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Supplementary Figure 1. Examples of cross-validated promoter models. Examples of promoter models that passed one or both cross-validation tests: 

(A-B) passed both binary and level tests (C-D) passed only the activity level test and (E-F) passed only the binary test. For each promoter, the left panel 

shows the correlation between observed and predicted promoter activities using OLS without cross-validation; the middle panel shows the results of 

the activity level validation test. Namely, the correlation between observed activities and activities that were predicted on left-out samples (LCTO CV 

procedure). In this test, correlation is calculated only over positive samples. The right panel shows the results of the binary test. Note in E and F left 

panel, the sensitivity of R2 (and, equally, of Pearson correlation) to outliers.      
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Supplementary Figure 2. Performance of three alternative regression methods for inferring E-P models. Same as Figure 2A-B, but here analysis was 

applied to Roadmap Epigenomics (A), FANTOM5 (B) and the GRO-seq (C) datasets. Results of the binary (left panel) and activity level (right panel) 

validation tests are shown. OLS performed better on the Roadmap Epigenomics and GRO-seq datasets (in addition to the ENCODE data (Fig. 2A-B)), 

while GLM.NB and ZINB performed better on the FANTOM5 dataset.  
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Supplementary Figure 3. Number of validated promoter models. Number of promoters whose OLS models passed (at q-value<0.1) each of the 

validation tests (right panel) and the distribution of the number of positive samples in each category. (A). Roadmap Epigenomics; (B) FANTOM5 and 

(C) GRO-seq datasets.  
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Supplementary Figure 4. Comparison between the 𝑹𝟐 values with and without cross-validation (CV). (A). Roadmap Epigenomics; (B) FANTOM5 and 

(C) GRO-seq datasets. Each dot is a promoter model. Blue dots denote models with 𝑅2 ≥ 0.5 and 𝑅𝐶𝑉
2 ≥ 0.25. Red dots denote models with and 𝑅2 >

0.5 and 𝑅𝐶𝑉
2 < 0.25. The high rate of red dots (Roadmap (16%), FANTOM5 (20%) and GRO-seq (22%)) indicates that training the models on all samples 

suffer from overfitting. 
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Supplementary Figure 5. Architecture of promoter regulation by enhancers . (A). The proportional contribution of the 10 most proximal enhancers 

(within a distance of ±500kb from the target promoter; for FANTOM5 the distance was ±250kb from the target promoter) to the regression model, in 

each dataset (Roadmap Epigenomics, FANTOM5 and GRO-seq). The X axis indicates the order of the enhancers by their relative distance from the 

promoter, with 1 being the closest. (B) 𝑅2 values of the models that passed one or both CV tests, in each dataset.  

  



A

B

Roadmap FANTOM5 GRO-seq

Fig. S6



Supplementary Figure 6. Architecture of shrunken promoter models . (A) Distribution of the number of enhancers included in the validated, 

optimally-reduced models (i.e. after elastic net shrinkage). (B) Inclusion rate of enhancers in the reduced models as a function of their relative 

distance from the promoter. 
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Supplementary Figure 7. Comparison of the performance of different methods for predicting E-P links using ChIA-PET and eQTL data as external 

validation. As in Fig. 4, but for Roadmap Epigenomics (A), FANTOM5 (B) and GRO-seq (C) datasets.   
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Supplementary Figure 8. Enhancers are frequently linked to genes more distal to the nearest one. The number (A) and proportion (B) of enhancers 

that are linked to nearest/more distal promoter as a function of their distance to the nearest promoter.   
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Supplementary Figure 9. House-keeping genes show simpler pattern of E-P interactions. (A). Ubiquitous vs. cell-type specific expression pattern is 

quantified by Shannon Entropy. In all datasets, housekeeping (HK) genes show significantly higher Shannon Entropy than the rest of genes, reflecting 

their more uniform activity pattern over the examined cell panel. (B). Promoters of HK genes are involved in significantly lower number of E-P 

interactions than other genes (in all cases, p-value << 0.001;  calculated by one-sided Wilcoxon rank-sum test). 
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Supplementary Figure 10. Examples for promoter models that include negatively correlated enhancers. (see legend of Fig. 5). In the heatmap, 

negatively correlated enhancers (indication of a repressor function) are indicated by an arrow.  

 

 

 



Supplementary Tables 

Table S1. Number of promoter models in each regression method 
Method Data Both Activity level 

only 
Binary only None 

OLS (FDR≤0.1) ENCODE 52,658 17,807 15,437 7,007 
GLM.NB(FDR≤0.1) ENCODE 33,286 20,233 17,950 21,440 
ZINB(FDR≤0.1) ENCODE 41,336 19,919 12,672 18,982 
OLS (FDR≤0.2) ENCODE 55,975 17,083 14,036 5,815 
GLM.NB(FDR≤0.2) ENCODE 37,094 19,879 17,549 18,387 
ZINB(FDR≤0.2) ENCODE 44,240 19,742 12,384 16,543 

OLS (FDR≤0.1) Roadmap 12,315 9,526 5,242 5,546 
GLM.NB(FDR≤0.1) Roadmap 6,752 7,493 5,369 13,045 
ZINB(FDR≤0.1) Roadmap 8,728 7,646 4,550 11,705 
OLS (FDR≤0.2) Roadmap 13,124 9,530 5,053 4,922 
GLM.NB(FDR≤0.2) Roadmap 7,570 7,929 5,428 11,702 
ZINB(FDR≤0.2) Roadmap 9,520 8,064 4,566 10,479 

OLS (FDR≤0.1) FANTOM5 9,943 5,081 11,043 30,223 
GLM.NB(FDR≤0.1) FANTOM5 14,197 3,221 13,758 25,114 
ZINB(FDR≤0.1) FANTOM5 13,640 3,377 13,461 25,812 
OLS (FDR≤0.2) FANTOM5 11,072 5,127 11,503 28,588 
GLM.NB(FDR≤0.2) FANTOM5 15,396 3,210 13,530 24,154 
ZINB(FDR≤0.2) FANTOM5 14,719 3,308 13,429 24,834 

OLS (FDR≤0.1) GRO-seq 3,507 236 2,580 2,037 
GLM.NB(FDR≤0.1) GRO-seq 606 377 2,659 4,718 
ZINB(FDR≤0.1) GRO-seq 1,334 657 2,844 3,525 
OLS (FDR≤0.2) GRO-seq 3,745 249 2,509 1,857 
GLM.NB(FDR≤0.2) GRO-seq 798 453 2,830 4,279 
ZINB(FDR≤0.2) GRO-seq 1,566 681 2,907 3,206 
Each promoter model contained 10 enhancers as features. The number of E-P links is 𝒚 ∙
𝟏𝟎 links where 𝒚 is the number of promoter models in each category 

 

 

 

 

 

 

 

 

 



Table S2. Number of statistically validated promoter models and E-P links 
predicted by FOCS on four genomic resources 
Data type #promoter 

models 
#E-P links #Unique 

enhancers 
% intronic E-P 
links * 

# known 
genes** 

ENCODE - 
DHS 

70,465 167,988 92,603 74 12,256 

Roadmap - 
DHS 

21,841 69,619 49,327 67 10,668 

FANTOM5 - 
eRNA  

15,024 41,836 18,656 55 8,666 

GRO-seq - 
eRNA  

6,323 22,607 20,650 79 6,323 

(*) E-P links whose E is located within an intron of a gene (not necessarily the target 
gene) 

(**) Number of Entrez genes associated with promoters 

 

Table S3. Summary of inferred E-P links 

Method type Data # promoter models #Links to enhancers #Unique enhancers 

Pair-wise ENCODE 92,080 2,396,287 326,184 

Pair-wise-𝒓 = 𝟎. 𝟕 ENCODE 39,372 139,170 53,950 

OLS-LASSO1 ENCODE 39,368 122,064 74,104 

OLS-enet1 ENCODE 39,407 150,158 85,926 

FOCS* ENCODE 70,465 167,988 92,603 
Pair-wise Roadmap 32,000 1,023,409 106,231 

Pair-wise-𝒓 = 𝟎. 𝟕 Roadmap 8,606 33,598 24,657 

OLS-LASSO2 Roadmap 6,783 27,414 21,062 

OLS-enet2 Roadmap 6,788 31,923 24,167 

FOCS* Roadmap 21,841 69,619 49,327 
Pair-wise FANTOM5 42,234 228,908 45,936 

Pair-wise-𝒓 = 𝟎. 𝟕 FANTOM5 2,224 4,681 2,449 

OLS-LASSO3 FANTOM5 1,680 3,970 2,219 

OLS-enet3 FANTOM5 1,684 5,239 2,771 

FOCS* FANTOM5 15,024 41,836 18,656 
Pair-wise GRO-seq 7,825 113,817 81,040 
Pair-wise-𝒓 = 𝟎. 𝟕 GRO-seq 4,347 26,827 24,247 
OLS-LASSO4 GRO-seq 4,570 17,141 16,121 
OLS-enet4 GRO-seq 4,580 21,379 19,796 

FOCS** GRO-seq 6,323 22,607 20,650 
FOCS-randCV GRO-seq 7,004 23,960 21,679 

(1) The number of OLS promoter models (𝑹𝟐 ≥ 𝟎. 𝟓) was 39,892 before model selection 
(2) The number of OLS promoter models (𝑹𝟐 ≥ 𝟎. 𝟓) was 6,807 before model selection 
(3) The number of OLS promoter models (𝑹𝟐 ≥ 𝟎. 𝟓) was 1,951 before model selection 
(4) The number of OLS promoter models (𝑹𝟐 ≥ 𝟎. 𝟓) was 4,851 before model selection 
(*) Selected promoter models passed either both validation tests or the activity level test only 
(**) Selected promoter models passed either binary test and/or the activity level test 

 



Online Methods 

ENCODE DHS data preprocessing 

DHS peak locations of enhancers and promoters were taken from a master list of 2,890,742 unique, non-

overlapping DHS segments [1]: 

ftp://ftp.ebi.ac.uk/pub/databases/ensembl/encode/integration_data_jan2011/byDataType/openchrom

/jan2011/combined_peaks/multi-tissue.master.ntypes.simple.hg19.bed 

We extracted from the master list the set of known (n=68,762) and novel (n=44,853) promoter-DHS peaks 

taken from: 

ftp://ftp.ebi.ac.uk/pub/databases/ensembl/encode/integration_data_jan2011/byDataType/openchrom

/jan2011/promoter_predictions  

The remaining (n=2,777,127) non-promoter-DHS peaks in the master list were considered as putative 

regulatory elements, collectively referred here as enhancer elements. To create enhancer/promoter 

signal matrices, we used the BAM files of 208 UW DNase-seq samples (106 cell types) from GSE29692 GEO 

dataset. The number of reads mapped within each DHS peak was counted using BEDTools utilities [2].  To 

reduce our meta-analysis running time we focused only on promoters/enhancers with signal ≥1RPKM in 

at least 30 samples, resulting in 92,909 promoters and 408,802 putative enhancers. 

We defined for each promoter the set of k=10 candidate enhancers located within a window of 1Mb 

(±500Kb upstream/downstream from the promoter’s center position). We mapped promoters to 

annotated genes using GencodeV10 TSS annotations 

(ftp://genome.crg.es/pub/Encode/data_analysis/TSS/Gencodev10_TSS_May2012.gff.gz). 54,650 

promoters (out of 92,909) were linked to annotated TSSs. 

Roadmap epigenomic DHS data preprocessing 

DHS peak positions for 474,004 putative enhancer and 33,086 promoter non-overlapping DHS segments 

[3] were taken from:  

 https://personal.broadinstitute.org/meuleman/reg2map/HoneyBadger2-

intersect_release/DNase/p10/prom/25/state_calls.RData 

 https://personal.broadinstitute.org/meuleman/reg2map/HoneyBadger2-

intersect_release/DNase/p10/enh/25/state_calls.RData 

To create enhancer/promoter signal matrices, we used the aligned reads (BED files) of 350 UW DNase-

seq samples (73 cell types) from GSE18927 GEO dataset. The number of reads mapped within each DHS 

peak was counted using the BEDTools utilities [2].  We focused only on promoters/enhancers with signal 

≥1RPKM in at least one sample, resulting in 32,629 promoters and 470,549 putative enhancers. 

We defined for each promoter the set of k=10 candidate enhancers located within a window of ±500Kb. 

We mapped promoters to annotated genes using GencodeV10 TSS annotations 

(ftp://genome.crg.es/pub/Encode/data_analysis/TSS/Gencodev10_TSS_May2012.gff.gz). 17,941 (out of 

32,629) promoters were linked to annotated TSSs. 

 

ftp://ftp.ebi.ac.uk/pub/databases/ensembl/encode/integration_data_jan2011/byDataType/openchrom/jan2011/combined_peaks/multi-tissue.master.ntypes.simple.hg19.bed
ftp://ftp.ebi.ac.uk/pub/databases/ensembl/encode/integration_data_jan2011/byDataType/openchrom/jan2011/combined_peaks/multi-tissue.master.ntypes.simple.hg19.bed
ftp://ftp.ebi.ac.uk/pub/databases/ensembl/encode/integration_data_jan2011/byDataType/openchrom/jan2011/promoter_predictions
ftp://ftp.ebi.ac.uk/pub/databases/ensembl/encode/integration_data_jan2011/byDataType/openchrom/jan2011/promoter_predictions
ftp://genome.crg.es/pub/Encode/data_analysis/TSS/Gencodev10_TSS_May2012.gff.gz
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https://personal.broadinstitute.org/meuleman/reg2map/HoneyBadger2-intersect_release/DNase/p10/prom/25/state_calls.RData
https://personal.broadinstitute.org/meuleman/reg2map/HoneyBadger2-intersect_release/DNase/p10/enh/25/state_calls.RData
https://personal.broadinstitute.org/meuleman/reg2map/HoneyBadger2-intersect_release/DNase/p10/enh/25/state_calls.RData
ftp://genome.crg.es/pub/Encode/data_analysis/TSS/Gencodev10_TSS_May2012.gff.gz


 

FANTOM5 data preprocessing 

Promoter (CAGE tags peak phase 1 and 2) and enhancer (human permissive enhancers phase 1 and 2; 

n=65,423) expression matrices (counts and normalized) covering 1,827 samples (600 cell types) were 

downloaded from FANTOM5 DB (http://fantom.gsc.riken.jp/). As in FANTOM5 paper [4] we focused on 

promoters with expression ≥1 TPM (Tags Per Million) in at least one sample, resulting in 56,290 promoters 

annotated with 26,489 RefSeq TSSs within ±500 bp. We defined for each promoter the set of k=10 

candidate enhancers located within a window of ±250Kb from the promoter’s TSS. The choice of smaller 

window here was done for consistency with the FANTOM5 choices. 

GRO-seq data preprocessing 

We downloaded raw sequence data of 245 GRO-seq samples from the Gene Expression Omnibus (GEO) 

database (Supplementary Table S4). First, we applied read quality control on each profile using the 

Trimmomatic tool (default parameters) [5]. From each read we trimmed (1) bases from Illumina Tru-seq 

adapters, and (2) bases with low base quality scores from both ends. We excluded reads with net length 

<30 bases. Finally, we cropped each read to the first 30 bases from the 5’ end.   Second, we aligned the 

trimmed read to a set of known ribosomal RNA (rRNA) genes (FASTA sequences taken from NCBI: RN18S1, 

RN28S1, RN5, and RN5S17) using bowtie2 [6] (default parameters), and discarded reads aligned to rRNA 

genes. Third, we aligned the rest of the reads to hg19 reference genome using bowtie2 (default 

parameters). For subsequent analyses we used only reads that had a MAPQ score greater than 10. Fourth, 

we merged aligned reads from multiple profiles with the same sample id (via GEO GSM id) into a single 

sample. In total, our collected GRO-Seq database covered 40 studies encompassing 245 samples from 23 

cell lines, each assayed under control and stress conditions (Supplementary Table S4).  

We quantified gene transcription activity by counting the number of reads mapped within each 

(unspliced) gene. As gene models we used a single transcript per gene, constructed using groHMM's 

makeConsensusAnnotations function [7] and hg19 UCSC refGene table, producing 22,891 consensus 

genes. We only used reads mapped to the gene's transcript body in the range 0.5kb to 20kb downstream 

of the TSS. If the transcript's length was less than 20kb then we used only the region up to the transcript 

termination site (TTS). 

 To identify active enhancers in each sample, we applied dREG [8] on the aligned reads. dREG 

detects "transcriptional regulation elements" (TREs) based on symmetric forward and reverse read 

coverage relative to their center position. This symmetry is a known mark of short putative enhancers [9]. 

We merged overlapping TREs (taking the union of their locations) detected in different samples to create 

merged TREs (mTREs). We defined as enhancers mTREs that are either: (1) intergenic: mTREs whose 

center is located at least 5kb from the closest gene's TSS and does not overlap any gene's transcript body, 

or (2) intronic: mTREs that are not exonic and have overlap with an intron of a gene. We counted the 

number of reads in each intergenic enhancer (in both strands) and intronic enhancer (only in antisense 

strand) in each sample using BEDTools [2]. 

 The gene and enhancer expression matrices were further filtered to include only genes/enhancers 

(rows) with at least one sample (columns) with RPKM ≥ 1, in order to preserve only expressed 

genes/enhancers. Next, to focus of the analysis on differential genes, we calculated for each the 

http://fantom.gsc.riken.jp/


coefficient of variation (CoV) (the ratio between the gene’s standard deviation 𝜎 to the mean 𝜇), and 

selected the most variable ones as follows: (1) we partitioned the genes according to their mean RPKM 

expression into 20 bins. (2) In each bin we retained the genes with CoV above the bin's median level. 

These two steps also reduce preference to highly or lowly expressed genes. The final gene matrix 

contained 8,360 genes, and the final enhancer matrix contained 255,925 enhancers. 

We defined for each gene the set of k=10 candidate enhancers located within a window of ±500Kb 

from its TSS.  

FOCS Model Implementation 

The input to FOCS is two activity matrices, one for enhancers (𝑀𝑒) and the other for promoters (𝑀𝑝), 

measured across the same samples. Activity is measured by DHS signal in ENCODE and Roadmap data, 

and by expression level in FANTOM5 and GRO-seq data. Samples were labeled with a cell-type label out 

of 𝐶 cell-types. The output of FOCS is predicted E-P links.  

First, FOCS builds for each promoter an OLS regression model based on the k enhancers whose 

center positions are closest to the promoter’s center position (in ENCODE, Roadmap, and FANTOM5) or 

TSS (in GRO-seq). Formally, let 𝑦𝑝 be the promoter 𝑝 normalized activity pattern (measured in CPM - 

counts per million; 𝑦𝑝 is a row from 𝑀𝑝) and let 𝑋𝑝 be the normalized activity matrix of the corresponding 

k enhancers (CPM; k rows from 𝑀𝑒). We build an OLS linear regression model yp = Xpβp + εp, where εp 

is a vector that denotes the errors of the model and βp is the (𝑘 + 1) 𝑥 1 vector of coefficients (including 

the intercept) to be estimated.  

Second, FOCS performs leave-cell-type-out cross validation (LCTO CV) by training the promoter 

model based on samples from 𝐶 − 1 cell types and testing the predicted promoter activity of the samples 

from the left out cell type. This step is repeated 𝐶 times. The result is a vector of predicted activity values 

𝑦𝑝
𝑚𝑜𝑑𝑒𝑙 for all samples. 

FOCS tests the predicted activity values using two validation tests: (1) The binary test.  This test 

examines whether 𝑦𝑝
𝑚𝑜𝑑𝑒𝑙 discriminates between the samples in which 𝑝 was active (observed activity 

𝑦𝑝 ≥ 1 RPKM) and the samples in which 𝑝 was inactive (𝑦𝑝 < 1 RPKM). (2) The activity level test. This test 

calculates, for the active samples, the significance of the Spearman correlation between 𝑦𝑝
𝑚𝑜𝑑𝑒𝑙 and 𝑦𝑝. 

Spearman correlation compares the ranks of the original and predicted activities. We obtain two vectors 

of p-values, one for each test, of length 𝑛 (the number of promoter models).  

Third, to correct for multiple testing, FOCS applies on each p-value vector the Benjamini - Yekutieli 

(BY) FDR procedure [10]. Promoter models with q-value≤ 0.1 in either both tests or in the activity level 

test were included in further analyses. In GRO-seq analysis, we also included models that passed only the 

binary test (m=2,580) since 57% of them had 𝑅2 ≥ 0.5 (Supplementary Fig. 5B). For promoters that 

passed these CV tests final models are trained again using all samples.  

FOCS next selects informative enhancers for each final promoter model. First, to control the FDR 

due to multiple hypotheses we used the BY correction. We call this process enhancer BY FDR filtering 

(eBY). The OLS results provide for each model P-values for the coefficients of its 10 closest enhancers. 

FOCS applies BY correction on the P-values produced by all models together and selects enhancers with 

q-value ≤ 0.01. To identify the most important ones out of the selected (≤ 10) enhancers for each 



promoter model, FOCS applies elastic-net model shrinkage (enet) with a regularization parameter 𝜆, using 

the glmnet R function [11] with mixing parameter 𝛼=0.5, giving equal weights for Lasso and Ridge 

regularizations. We require that all the enhancers that survived eBY filtering will be included in the 

shrunken model. To achieve this we take the maximum 𝜆 satisfying this property. For models in which no 

enhancer survived the eBY filtering, we took the maximum 𝜆 yielding a shrunken model with at least one 

enhancer. This ensures that every promoter that passes the CV tests also has a model following the enet 

step. 

Alternative regression methods 

We compared the performance of OLS method with GLM.NB and ZINB regression methods. We repeated 

the FOCS steps but in the first step, instead of OLS we applied the GLM.NB or the ZINB methods. In 

GLM.NB/ZINB we used for 𝑦𝑝 and 𝑋𝑝 the raw count values instead of CPM. To correct the model according 

to differences in samples library sizes, we provided these sizes as an offset vector to GLM.NB and ZINB 

methods. 

 FANTOM5 E-P linking using OLS regression was followed by Lasso shrinkage (defined as OLS-

LASSO) as described in [4]. Briefly, promoter models were created using OLS and models with 𝑅2 ≥ 0.5 

were accepted for further analyses. Next, penalized Lasso regression was used to reduce the number of 

enhancers in the models. Optimal models were selected using 100-fold cross validation and the largest 

value of lambda such that the mean square error was within one standard error of the minimum, using 

the cv.glmnet() function in R glmnet package [11].  OLS followed by enet (called OLS-enet) was run with 

mixing parameter 𝛼 = 0.5 in the cv.glmnet() function.  OLS followed by LASSO (OLS-LASSO) was run with 

𝛼 = 1. 

External validation of predicted E-P links 

In order to evaluate the performance of FOCS and of other methods for E-P linking, an external validation 

is needed. We used two external data types for this task: (1) ChIA–PET interactions and (2) eQTL SNPs.  

 

We downloaded 922,997 ChIA-PET interactions (assayed with RNAPІІ, on four cell lines: MCF7, HCT-

116, K562 and HelaS3) from the chromatin–chromatin spatial interaction (CCSI) database [12]. We used 

the liftOver tool (from Kent utils package provided by UCSC) to transform the genomic coordinates of the 

interactions from hg38 to hg19. For eQTL SNPs, we used the significant SNP-gene pairs from GTEx analysis 

V6 and V6p builds. 2,283,827 unique eQTL SNPs covering 44 different tissues were downloaded from GTEx 

portal [13]. 

  

We used 1Kbp intervals (±500 bp upstream/downstream) for the promoters (relative to the center 

position in ENCODE/Roadmap/FNATOM5 or to the TSS position in GRO-seq) and the enhancers (±500 bp 

from the enhancer center). An E-P pair is considered supported by a particular ChIA-PET interaction if both 

the promoter and enhancer intervals overlap different anchors of an interaction. An E-P pair is considered 

supported by eQTL SNP if the SNP is located within the enhancer’s interval and is associated with the 

expression of the promoter’s gene. For each predicted E-P pair we checked if the promoter and enhancer 

intervals are supported by ChIA-PET and eQTL data. We then measured the fraction of E-P pairs supported 

by these data resources.  

 



To get an empirical P-value for the significance of the fraction, we performed 100 permutations on 

the data (100 permutations were sufficient as in all methods we got empirical P-value<0.01). In each 

permutation, for each promoter independently, if it had 𝑙 E-P links, then 𝑙 enhancers on the same 

chromosome with similar distances from the gene’s TSS as the 𝑙 linked enhancers were selected randomly. 

For this purpose we used the R ‘Matching’ package [14]. The fraction of overlap with the external data 

was computed on each permuted data. 

 

Statistical tests, visualization and tools used 

All computational analyses and visualizations were done in the R statistical language environment [15]. 

We used the two-sided Wilcoxon rank-sum test implemented in wilcox.test() function to compute the 

significance of the binary test. We used the cor.test() function to compute the significance of the 

Spearman correlation in the activity level test. Spearman/Pearson correlations were computed using the 

cor() function. To correct for multiple testing we used the p.adjust() function (method=’BY’). We used 

‘GenomicRanges’ package [16] for finding overlaps between genomic positions. We used ‘rtracklayer’ [17] 

and ‘GenomicInteractions’ [18] packages to import/export genomic positions. Counting reads in genomic 

positions was calculated using BEDTools [2]. OLS models were created using lm() function in ‘stat’ package 

[15]. GLM.NB models were created using glm.nb() function in ‘MASS’ package [19]. ZINB models were 

created using zeroinfl() function in ‘pscl’ package [20]. Graphs were made using graphics [15], ggplot2 

[21], gplots [22], and the UCSC genome browser (https://genome.ucsc.edu/). 
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