . . , T . This formulation

allows for the transition probabilities to converge to initial probabilities when dt, ρ, or k are

large,

A(t) =

(
1− π2(1− e−kρdt) π2(1− e−kρdt)
π1(1− e−kρdt) 1− π1(1− e−kρdt)

)
. (1)

5. An N by M matrix of observation probabilities, B(t) = {bjk(t)}, where bjk(t) = P(Ot =

Vk|qt = Sj) for j, k = 1, 2,

P(homo | IBD) = b11(t) = (1− γtε)2 ¯fGt + ε2(1− ¯fGt), (2)

P(homo | not IBD) = b21(t) = (1− γtε)2fp1
GIt

fp2
GIIt

+ (1− γtε)ε
(
fp1
GIt

(1− fp2
GIIt

) + fp2
GIIt

(1− fp1
GIt

)
)

+ ε2(1− fp1
GIt

)(1− fp2
GIIt

), (3)

P(het | IBD) = b12(t) = (1− γtε)ε( ¯fGIt
+ ¯fGIIt

) + ε2(1− ¯fGIt
− ¯fGIIt

), (4)

P(het | not IBD) = b22(t) = (1− γtε)2fp1
GIt

fp2
GIIt

+ (1− γtε)ε
(
fp1
GIt

(1− fp2
GIIt

) + fp2
GIIt

(1− fp1
GIt

)
)

+ ε2(1− fp1
GIt

)(1− fp2
GIIt

), (5)

where ¯fGt =
1

2
(fp1GIt

+ fp2GIIt
), ¯fGIt

=
1

2
(fp1GIt

+ fp2GIt
), and ¯fGIIt

=
1

2
(fp1GIIt

+ fp2GIIt
). That is

to say, we assume a uniform prior over the ancestral population given IBD. Note that when

both samples come from the same population (p1 = p2), (2) to (5) can be reduced to (6)

to (9), since ¯fGt = fGIt
and fp2GIIt

= fp1GIt
= fGIt

where Ot = homo, while ¯fGIt
= fGIt

and
¯fGIIt

= fGIIt
, and fp1GIt

= fGIt
and fp2GIIt

= fGIIt
where Ot = het,
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b11(t) = (1− γtε)2fGIt
+ ε2(1− fGIt

), (6)

b21(t) = (1− γtε)2f2
GIt

+ 2(1− γtε)εfGIt
(1− fGIt

) + ε2(1− fGIt
)2, (7)

b12(t) = (1− γtε)ε(fGIt
+ fGIIt

) + ε2(1− fGIt
− fGIIt

), (8)

b22(t) = (1− γtε)2fGIt
fGIIt

+ (1− γtε)ε(fGIt
(1− fGIIt

) + fGIIt
(1− fGIt

))

+ ε2(1− fGIt
)(1− fGIIt

). (9)

The observation probabilities are dependent on the genome position because the alternative

genotype count and frequencies vary over the genome. Note that
∑M
k=1 bik(t) 6= 1 since {bjk}

encompass all possibilities by allowing fGIt
and fGIIt

to represent the observed genotype calls

(see Section 4 for an example derivation of observation probabilities at a triallelic position for

two samples from the same population). This formulation exploits the fact that, regardless of

λt, at any given position t, only two genotypes can be called for a pair of haploid genotypes,

and so given that frequencies must sum to one, only two frequencies, fGIt
and fGIIt

, need to

be defined.

The model framework is summarized in Figure 1. Default values in the code of the parameters

and bounds are as follows. The recombination rate, ρ = 7.4 × 10−7M bp−1, based on [1]. The

number of generations, k, is inferred under the model (see below), but can be capped by the

user. The distances (d = d1, . . . , dT ) are calculated from the data as illustrated in Table 1. We skip

positions < 5bp apart to avoid mutations spanning >1 bp, while positions on different chromosomes

are considered infinitely separated. In the code, the latter is achieved by fitting data for different

chromosomes separately. The genotyping error is specified as ε = 0.001. Frequencies (fGI and fGII)

and alternative alelle counts (γ) are either based on input data or on external information provided

by the user. To accommodate indels, the maximum value of γt is assumed to be 8 but, as with all

other specified values, can be changed within the code. In is important to note that all genotype

calls, including indels, are treated as point mutations under the model.
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Start
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V2
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Figure 1: Summary of the HMM framework. Hidden states (S1 and S2) and observation symbols

(V1 and V2) are shown in grey and blue, respectively. Edges are annotated by their respective

probability measures.

3 Model implementation

Given the model, λ = (π,A,B) (noting that A is conditional on k), a sequence of observations

(O = O1, . . . , OT ), distances (d), frequencies (fGI
and fGII

) , and alternative genotype counts (γ),

we the fit the model as follows.

1. We initialise the model, λ[0], setting k[0] = 1 and π[0] = (0.5, 0.5).

2. Over a given number of fitting iterations, τ = 1, . . . , τmax, which is capped at a user-settable
maximum τmax that defaults to 5, we update λ via parameters k and π using the Baum-Welch
method [2]. Note that the fitting iterations will stop before the cap if the default convergence
criteria are met. Specifically, while τ ≤ τmax or default convergence criteria are not met, and
conditioning on the data, O, throughout,

k
[τ]

= k
[τ−1]

∑T
t

{
P
(
qt = S1, qt+1 = S2 | λ[τ]

)
+ P
(
qt = S2, qt+1 = S1 | λ[τ]

)}
∑T
t

{
P
(
qt = S1 | λ[τ]

)
P
(
qt+1 = S2 | qt = S1,λ[τ−1]

)
+ P
(
qt = S2 | λ[τ]

)
P
(
qt+1 = S1 | qt = S2,λ[τ−1]

)} ,

π
[τ]

=
(
π
[τ]
1 , 1− π[τ]

1

)
where π

[τ]
1 =

T∑
t

P
(
qt = S1 | λ[τ])

.

3. Having fit π and k, we retrieve the most probable sequence of hidden states, argmax P(Q |
O,λ), using the Viterbi algorithm [2].

5



Observations with one or more missing genotype calls are considered missing (NA in Table

1). Missing observations are easily accounted for within the HMM framework by simply omit-

ting the respective observation probability terms in likelihood calculations. In the code, this is

achieved by setting P(Ot = NA|qt = Si) = 1 ∀ i = 1, 2. More specific details regarding implemen-

tation, for example how to compile the code, can be found in the corresponding ReadMe file at

https://github.com/glipsnort/hmmIBD/releases.

4 Example derivation of observation probabilities for within

population samples

Consider a triallelic position where λt = 2. Here we show how to derive the observation probabilities

equations (6) to (9). For brevity, we henceforth drop the subscript t. Let the set of three possible

genotype calls at the tetrallelic position be denoted by {A,B,C}, and the equivalent set of genotypes

be denoted by {a, b, c}. The probability of a genotype call, G ∈ {A,B,C}, given an underlying

genotype, g ∈ {a, b, c}, is given by,

P(G | g) =

a b c A (1− 2ε) ε ε

B ε (1− 2ε) ε

C ε ε (1− 2ε)

, (10)

Now let us consider a pair of genotype calls, (GI, GII) where GI ∈ {A,B,C} and GII ∈ {A,B,C},
and genotypes, (gI, gII) where gI ∈ {a, b, c} and gII ∈ {a, b, c}. The probabilities of the genotype

pairs given the hidden states, q ∈ {S1, S2}, are

P
(
gI, gII | q

)
=

S1 S2



aa fa f2a
bb fb f2b
cc fc f2c
ab 0 fafb

ac 0 fafc

bc 0 fbfc

ba 0 fafb

ca 0 fafc

cb 0 fbfc

, (11)

6



where fg is the frequency of a given genotype, due to assumed dependence between genotypes

given IBD and independence given not IBD. And, since we are assuming conditional independence

between genotype calls given underlying genotypes such that

P
(
GI, GII | q

)
=
∑
gI,gII

P(GI | gI)P(GI | gII)P
(
gI, gII | q

)
,

where
∑
gI,gII

denotes the summation over all possible genotype pairs, the probabilities of all
possible homogeneous and heterogeneous comparisons og genotype calls given the hidden states
are,

P(AA | S1) = (1− 2ε)
2
fa + ε

2
(fb + fc),

= (1− 2ε)
2
fa + ε

2
(1− fa); (12)

P(BB | S1) = (1− 2ε)
2
fb + ε

2
(1− fb); (13)

P(CC | S1) = (1− 2ε)
2
fc + ε

2
(1− fc); (14)

P(AA | S2) = (1− 2ε)
2
f
2
a + 2(1− 2ε)ε(fafb + fafc) + ε

2
(fbfc + f

2
b + f

2
c ),

= (1− 2ε)
2
f
2
a + 2(1− 2ε)ε(fa(1− fa)) + ε

2
(1− fa)2; (15)

P(BB | S2) = (1− 2ε)
2
f
2
b + 2(1− 2ε)ε(fb(1− fb)) + ε

2
(1− fb)2; (16)

P(CC | S2) = (1− 2ε)
2
f
2
c + 2(1− 2ε)ε(fc(1− fc)) + ε

2
(1− fc)2; (17)

P(AB | S1) = (1− 2ε)ε(fa + fb) + ε
2
(fc),

= (1− 2ε)ε(fa + fb) + ε
2
(1− fa − fb); (18)

P(AC | S1) = (1− 2ε)ε(fa + fc) + ε
2
(1− fa − fc); (19)

P(BC | S1) = (1− 2ε)ε(fb + fc) + ε
2
(1− fb − fc); (20)

P(BA | S1) = P(AB | S1); (21)

P(CA | S1) = P(AC | S1); (22)

P(CB | S1) = P(BC | S1) : (23)

P(AB | S2) = 2(1− 2ε)
2
fafb + 2(1− 2ε)ε(fa(fa + fc) + fb(fb + fc)) + 2ε

2
(fafb + fafc + fbfc + f

2
c ),

= 2(1− 2ε)
2
fafb + 2(1− 2ε)ε(fa(1− fb) + fb(1− fa)) + 2ε

2
(1− fa − fb + fafb); (24)

P(AC | S2) = 2(1− 2ε)
2
fafc + 2(1− 2ε)ε(fa(1− fc) + fc(1− fa)) + 2ε

2
(1− fa − fc + fafc); (25)

P(BC | S2) = 2(1− 2ε)
2
fbfc + 2(1− 2ε)ε(fb(1− fc) + fc(1− fb)) + 2ε

2
(1− fb − fc + fbfc); (26)

P(BA | S2) = P(AB | S2); (27)

P(CA | S2) = P(AC | S2); (28)

P(CB | S2) = P(BC | S2); (29)

where summations over (12) to (14) and (18) to (20) = 1, and over (15) to (17) and (24) to (26) = 1.

Using fGI
= fGII

to approximate fgI = fgII , where fGI
= fGII

is the frequency of the genotype call

in a homogeneous comparison, and fGI
and fGII

to approximate fgI and fgII , respectively, where
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fGI and fGII are the frequencies of the genotype calls in the first and second samples, respectively,

in a heterogeneous comparison, equations (12) to (14) can be reduced to equation (6), equations

(15) to (17) to equation (7), equations (18) to (23) to equation (8) and equations (24) to (29) to

equation (9).
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