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SUPPEMENTARY	MATERIAL	

TELS	additional	implementation	details	

To	 achieve	 more	 robust	 results	 and	 provide	 a	 more	 comprehensive	 view	 of	 the	 recognition	

performance,	we	repeat	the	learning	process	for	every	classification	problem	300	times,	and	compute	

the	 average	 classification	 performance	 for	 every	 combination	 of	 top-ranked	 features.	 This	 process	

guarantees	stable	selection	of	combinations	of	features	since	it	is	based	on	the	average	classification	

performance	of	multiple	runs	that	involve	random	splits	of	the	input	data.	In	summary,	we	generate	

the	following	classification	problems:	

1. All-facets	vs.	all-facets	random	controls:	112	cell	types/tissues,	and	for	each	cell	type/tissue	

we	evaluate	346	combination	of	motifs	using	300	random	splits	of	the	data.	

2. Robust	set	vs.	robust	random	controls:	for	this	set	we	evaluate	346	combinations	of	motifs	

using	300	random	splits	of	the	data.	

3. Exclusively	 transcribed	 vs.	 exclusively	 transcribed	 negative	 controls:	 	 96	 cell	 types/tissues,	

and	for	each	cell	type/tissue	we	evaluate	346	combination	of	motifs	using	300	random	splits	

of	the	data.	
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Classification	performance	metrics	

To	assess	the	classification	performance	and	 identify	combinations	of	motifs	that	minimize	

classification	error	we	consider	the	following	performance	metrics:	

(1)	 		

with	

	and		 	

					(2)				 																			

					(3)		 ,		

where	TP,	FP,	FN,	TN,	GM,	PPV,		and	MCC	denote	True	Positives,	False	Positives,	False	Negatives,	True	

Negatives,	 Geometric	 mean	 of	 Sensitivity	 and	 Specificity,	 Positive	 Predictive	 Value,	 and	 Mathews	

Correlation	Coefficient,	respectively.	

Dealing	with	the	class	imbalance	problem		

To	test	the	impact	of	class-imbalance	on	the	classification	performance	we	focus	on	the	‘robust	set’	of	

TrEn.	We	repeat	the	learning	process	using	various	ratios	between	positive	and	negative	samples.	We	

test	 ratios	 1:1,	 1:2,	 1:3	 up	 to	 1:10,	 which	 means	 that	 we	 progressively	 increase	 the	 number	 of	

negatives.	For	every	run	we	measure	the	classification	performance	and	identify	the	most	informative	

sets	of	motifs.	Our	experimentation	shows	that	as	we	increase	the	number	of	negatives,	the	selection	

of	features	appears	quite	consistent	with	small	discrepancies	on	the	selected	sets,	but	we	observe	a	

drop	on	the	classification	performance.	Supplementary	Figure	4	shows	the	levels	of	MCC,	as	the	most	

indicative	performance	metric.	Apparently	for	ratios	1:1	to	1:5	(i.e.,	 lowly	unbalanced	sets)	the	MCC	

levels	have	standard	deviation	of	0.05	MCC,	which	is	 low.	Unfortunately,	the	MCC	levels	drop	much	

GM = Sensitivity*Specificity

Sensitivity = TP
TP + FN

Specificity = TN
TN + FP

PPV = TP
TP + FP

MCC = TP*TN −FP*FN
(TP +FP)*(TP +FN )*(TN +FP)*(TN +FN )
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more	for	the	highly	unbalanced	cases	 (i.e.,	 ratios	1:6	to	1:10).	From	all	 the	above	we	conclude	that	

the	ratio	1:1	gives	us	the	highest	classification	performance.		

However,	we	would	 like	 to	note	 that	 the	objective	of	 this	 study	 is	not	 to	predict	TrEn	 in	a	

genome-wide	scale.	In	contrary,	TELS	addresses	the	problem	of	identifying	motif	signatures	that	allow	

effective	characterization	of	TrEn,	and	to	explore	the	degree	to	which	different	combinations	of	short	

nucleotide	 motifs	 operate	 in	 a	 context-specific	 manner.	 As	 importantly,	 TELS	 is	 neither	 a	 general	

feature	selection	method	for	imbalanced	datasets	nor	a	genome-wide	de	novo	TrEn	predictor.				

In	 fact,	 to	develop	an	effective	de-novo	enhancer	predictor,	 imbalance-learning	techniques	

are	 useful	 (e.g.,	 SMOTE	 or	 ensemble	 learning)	 since	 the	 non-enhancer	 sequences	 outnumber	 real	

enhancers	(as	far	as	we	know).	A	good	practise	to	achieve	high	sensitivity	and	specificity	in	a	genome	

wide	 scale	 is	 to	 learn	 models	 with	 some	 ‘realistic’	 ratio	 between	 enhancers	 and	 non-enhancers.	

However,	this	is	not	the	case	for	the	discrimination	problem	we	present	in	TELS.		

Comparison	of	Gini-index	to	alternative	FS	methods	

We	 compare	 the	 recognition	 performance	 of	 LR	 with	 Gini	 index	 using	 two	 other	 state-of-the-art	

algorithms	 for	FS,	namely	minimum	redundancy	maximum	relevance	criterion	 (mRMR)	and	Fisher’s	

test-based	 FS.	 To	 conduct	 a	 fair	 comparison,	 we	 follow	 the	 same	 protocols	 summarized	 in	

Supplementary	Figure	3.	For	all	competitor	methods	we	repeat	the	feature	ranking	300	times	using	a	

random	subset	of	the	data	samples	equal	to	20%.	From	them,	we	select	the	most	frequent	ranking	as	

the	best.	We	point	here,	that	the	feature	ranking	is	a	completely	independent	process	that	does	not	

involve	any	interaction	with	classifier	or	other	algorithm.	

After	applying	individual	feature	ranking,	we	use	greedy	selection	method	and	estimate	the	

classification	performance	using	 all	 top-N	 ranked	 feature	 subsets	where	N	equals	 1,2,3,…,	 346.	We	

repeat	 the	 learning	 process	 300	 times,	 and	 we	 select	 the	 top-ranked	 subset	 that	 achieves	 the	

maximum	 MCC.	 All	 implementations	 are	 made	 in	 Matlab	 R2014b	 using	 the	 FEAST	 library	 for	 FS.	

Results	obtained	by	mRMR	and	the	Fisher’s	test	with	LR	are	summarized	in	Supplementary	Figures	5	

and	 6	 for	 all	 cell	 type/tissue	 specific	 enhancers	 included	 in	 the	 ‘all-facets’	 dataset.	 FS	 using	 a	

combination	of	LR	with	Gini	index	achieves	higher	recognition	performance	in	almost	all	of	the	tested	



	 4	

cases.	In	particular,	FS	based	on	Gini	index	achieves	an	average	PPV	of	85.94%	and	MCC	of	0.72	across	

all	 studied	 tissues	and	cell-types.	On	 the	other	hand,	FS	by	mRMR	achieves	average	PPV	of	84.05%	

and	MCC	 of	 0.67,	 whereas	 FS	 by	 Fisher’s	 test	 achieves	 average	 PPV	 of	 85.13%	 and	MCC	 of	 0.71,	

respectively.	This	clearly	suggests	that	FS	that	combines	LR	with	Gini	index	under	the	greedy	forward	

selection	is	the	best	choice.	
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SUPPLEMENTARY FIGURES  

 
Supplementary	 Figure	 1:	 Discrimination	 of	 TrEn	 from	 ‘all-facets’	 dataset	 versus	 non-enhancers:	
Classification	performance	indicated	by	GM(%)	and	PPV(%)	using	the	most	informative	combinations	
of	motifs	for	112	cell	types/tissues.		
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Supplementary	 Figure	 2:	 Discrimination	 of	 TrEn	 expressed	 in	 only	 one	 cell-type	 or	 tissue	 from	 all	
other	exclusively	transcribed	TrEn:	Classification	performance	 indicated	by	GM(%)	and	PPV(%)	using	
the	most	informative	combinations	of	motifs	for	96	cell	types/tissues.	
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Supplementary	Figure	3:	Flowchart	of	TELS.	
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Supplementary	Figure	4:	The	effect	of	class	imbalance	between	positive	and	negative	data	on	the	
classification	performance.		
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Supplementary	Figure	5a:	Classification	performance	indicated	by	MCC	using	optimized	sets	of	
nucleotide	markers	selected	by	mRMR	for	all	tissues	and	cell-types	from	FANTOM5	(all-facets	dataset).	
	

	
	
 
Supplementary	Figure	5b:	Classification	performance	indicated	by	PPV	(%)	optimized	sets	of	
nucleotide	markers	selected	by	mRMR	for	all	tissues	and	cell-types	from	FANTOM5	(all-facets	dataset).	
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Supplementary	Figure	6a:	Classification	performance	indicated	by	MCC	optimized	sets	of	nucleotide	
markers	selected	by	Fisher	for	all	tissues	and	cell-types	from	FANTOM5	(all-facets	dataset).	
	

	
	
Supplementary	Figure	6b:	Classification	performance	indicated	by	PPV	(%)	optimized	sets	of	
nucleotide	markers	selected	by	Fisher	for	all	tissues	and	cell-types	from	FANTOM5	(all-facets	dataset).	
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Supplementary	Figure	7:	Discrimination	of	TrEn	from	‘all-facets’	dataset	versus	random	controls:	(a)	
Dendrogram	of	the	hierarchical	cluster	tree	constructed	from	the	motif	set	similarity	matrix;	(b)	
Dendrogram	of	the	hierarchical	cluster	tree	constructed	from	input	sequence	set	similarity	matrix.	
	

	


