
S1 General notes on the analysis1

Major parts of the analysis are based on branching process approximations. We model the2

number of double mutants (and occasionally also the number of single mutants) in the stand-3

ing genetic variation by a subcritical branching process with immigration, where “immigra-4

tion” happens through mutation or recombination. For the establishment probability of a type5

AB individual, we apply results from the theory of time-homogeneous or time-inhomogeneous6

single-type branching processes. In order to determine the probability that a type Ab individual7

gives rise to a permanent lineage of AB individuals by mutation, we use a two-type branching8

process. Although the model is formulated in discrete time, we resort to branching processes9

in continuous time for the mathematical analysis. In the following, we first state some gen-10

eral mathematical results from branching process theory. We thereafter apply them to derive11

some building blocks that we use repeatedly in the subsequent analysis in Appendix S2 and12

Appendix S3.13

S1.1 Mathematical results from branching process theory14

Probability generating function for the number of individuals in a subcritical single15

type branching process with immigration Following Sewastjanow (1974, p. 163), we16

can calculate the probability generating function (p.g.f.) for the number of individuals in a17

subcrititcal branching process with immigration. Individuals reproduce at rate λ and die at18

rate µ. Immigration happens at rate m. W define the two infinitesimal generating functions19
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f(y) = µ− (λ+ µ)y + λy2, (S1.1a)

g(y) = −m+my. (S1.1b)

Let Pk be the probability to have k individuals in the limit t → ∞ and20

F (y) =
∞
∑

k=0

Pky
k (S1.2)

It then holds21

F (y) = exp





1
∫

y

g(x)

f(x)
dx





=

(

λ− µ

yλ− µ

)
m
λ

.

(S1.3)

For λ = 1
2
+ σ

2
and µ = 1

2
− σ

2
, this gives22

F (y) =

(

2σ

y + yσ + σ − 1

)
2m
1+σ

. (S1.4)

From the p.g.f., the stationary distribution of the number of individuals can be obtained as23

Pk =
1

k!

d

dy
F (y)|y=0 =

1

k!

(

2σ

σ − 1

)
2m
σ+1

+k

·
k
∏

i=1

2m+ (i− 1)(1 + σ)

(−2σ)
(S1.5)
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for k > 0 and P0 = F (0).24

Establishment probability of a reducible two-type branching process Consider a25

branching process with two types. Type i reproduces at rate λi and dies at rate µi. Type 226

turns into type 1 at rate ueff.27

The survival probability of a process founded by one individual of type 1 is given by (Allen,28

2011, p. 253)29

p
(1)
est =















λ1−µ1

λ1
if λ1 > µ1,

0 else.

(S1.6)

The establishment probability of a process founded by a single individual of type 2 can be30

obtained by solving the equation31

1− p
(2)
est =

µ2

λ2 + µ2 + ueff

+
ueff

λ2 + µ2 + ueff

(1− p
(1)
est) +

λ2

λ2 + µ2 + ueff

(1− p
(2)
est)

2, (S1.7)

where the smaller root has to be taken (Uecker et al., 2015):32

p
(2)
est = 1−

λ2 + µ2 + ueff −

√

(λ2 + µ2 + ueff)2 − 4(ueff(1− p
(1)
est) + µ2)λ2

2λ2

= 1−
λ2 + µ2 + ueff −

√

(λ2 − µ2 − ueff)2 + 4λ2ueffp
(1)
est

2λ2

.

(S1.8)
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With λ2 =
1
2
+ s

2
and µ2 =

1
2
− s

2
, this yields:33

p
(2)
est = 1−

1 + ueff −

√

(s− ueff)2 + 2(1 + s)ueffp
(1)
est

1 + s
. (S1.9)

Establishment probability of an inhomogeneous single-type branching process The34

establishment probability of a single allele with time-dependent birth rate λ(t), death rate µ(t),35

and growth parameter λ(t) − µ(t) = seff(t) that arises at time T in a population is given by36

(Kendall, 1948; Uecker and Hermisson, 2011)37

pest(T ) =
2

1 +
∞
∫

T

(λ(t) + µ(t))e
−

t
∫

T

seff(τ)dτ

dt

. (S1.10)

The extinction time of a single-type branching process Consider a subcritical branch-38

ing process with an initial number of n0 individuals. Individuals reproduce at rate λ and die at39

rate µ. From the probability that the process has gone extinct by time t, P0(n0, t), (see Uecker40

and Hermisson, 2011), we immediately obtain the distribution of the extinction time Text:41

P (Text ≤ t) = P0(n0, t) =

(

µ(1− e−(λ−µ)t)

λ− µ+ µ(1− e−(λ−µ)t)

)n0

. (S1.11)

We denote by42

p(ext)(t) =
d

dt
P (Text ≤ t) (S1.12)
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the corresponding probability density.43

S1.2 Essential building blocks44

In order to match the results from the continuous-time approximation to the discrete time45

model, we need to make sure that the growth behavior and the amount of drift are the same46

(Uecker et al., 2014). First, in order to guarantee that the long-term growth behavior is the47

same, we replace the growth parameter σ from the discrete-time model by ln (1 + σ) in the48

continuous-time approximation whenever long-term growth is essential. In order to generate49

the same amount of drift, birth and death rates of individuals must sum up to 1 (at least in the50

diffusion limit). In a model with selection, this can be achieved in various ways, by distributing51

the effect of the effective growth parameter σ (or ln (1 + σ)) on the birth and death rates. If52

not stated otherwise, we usually do this symmetrically, i.e., λ = 1
2
+ σ

2
and its death rate as53

µ = 1
2
− σ

2
. This is appropriate as long as selection is not too strong. For very large (positive54

or negative) σ, one of the rates can turn negative. In that case, we switch to a different55

parameterization (and explicitly state this).56

Throughout the analysis, we ignore back mutation. We furthermore assume that the mutation57

rate is small enough that we can neglect direct generation of the double mutant from the58

wildtype.59
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The number of single mutants in the standing genetic variation We assume that60

mutants are rare in relative frequency in the population, i.e., they only interact with wildtype61

individuals. This has several implications: (1) birth and death rates are constant (since mean62

fitness is ≈ 1), (2) a constant influx of new mutations (since nab ≈ N0), (3) recombination63

has no effect on single mutants (since mutants only recombine with wildtype individuals), (4)64

interactions with double mutants can be ignored.65

Then, from Eq. (S1.4) with m = uN0(1+ σAb) and λ = 1
2
+ σAb

2
and µ = 1

2
− σAb

2
, we obtain the66

probability generating function FAb for the number of Ab mutants in the population; analogous,67

we obtain FaB:68

FAb(y) =

(

2σAb

y + yσAb + σAb − 1

)2uN0

, (S1.13a)

69

FaB(y) =

(

2σaB

y + yσaB + σaB − 1

)2uN0

. (S1.13b)

The mean number of Ab and aB mutants is given by70

n̄Ab = 〈nAb〉 = F ′
Ab(1) = −

uN0

σAb

(1 + σAb), (S1.14a)

71

n̄aB = 〈naB〉 = F ′
aB(1) = −

uN0

σaB

(1 + σaB). (S1.14b)

The number of double mutants in the standing genetic variation In a large pop-72

ulation, in which single mutants are frequent in absolute but rare in relative numbers, their73

number can be well approximated by their mean value as given by Eq. (S1.14).74
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However, the number of double mutants is subject to strong stochasticity. Before the time75

of environmental change, their distribution can be modeled by a subcritical branching process76

with immigration. Immigration happens at rate77

mAB =

(

r
n̄Abn̄aB

N0

)

(1 + σAB) + u(n̄Ab + n̄aB)(1 + σAB)(1− r). (S1.15)

As the effective selection coefficient of AB individuals, we use78

σeff
AB = (1 + σAB)(1− r)− 1. (S1.16)

Individuals of type AB reproduce at rate 1
2
+ 1

2
σeff
AB and die at rate 1

2
− 1

2
σeff
AB.79

With Eq. (S1.4), we obtain the probability generating function FAB(s) for the number of double80

mutants in the standing genetic variation:81

FAB(y) =

(

2σeff
AB

y + yσeff
AB + σeff

AB − 1

)

2mAB

1+σeff
AB

. (S1.17)
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The mean number of double mutants is given by82

〈nAB〉 = F ′
AB(1) = −

mAB

σeff
AB

= −
u2N0

σAbσaB

(1 + σAB)
r(1 + σAb + σaB + σAbσaB)− (1− r)(σAb + σaB + 2σAbσaB)

σAB − r(1 + σAB)

= −
u2N0

σ2
(1 + σAB)(1 + σ)

r(1 + σ)− 2σ(1− r)

σAB − r(1 + σAB)
,

(S1.18)

where the last line holds for σAb = σaB = σ.83

With σAB = E1 + (σAb + σaB + σAbσaB) = E1 + σ(2 + σ) and |σAb|, |σaB|, and |σAB| small, we84

can further approximate:85

〈nAB〉 ≈
u2N0

σAbσaB

r − (σAb + σaB)

r − E1 − (σAb + σaB)

=
u2N0

σ2

r − 2σ

r − E1 − 2σ
.

(S1.19)

We see that for E1 = 0 (no epistasis), 〈nAB〉 is independent of r; for E1 < 0 (negative epistasis),86

〈nAB〉 increases with r; for E1 > 0 (positive epistasis), 〈nAB〉 decreases with r. For r = 0, the87

mean number of double mutants is given by u2N0

σ2
2σ

E1+2σ
, hence strongly dependent on the degree88

of epistasis. For r ≫ |σAb + σaB| and r ≫ |σAB|, it converges to u2N0

σAbσaB
, independently of89

epistasis.90

Establishment probabilities in the absence of the wildtype In the absence of the91

wildtype, the double mutant is (effectively) not broken up by recombination. With Eq. (S1.6)92
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and λ1 = 1
2
+ 1

2
ln (1 + sAB) and µ1 = 1

2
− 1

2
ln (1 + sAB) (assuming ln (1 + sAB) ≤ 1, which is93

always the case in our examples), we obtain for the survival probability of a process which is94

founded by a single individual of type AB:95

p
(AB)
est =

2 ln (1 + sAB)

1 + ln (1 + sAB)
≈ 2sAB, (S1.20)

where the approximation holds for sAB small.96

We also derive an approximation for the survival probability of a process founded by one97

individual of type Ab (or aB), when type AB can only be generated by mutation (either98

because r = 0 or because the other single mutant type is absent). The problem can then be99

assessed by means of a two-type branching process. Type Ab has birth rate 1
2
+ ŝAb

2
and death100

rate 1
2
− ŝAb

2
with ŝAb = ln (1 + sAb) (assuming −1 ≤ ln (1 + sAb) ≤ 1, which is again always101

fulfilled in our examples). It turns into type AB at rate u(1 + sAB) (analogously for type aB).102

With (S1.9) and Q1 = 1− p
(AB)
est , we obtain the establishment probability:103

p
(Ab)
est = 1−

1 + u(1 + sAB)−

√

(ŝAb − u(1 + sAB))2 + 2u(1 + sAB)(1 + ŝAb)p
(AB)
est

1 + ŝAb

≈ 1−
1 + u−

√

(sAb − u)2 + 4usAB(1 + sAb)

1 + sAb

≈ 1− (1 + u− sAb −
√

(sAb − u)2 + 4usAB)

= sAb − u+
√

(sAb − u)2 + 4usAB

≈
2usAB

−sAb

.

(S1.21)
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The last approximation holds for sAb < 0 and s2Ab ≫ usAB. It can be easily interpreted:104

1
−sAb

is the mean number of descendants of a single Ab individual. Each of these descendants105

mutates with probability u, leading to a permanently establishing lineage of AB individuals106

with probability 2sAB.107

Establishment probabilities in the presence of the wildtype If the wildtype dominates108

over the single mutants at all times, the double mutant virtually always recombines with the109

wildtype (until it becomes frequent and rescue has occurred). Under these conditions, the110

effective growth parameter of the rescue type can be approximated as111

seff(t) =















(1 + sAB)(1− r)− 1 as long as the wildtype exists,

sAB as soon as the wildype has died out.

(S1.22)

If the wildtype decays very slowly and if we can furthermore assume that no double mutants112

get generated once the wildtype has gone extinct, this yields for the establishment probability113

of the double mutant:114

p
(AB)
est =















2 ln [(1+sAB)(1−r)]
1+ln [(1+sAB)(1−r)]

if ln [(1 + sAB)(1− r)] > 0,

0 else.

≈ max [2(sAB − r), 0].

(S1.23)
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Following the same derivation as in Eq. (S1.21), the probability that a single Ab individual will115

eventually give rise to a successful lineage of AB individuals is116

p
(Ab)
est = 1−

1 + u(1 + sAB)(1− r)−

√

(ŝAb − u(1 + sAB)(1− r))2 + 2u(1 + sAB)(1− r)(1 + ŝAb)p
(AB)
est

1 + ŝAb

≈ sAb − u(1− r) +
√

(sAb − u(1− r))2 + 4u(1− r)max [2(sAB − r), 0]

≈
2u(1− r)max [2(sAB − r), 0]

−sAb

.

(S1.24)

The simple approximation p
(AB)
est , Eq. (S1.23), fails when the wildtype population size decays117

quickly. In case of a fast (but not instantaneous) eradication of the wildtype, we need to apply to118

a more refined approximation for the establishment probability of type AB. The extinction time119

of the wildtype is a stochastic variable. If we ignore mutation and recombination, the dynamics120

of the wildtype is given by a subcritical branching process with initial size nab(0) ≈ N0, and121

we can calculate the distribution of the extinction time Text with the help of Eq. (S1.11). Since122

ln (1 + sab) is considerably smaller than −1 if sab is strongly negative, we deviate from our123

default approximation for λ and µ here and choose λ = 1/2 and µ = 1/2− ln (1 + sab) to keep124

selection at the right level and avoid negative birth rates. With this, we obtain125

P (Text ≤ t) =

(

1− e−sabt

2sab
1−sab

+ 1− e−sabt

)N0

(S1.25)

and from this the probability density p(ext)(Text).126
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For a given Text, we can calculate the establishment probability of a single double mutant based127

on a time-inhomogeneous branching process with death rate 1
2
− ŝeff(t)

2
and birth rate 1

2
+ ŝeff(t)

2
128

with ŝeff(t) defined by129

ŝeff(t) =















ln ((1 + sAB)(1− r)) t ≤ Text,

ln (1 + sAB) t > Text

(S1.26)

(see Eq. (S1.10)). This gives for t < Text:130

p
(AB)
est (t|Text) =

2

1 + I(t, Text)
(S1.27)

with131

I(t, Text) =

∞
∫

t

e
−

T
∫

t

ŝeff(τ)dτ
dT

=
1

s1
−

(

1

s1
−

1

s2

)

e−s1(Text−t),

(S1.28)

where s1 and s2 are given by ŝeff before and after extinction of the wildtype respectively. For132

t ≥ Text, the establishment probability is given by Eq. (S1.20).133

Over all possible extinction times, we get134

p
(AB)
est (t) =

∞
∫

t

p(Text)
2

1 + I(t, Text)
dText +

t
∫

0

p(Text)
2 ln (1 + sAB)

1 + ln (1 + sAB)
dText. (S1.29)

12



The numerical evaluation of integrals is done in Mathematica (Wolfram Research, Champaign,135

USA).136

S2 No recombination137

For complete linkage, approximations have been derived in Iwasa et al. (2003, 2004). These138

approximations model all allele frequencies in the standing genetic variation deterministically.139

We extend these results by a stochastic treatment of the number of double mutants standing140

genetic variation.141

The distribution of standing genetic variation In principle, the number of single and142

double mutants in the population can be modeled as a two-type branching process with immi-143

gration. However, analytical solutions for the p.g.f. are not easily derived. We therefore propose144

two simpler approximations to estimate the contribution of the standing genetic variation for145

rescue. (1) If the population size is small, double mutants in the standing genetic variation can146

often be neglected; the number of single mutants is subject to stochasticity. The probability147

generating functions FAb and FaB are given by Eq. (S1.13). (2) If the population size is large,148

the number of single mutant types is well approximated by their expected value (Eq. (S1.14)).149

The probability generating function for the number of double mutants FAB is then given by150

Eq. (S1.17).151
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Establishment probability of the rescue mutant After the change in the environment,152

a lineage initiated by one individual of type AB survives with probability p
(AB)
est as given by153

Eq. (S1.20) A lineage that is founded by a single individual of type Ab (or aB) survives with154

probability p
(Ab)
est as given by Eq. (S1.21). These results do not depend on the dynamics of155

the wildtype when r = 0 because of our assumption of a hard carrying capacity (no density156

dependence until N ≥ N0).157

The probability of evolutionary rescue We first consider the case that the number of158

double mutants before the change in the environment can be ignored. Rescue can now ei-159

ther pass via single mutants from the standing genetic variation or via newly generated single160

mutants. The number of successful offspring of a single type Ab individual is Poisson dis-161

tributed with parameter (1 + sAb)p
(Ab)
est . If nAb individuals of type Ab are present at the time162

of environmental change, they hence do not establish a permanent lineage with probability163

exp [−nAb(1 + sAb)p
(Ab)
est ]. It remains to average over the distribution of nAb, for which one164

can conveniently use the p.g.f. FAb, Eq. (S1.13) (analogous for type aB). In order to de-165

termine the number of single mutants that get generated after the environmental change, we166

assume that the decay of the wildtype population size can be well described deterministically167

by nab(t) ≈ N0(1 + sab)
t (cf. Orr and Unckless, 2008; Uecker et al., 2014). The number of168

de-novo generated single mutants is then given by
∞
∑

t=0

unab(t)(1 + sAb) ≈
uN0

−sab
(1 + sAb). With169
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this, we obtain:170

Prescue = 1− FAb(e
−(1+sAb)p

(Ab)
est )FaB(e

−(1+saB)p
(aB)
est )e

−
uN0
−sab

(1+sAb)p
(Ab)
est −

uN0
−sab

(1+saB)p
(aB)
est . (S2.1)

If single mutants are frequent and we describe double mutants stochastically, using the expected171

values n̄Ab and n̄aB, we have:172

Prescue = 1− FAB(e
−(1+sAB)p

(AB)
est )e−u(n̄Ab+n̄aB)(1+sAB)p

(AB)
est e−n̄Ab(1+sAb)p

(Ab)
est −n̄aB(1+saB)p

(aB)
est

×e
−

uN0
−sab

(1+sAb)p
(Ab)
est −

uN0
−sab

(1+saB)p
(aB)
est .

(S2.2)

If we can treat the number of double mutants deterministically, we obtain:173

Prescue = 1− e−(1+sAB)n̄ABp
(AB)
est e−u(n̄Ab+n̄aB)(1+sAB)p

(AB)
est e−n̄Ab(1+sAb)p

(Ab)
est −n̄aB(1+saB)p

(aB)
est

×e
−

uN0
−sab

(1+sAb)p
(Ab)
est −

uN0
−sab

(1+saB)p
(aB)
est

(S2.3)

with174

n̄AB =
u(n̄Ab + n̄aB)

−σAB

(1 + σAB). (S2.4)

Comparison to Iwasa et al. (2003, 2004) We can compare our approximations to the175

approximation derived in Iwasa et al. (2003, p. 2574) and Iwasa et al. (2004, Eq. (9)), who176

describe all allele frequencies prior to the environmental change deterministically (derived as177

the stationary solution of a system of differential equations). Consequently, as can be seen from178

Fig. S2.1, the approximation is in good agreement with Eq. (S2.3) (up to minor deviations due179
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Fig. S2.1: Probability of evolutionary rescue as a function of σAB. The theoretical
predictions are based on Eq. (S2.2) (solid line), Iwasa et al. (2003, 2004) (long-dashed line), and
Eq. (S2.3) (short-dashed line). Parameter values: σAb = σaB = −0.01, sAb = saB = sab = −0.5,
sAB = 0.15, u = 10−5, N0 = 106. Symbols denote simulation results. Each simulation point is
the average of 105 replicates.

to details in the model and the analysis). Both strongly overestimate the real rescue probability180

in Fig. S2.1. The reason is that the number of double mutants in the standing genetic variation181

– from which rescue mainly occurs in the parameter regime shown in the figure – is subject182

to strong fluctuations. This matters mainly for weakly deleterious double mutants: Then, the183

average number of double mutants is high enough to provide a population with a decent chance184

to survive, and the deterministic approximation assumes that each replicate population contains185

this average number of double mutants. Stochastically, however, some replicate populations186

have a very high chance to survive (but a single population can only get rescued once; the very187

high number of double mutants is hence redundant), while most of them contain no double188

mutants at all and go extinct.189
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S3 The role of recombination190

From now on, we assume that the population is large enough that we can approximate the191

number of Ab and aB mutants in the standing genetic variation by their expected number,192

Eq. (S1.14). For the number of double mutants prior to the environmental change, we use193

FAB, Eq. (S1.17). In order to keep the equations simple, we usually assume σAb = σaB = σ.194

Generalization to unequal selection coefficients for single mutants before the environmental195

change is straightforward.196

S3.1 Single mutants are lethal in the new environment197

The wildtype is lethal too In the absence of any other types, a single rescue type in-198

dividual establishes a permanent lineage with probability p
(AB)
est , Eq. (S1.20). In the first199

generation after the switch, with our choice of the life cycle (mutation and recombination200

before selection), the wildtype and the single mutants are, however, still present in the pop-201

ulation (leading to the generation and deletion of AB mutants). A single rescue type in-202

dividual present at the time of environmental change will hence not establish a permanent203

lineage with probability exp [−p
(AB)
est (1 + sAB)(1− r)], and the probability that no new suc-204

cessful lineage is generated by recombination or mutation in this first generation is given by205

exp
[

−
(

r n̄Abn̄aB

N
(1 + sAB) + u(n̄Ab + n̄aB)(1 + sAB)(1− r)

)

p
(AB)
est

]

. With this, the probability206
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of evolutionary rescue is given by207

Prescue = 1− FAB(e
−(1+sAB)(1−r)p

(AB)
est )× e

−
(

r
n̄Abn̄aB

N0
(1+sAB)+u(n̄Ab+n̄aB)(1+sAB)(1−r)

)

p
(AB)
est . (S3.1)

With p
(AB)
est ≈ 2sAB and σAb = σaB = σ, we can approximate208

F (e−(1+sAB)(1−r)p
(AB)
est ) ≈ F (1− 2sAB(1− r))

=

(

1 +
2sAB(1 + σAB)(1− r)2

2(1− r)(1 + σAB)− 2sAB(1− r)2(1 + σAB)− 2

)

2(1+σAB)

[

r
u2N0
σ2 (1+σ)2+

u2N0
−σ

(1+σ)(1−r)

]

(1+σAB)(1−r)

=

(

1 +
sAB(1− r)2

−sAB(1− r)2 + (1− r)σAB − 1

)−
2u2N0

σ2 [2σ− r
1−r ]

≈

(

r − (2σ + E1)(1− r)

sAB(1− r)2 + r − (2σ + E1)(1− r)

)−
2u2N0

σ2 [2σ− r
1−r ]

≈

(

r − 2σ − E1

sAB(1− r)2 + r − 2σ − E1

)−
2u2N0

σ2 [2σ− r
1−r ]

,

(S3.2)

where the first approximation is a series expansion of the exponential function up to first order209

in the exponent and the second approximation is based on dropping higher order terms in σAB210

and σ in the enumerator, the denominator, and the exponent. The approximation in the last211

line consists in approximating r − (1− r)(2σ + E1) ≈ r − 2σ − E1 since the second term only212

matters when r is small, i.e. when 1− r ≈ 1. If we furthermore ignore new mutations after the213
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switch in the environment, we obtain:214

Prescue ≈ 1−

(

r − 2σ − E1

sAB(1− r)2 + r − 2σ − E1

)−
2u2N0

σ2 [2σ− r
1−r ]

e−2sABr
u2N0
σ2 . (S3.3)

If we do not take stochasticity in the number of double mutants in the standing genetic variation215

into account, we get216

P det
rescue = 1− e−〈nAB〉(1+sAB)(1−r)p

(AB)
est × e−(r

n̄Abn̄aB
N

(1+sAB)+u(n̄Ab+n̄aB)(1+sAB)(1−r))p(AB)
est

≈ 1− e
−2

u2N0
σ2 sAB

[

1−
(1−r)(2−2σ−E1)

r−2σ−E1

]

≈ 1− e
−2sAB

u2N0
σ2

r−2σ
r−2σ−E1 ,

(S3.4)

where the first approximation makes use of the approximation for 〈nAB〉 (Eq. S1.19) and fur-217

thermore uses p
(AB)
est ≈ 2sAB and 1 + sAB ≈ 1 and ignores new mutations from generation 0 to218

1.219

With this, we can compare the probability of evolutionary rescue (1) without epistasis and220

without drift (Eq. S3.4 with E1 = 0), (2) without epistasis but with drift (Eq. S3.1 with221

E1 = 0), (3) with epistasis but without drift (Eq. S3.4 with E1 6= 0), and (4) with epistasis and222

with drift (Eq. S3.1 with E1 6= 0). Fig. S3.1 shows all four cases. Note that the establishment223

of the rescue type after the environmental change is in any case subject to strong stochasticity.224

19



Last, we want to estimate the influence of drift on the rescue probability225

d =
Prescue − P det

rescue

P det
rescue

. (S3.5)

For this, we approximate by a Taylor expansion up to leading order in sAB (and similar ap-226

proximations as in Eq. S3.4):227

Prescue − P det
rescue ≈

(

e−2sAB〈nAB〉(1−r) − 〈e−2sABnAB(1−r)〉
)

e
−2sABr

n̄Abn̄aB
N0

≈ −2s2AB(1− r)2Var[nAB] +O
(

s3AB

)

.

(S3.6)

This leaves us with228

d ≈ −
sAB(1− r)2Var[nAB]

(1− r)〈nAB〉+ r n̄Abn̄aB

N0

+O
(

s2AB

)

= −
−sAB(1− r)2 Var[nAB ]

〈nAB〉

(1− r) + r n̄Abn̄aB

N0〈nAB〉

+O
(

s2AB

)

≈
Var[nAB]

〈nAB〉
·
−sAB(1− r)2

1 + r E1

r−2σ

+O
(

s2AB

)

.

(S3.7)

For the last line, we used Eq. (S1.19) and nAb = naB ≈ −uN0

σ
. For the ratio of variance to229

mean, we obtain:230

Var[nAB]

〈nAB〉
=

F ′′
AB(1) + F ′

AB(1)− F ′
AB(1)

2

F ′
AB(1)

=
1

2

(

1 +
1

r(1 + σAB)− σAB

)

,

(S3.8)
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which is a decreasing function of r, i.e., the relative importance of drift decreases with r. Note231

that the variance itself depends on epistasis and is not decreasing over the entire parameter232

range (it can be increasing, decreasing, or be non-monotonic).233

For |σ| and |σAB| small, we can further approximate234

d ≈ −
Var[nAB]

〈nAB〉
sAB(1− r)2 ≈ −

1

2
(1− r)2(1 + r)

sAB

r − σAB

. (S3.9)

Although the approximation deviates from the exact result for small r, we can read off the235

qualitative behavior: d is negative and monotonically increasing with r, i.e., the larger r, the236

less drift reduces Prescue. We can distinguish two regimes: (1) If |σAB| ≫ sAB, drift does not237

play a significant role, irrespective of r. (2) If |σAB| ≪ sAB, drift has a significant influence238

unless r ≫ sAB.239

The wildtype remains If the wildtype population size decays slowly after the environmen-240

tal change, the establishment probability of a single rescue mutant is well approximated by241

Eq. (S1.23). Analogous to before, we then obtain242

Prescue = 1− FAB(e
−(1+sAB)(1−r)p

(AB)
est )× e

−
(

r
n̄Abn̄aB

N0
(1+sAB)+u(n̄Ab+n̄aB)(1+sAB)(1−r)

)

p
(AB)
est . (S3.10)

Actually, e−(1+sAB)(1−r)(1−qAB) = qAB (where qAB is the exact extinction probability of a branch-243

ing process with Poisson distributed offspring numbers with mean (1+ sAB)(1− r)), and so we244

21



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5

P
re

s
c
u
e

r

epistasis
neither

drift+epistasis
drift

Fig. S3.1: Probability of evolutionary rescue as a function of recombination (cf.
Fig. 1). The curves are based on Eq. (S3.1) (drift) and Eq. (S3.1) (no drift). Paramater
values are: σAB = −0.0199 (no epistasis) and σAB = −0.0001 (epistasis), σAb = σaB = −0.01,
u = 10−5, N0 = 106, sAB = 0.15, sAb = saB = sab = −1.

could simply use FAB(1− p
(AB)
est ). Since we use an approximation for qAB (which is our approx-245

imation 1− p
(AB)
est ), we prefer the above form for consistency with the previous paragraph.246

As before, we can derive an approximation, ignoring stochasticity in the number of double247

mutants248

P det
rescue = 1− e−〈nAB〉(1+sAB)(1−r)p

(AB)
est × e−(r

n̄Abn̄aB
N

(1+sAB)+u(n̄Ab+n̄aB)(1+sAB)(1−r)))p(AB)
est

≈















1− e
−2

u2N0
σ2 (sAB−r)

[

1−
(2−2σ−E1)(1−r)

r−2σ−E1

]

≈ 1− e
−2(sAB−r)

u2N0
σ2

r−2σ
r−2σ−E1 if sAB − r > 0,

0 else,

(S3.11)

where we approximate p
(AB)
est ≈ max (2(sAB − r), 0).249
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The wildtype is quite unfit If the wildtype is not very fit, we need to resort to the more250

accurate approximation Eq. (S1.29) for the establishment probability of the double mutant.251

For the probability of rescue, we obtain as before:252

Prescue = 1− FAB(e
−(1+sAB)(1−r)p

(AB)
est (1))× e

−
(

r
n̄Abn̄aB

N0
(1+sAB)+u(nAb+naB)(1+sAB)(1−r)

)

p
(AB)
est (1)

.

(S3.12)

Sensitivity of the approximation How sensitive are the approximations to the assumption253

of lethality of the single mutants? Fig. S3.2 compares the approximations (assuming sAb =254

saB = −1) to simulations with sAb = saB = −0.99 (Panel A) and sAb = saB = −0.9 (Panel B).255

The fitter the wildtype the less sensitive is the approximation to deviations from strict lethality256

of the single mutants. For a lethal wildtype, even a slight increase in the fitness of mutants257

above lethality drastically increases Prescue.258

S3.2 One single mutant is viable, the other lethal259

Let us now consider the situation sAb > −1 and saB = −1 after the environmental change.260

The wildtype is lethal The presence of one of the single mutant types after the environmen-261

tal change opens up a new rescue pathway: new double mutants can be generated by mutation262

after generation 0. Analogous to before, the probability that the population is rescued via this263
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Fig. S3.2: Probability of evolutionary rescue as a function of recombination. The
figure is identical to Fig. 1 except for that we set sAb = saB = −0.99 (Panel A) and sAb =
saB = −0.9 (Panel B) in the simulations. The growth parameter of the wildtype is sab = −1
(solid lines, filled circle), sab = −0.99 (dashed line, triangles), sab = −0.005 (dotted line, empty
circles). Circles and triangles denote simulation results. Each simulation point is the average
of 105 replicates.

pathway is given by264

1− e−(n̄Ab+uN0)(1+sAb)p
(Ab)
est (S3.13)

with p
(Ab)
est given by Eq. (S1.21). Combination with Eq. (S3.1) yields the total probability of265

evolutionary rescue:266

Prescue = 1− FAB(e
−(1+sAB)(1−r))p

(AB)
est )× e

−
(

r
n̄Abn̄aB

N0
(1+sAB)+u(n̄Ab+n̄aB)(1+sAB)(1−r)

)

p
(AB)
est

× e−(n̄Ab+uN0)(1+sAb)p
(Ab)
est .

(S3.14)

We can estimate the respective significance of the contributions by a comparison of Eq. (S3.13)267

with Eq. (S3.4), assuming σAb = σaB. Approximating n̄Ab ≈
uN0

−σAb
and 1+ sAb ≈ 1 and ignoring268

the term that accounts for new mutations (∼ uN0) in Eq. (S3.13) and setting E1 = 0 in269
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Eq. (S3.4), we arrive at the condition270

p
(Ab)
est > 2

usAB

−σAb

(S3.15)

for the contribution of new rescue mutations after the environmental change being larger than271

the contribution by double mutants from the standing genetic variation. With the last approx-272

imation for p
(Ab)
est in Eq. (S1.21), this condition simplifies to273

2usAb

−sAb

>
2usAb

−σAb

⇔ −σAb > −sAb. (S3.16)

If sAb > 0, rescue is not contingent on the generation of the double mutant. Depending on the274

mutation rate and the fitness effects of mutations, generation of the double mutant might still275

help rescue or be negligible. In the latter case, results from single step rescue apply (Orr and276

Unckless, 2008; Bell and Collins, 2008; Uecker et al., 2014). Formation of the double277

mutant after the environmental change cannot be ignored in Eq. (S3.13) if278

2sAb ≪ p
(Ab)
est

⇔ 2sAb ≪ sAb − u+
√

(sAb − u)2 + 4sABu

⇔ sAb + u ≪
√

(sAb − u)2 + 4sABu

sAb≫u
⇔ sAb ≪

√

s2Ab + 4sABu = sAb ·

√

1 +
4sABu

s2Ab

⇔ 4sABu ≫ s2Ab.

(S3.17)
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Altogether, generation of the double mutant cannot be ignored if279

2sAb

uN0

−σ
≪ p

(Ab)
est

uN0

−σ
+ 2sAB

u2N0

σ2

r − 2σ

r − 2σ − E1

⇔ 2sAb ≪ sAb − u+
√

(sAb − u)2 + 4sABu+ 2sAB

u2N0

σ2

r − 2σ

r − 2σ − E1

⇔ sAb + u ≪
√

(sAb − u)2 + 4sABu+ 2sAB

u2N0

σ2

r − 2σ

r − 2σ − E1

sAb≫u
⇔ sAb ≪ sAb ·

√

1 +
4sABu

s2Ab

+ 2sAB

u2N0

σ2

r − 2σ

r − 2σ − E1

⇔ 4sABu ≫ s2Ab or 2sAB

u2N0

σ2

r − 2σ

r − 2σ − E1

≫ sAb.

(S3.18)

The wildtype is at least as fit as the viable single mutant Viability of the wildtype280

has two consequences: (1) The double mutant can be broken up by recombination. (2) The281

wildtype can generate new Ab mutants on its course to extinction. Modeling the wildtype282

deterministically, we obtain for the probability of rescue by de-novo generated double mutants283

1− e−n̄Ab(1+sAb)p
(Ab)
est × e

−
uN0
−sab

(1+sAb)p
(Ab)
est . (S3.19)

Combination with Eq. (S3.10) yields again the total probability of evolutionary rescue:284

Prescue = 1− FAB(e
−(1+sAB)(1−r))p

(AB)
est )× e

−
(

r
n̄Abn̄aB

N0
(1+sAB)+u(n̄Ab+n̄aB)(1+sAB)(1−r)

)

p
(AB)
est

× e
−(n̄Ab+

uN0
−sab

)(1+sAb)p
(Ab)
est .

(S3.20)
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As before, we can compare the different pathways to rescue, (a) from double mutants from the285

standing genetic variation, (b) mutation of single mutants from the standing genetic variation286

after the change in the environment, (c) complete de-novo generation via the wildtype after the287

environmental switch. Pathway (c) is more important than pathway (b) if288

−sab < −σAb. (S3.21)

Pathway (b) is more important than pathway (a) if289

−sAb < −σAb. (S3.22)

If sAb > 0, analogous to the previous paragraph, formation of the double mutant after the290

environmental change cannot be ignored if291

2sAb ≪ p
(Ab)
est

⇔ 2sAb ≪ sAb − u+
√

(sAb − u)2 + 4max ((sAB − r), 0)u

⇔ sAb + u ≪
√

(sAb − u)2 + 4max ((sAB − r), 0)u

sAb≫u
⇔ sAb ≪

√

s2Ab + 4sABu = sAb ·

√

1 +
4max ((sAB − r), 0)u

s2Ab

⇔ 4max ((sAB − r), 0)u ≫ s2Ab.

(S3.23)
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Altogether, it cannot be ignored if292

2sAb

uN0

−σ
≪ p

(Ab)
est

uN0

−σ
+max [2(sAB − r), 0]

u2N0

σ2

r − 2σ

r − 2σ − E1

⇔ 2sAb ≪ sAb − u+
√

(sAb − u)2 + 4max [(sAB − r), 0]u+max [2(sAB − r), 0]
u2N0

σ2

r − 2σ

r − 2σ − E1

⇔ sAb + u ≪
√

(sAb − u)2 + 4max [(sAB − r), 0]u+max [2(sAB − r), 0]
u2N0

σ2

r − 2σ

r − 2σ − E1

sAb≫u
⇔ sAb ≪ sAb ·

√

1 +
4max [(sAB − r), 0]u

s2Ab

+max [2(sAB − r), 0]
u2N0

σ2

r − 2σ

r − 2σ − E1

⇔ 4max [(sAB − r), 0]u ≫ s2Ab or max [2(sAB − r), 0]
u2N0

σ2

r − 2σ

r − 2σ − E1

≫ sAb.

(S3.24)

S3.3 Both single mutants are viable293

Finally, we consider the case sAb = saB = s > −1. With σAb = σaB = σ, deterministically, the294

number of Ab mutants and aB mutants is hence equal at any point of time. In the following,295

we formulate equations in terms of type Ab.296

The wildtype is lethal Ignoring recombination, from generation 0 to generation 1, the297

number of Ab individuals changes to298

nAb(1) = (n̄Ab(1− 2u) + uN0) (1 + s). (S3.25)
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From then on, it evolves according to the recursive equation299

nAb(t+ 1) = (1 + s)(1− 2u)

(

nAb(t)− r
nAb(t)naB(t)

nAb(t) + naB(t)

)

= (1 + s)(1− 2u)
(

nAb(t)−
r

2
nAb(t)

)

,

(S3.26)

where the second line holds since nAb(t) = naB(t). With this, we have300

nAb(t+ 1) = nAb(1)
(

(1 + s)(1− 2u)
(

1−
r

2

))t

. (S3.27)

From generation 1 on, the number of newly generated AB individuals follows a Poisson distri-301

bution with parameter302

(

u(nAb(t) + naB(t)) +
r

2
nAb(t)

)

(1 + sAB). (S3.28)

Putting all together and using again nAb(t) = naB(t), we obtain for rescue from generation 1303

on:304

1− e
−

∞
∑

t=0
(2u+ r

2)nAb(t+1)(1+sAB)p
(AB)
est

. (S3.29)

With305

∞
∑

t=0

nAb(t+ 1) =
∞
∑

t=0

nAb(1)
(

(1 + s)(1− 2u)
(

1−
r

2

))t

= nAb(1)
1

1− (1 + s)(1− 2u)
(

1− r
2

) ,

(S3.30)
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this yields306

1− e
−

(

(1+sAB)(2u+ r
2 )nAb(1)

1−(1+s)(1−2u)(1− r
2 )

)

p
(AB)
est

≈ 1− e
−2sAB

r
2

uN0(1+s)
−σ

r
2+2u−s . (S3.31)

Combining with Eq. (S3.1), we obtain for the total probability of evolutionary rescue307

Prescue = 1− FAB(e
−(1+sAB)(1−r)p

(AB)
est )× e

−
(

r
n̄Abn̄aB

N0
(1+sAB)+u(n̄Ab+n̄aB)(1+sAB)(1−r)

)

p
(AB)
est

× e
−

(

(1+sAB)(2u+ r
2 )nAb(1)

1−(1+s)(1−2u)(1− r
2 )

)

p
(AB)
est

.

(S3.32)

The wildtype is as fit as the single mutants As a second scenario, we consider the special308

case sab = sAb = saB = s. If we ignore mating between single mutants (note that unlike in the309

previous scenario, they are now relatively rare), we obtain for the deterministic dynamics310

nab(t+ 1) = (1 + s)(nab(t)− 2unab(t)), (S3.33a)

311

nAb(t+ 1) = (1 + s)(nAb(t) + unab(t)), (S3.33b)

312

naB(t+ 1) = (1 + s)(naB(t) + unab(t)) (S3.33c)

with the solutions313

nab(t) = n̄ab((1 + s)(1− 2u))t, (S3.34a)

314

nAb(t) = naB(t) =
1

2

(

N0(1 + s)t − n̄ab((1 + s)(1− 2u))t
)

. (S3.34b)
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Type AB is generated at rate315

r
nAb(t)naB(t)

N(t)
(1 + sAB) + u(nAb(t) + naB(t))(1 + sAB) (1− r) (S3.35)

and establishes with probability p
(AB)
est as given by Eq. (S1.23). This yields for the probability316

of evolutionary rescue via this pathway317

1− e
−

∞
∑

t=1

(

r
nAb(t)naB(t)

N(t)
(1+sAB)+u(nAb(t)+naB(t))(1+sAB)(1−r)

)

p
(AB)
est

. (S3.36)

Evaluating the sums yields318

∞
∑

t=1

nAb(t)naB(t)

N(t)

= −
N0

4s
−

N0 − n̄Ab − n̄aB

2(1− (1 + s)(1− 2u))
+

(N0 − n̄Ab − n̄aB)
2

4N0

1

1− (1 + s)(1− 2u)2
−

n̄Abn̄aB

N0

.

(S3.37a)

319

∞
∑

t=1

(nAb(t) + naB(t)) = −
N0

s
−

N0 − n̄Ab − n̄aB

1− (1 + s)(1− 2u)
− n̄Ab − n̄aB. (S3.37b)

Putting it all together, we obtain:320

Prescue = 1−F (e−(1+sAB)(1−r)p
(AB)
est )× e

−
(

r
n̄Abn̄aB

N0
(1+sAB)+u(n̄Ab+n̄aB)(1+sAB)(1−r)

)

p
(AB)
est

× e
−

(

r(1+sAB)
∞
∑

t=1

nAb(t)naB(t)

N(t)
+u(1−r)(1+sAB)

∞
∑

t=1
(nAb(t)+naB(t))

)

p
(AB)
est

.

(S3.38)
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The wildtype is fitter than the single mutants If sAb = saB = s and sab > s, we can321

proceed as in the previous section. The dynamics of the wildtype population are again given322

by323

nab(t) = n̄ab(1 + sab)
t(1− 2u)t. (S3.39)

The dynamics of the single mutants follow324

nAb(t+ 1) = naB(t+ 1) = (1 + s)(nAb(t) + unab(t)), (S3.40)

yielding325

nAb(t) =
(uN0(1 + s) + n̄Ab(s− sab)(1− 2u))(1 + s)t − un̄ab(1 + s)(1 + sab)

t(1− 2u)t

s− sab + 2u(1 + sab)
.

(S3.41)

With the approximations326

C := s− sab + 2u(1 + sab),

α := un̄ab(1 + s),

β := uN0(1 + s) + n̄Ab(s− sab)(1− 2u),

(S3.42)
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and N(t) ≈ nab(t) we obtain327

∞
∑

t=1

(nab(t) + naB(t)) =

β
∞
∑

t=1

(1 + s)t − α
∞
∑

t=1

(1 + sab)
t(1− 2u)t

C

=
β 1+s

−s
− α (1+sab)(1−2u)

1−(1+sab)(1−2u)

C

(S3.43a)

328

∞
∑

t=1

nAb(t)naB(t)

N(t)
=

α2(1 + sab)
2t(1− 2u)2t − 2αβ(1 + sab)

t(1− 2u)t(1 + s)t + β2(1 + s)2t

C2n̄ab(1 + sab)t(1− 2u)t

=
1

C2n̄ab

(

α2 (1 + sab)(1− 2u)

1− (1 + sab)(1− 2u)
− 2αβ

1 + s

−s
+ β2 (1 + s)2

(1 + sab)(1− 2u)− (1 + s)2

)

.

(S3.43b)

Since the wildtype dominates at all times (unless rescue has occurred), we can again approxi-329

mate p
(AB)
est = 2max [(sAB − r), 0].330

Fig. S3.3 shows Prescue for various values of sab with all other parameter values as in Fig. 3C.331

S3.4 Both single mutants have fitness greater than one332

We here formalize the special case sab = −1, sAb = saB = s > 0. For this, we consider pairs333

consisting out of one Ab and one aB mutant. Such a pair reproduces at rate 1
2
+ ŝ and dies at334

rate 1
2
− ŝ with ŝ = ln (1 + s). At rate r

2
(1 + sAB), it turns into an individual of type AB (this335

ignores mutation). The growth rate of a pair is 2ŝ, since in reality, we are not interested in336

pairs but establishment of any type (Ab, aB, AB) is fine, and each single mutant has growth337

rate s. However, it is pairs that convert into double mutants, and with this approximation,338

33



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.02  0.04  0.06  0.08  0.1

P
re

s
c
u
e

r

sab=-0.003
sab=-0.01
sab=-0.03

Fig. S3.3: Probability of evolutionary rescue as a function of recombination for
various values of sab. All other parameter values are chosen as in Fig. 3C. Theoretical
predictions are based on Eq. (S3.38) with Eq. (S3.43a). Symbols denote simulation results. Each
simulation point is the average of 5 · 104 replicates. For the simulations with sab = −0.003,
we considered a population as rescued when the number of double mutants reached 0.2N0

(changing the criterion to 0.3N0 did not alter the results).

we assume that for every single mutant of type Ab, there is a single mutant of type aB to339

recombine with and vice versa. A single individual of type AB establishes a permanent lineage340

with probability p
(AB)
est ≈ 2sAB. Using Eq. (S1.8), we can calculate the survival probability of a341

process founded by exactly one pair:342

p
(Ab,aB)
est = 1−

1 + ŝ+ r
2
(1 + sAB)−

√

(ŝ− r
2
(1 + sAB)2 + (1 + 2ŝ)r(1 + sAB)p

(AB)
est

1 + 2ŝ

≈ 2s−
r

2
+

√

(

2s−
r

2

)2

+ 2sABr.

(S3.44)

The probability of evolutionary rescue from generation 1 on is given by343

1− e−n̄Ab(1+sAb)p
(Ab,aB)
est . (S3.45)
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Neglecting the contribution of double mutants from the standing genetic variation to rescue,344

the possibility to generate the double mutant has a significant effect if either345

p
(Ab,aB)
est ≫ 4s or p

(Ab,aB)
est ≪ 4s. (S3.46)

These conditions simplify in few steps to346

sAB ≫ 2s or sAB ≪ 2s. (S3.47)

S3.5 Two-step rescue vs single-step rescue347

We briefly discuss some instances where two-step rescue (as analyzed in this paper) is more348

likely to happen than single-step rescue (where there are only two types – the wildtype and the349

rescue type – and a single mutational step between them). For easier comparison, we denote350

the wildtype by ab and the rescue genotype by AB for single-step rescue as well. Mutation351

from wildtype to rescue mutants may happen with probability us. With Eq. (S1.4), the p.g.f.352

for the number of rescue mutations in the standing genetic variation is derived to be353

F ssr
AB(y) =

(

2σAB

y + σABy + σAB − 1

)2usN0

. (S3.48)
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The probability of evolutionary rescue for single-step rescue is given by354

P ssr
rescue = 1− F ssr

AB(e
−(1+sAB)p

(AB)
est )e

−
usN0
−sab

(1+sAB)p
(AB)
est

= 1− e
−p

(AB)
est (1+sAB)

[

usN0
−σAB

(1+σAB)−
usN0
−sab

]

≈ 1− e
−2sAB

[

usN0
−σAB

−
usN0
−sab

]

.

(S3.49)

where the first summand in the brackets accounts for the contribution of standing genetic355

variation and the second one for new mutations after the environmental change (cf. also Orr356

and Unckless (2008, 2014); Bell and Collins (2008); Uecker et al. (2014)).357

In the following, we focus on scenarios where the wildtype is lethal in the new environment and358

approximate single-step rescue by359

P sgv
rescue ≈ 1− e

−2sAB
usN0
−σAB . (S3.50)

Lethal single mutants For two-step rescue, we use approximation Eq. (8):360

Prescue ≈ 1− e
−2sAB

u2N0
σ2

r−2σ
r−2σ−E1

r large/E1 = 0
≈ 1− e−2sAB

u2N0
σ2 . (S3.51)

Comparing with Eq. (S3.50) shows that two-step rescue is more likely if361

u2

σ2

r − 2σ

r − 2σ − E1

>
us

−σAB

. (S3.52)
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For large recombination, this reduces to362

u2

σ2
>

us

−σAB

. (S3.53)

For E1 = 0 (which implies σAB ≈ 2σ):363

u2

−σ
>

us

2
. (S3.54)

One viable single mutant Following section S3.2, two-step rescue can be approximated by364

1− e
−2sAB

u2N0
σ2

r−2σ
r−2σ−E1 × e

−
uN0
−σ

2sABu

−sAb . (S3.55)

Under these conditions, two-step rescue is more likely than single-step rescue if365

u2

σ2

r − 2σ

r − 2σ − E1

+
u2

σsAb

>
us

−σAB

. (S3.56)

Again, for strong recombination:366

u2

σ2
+

u2

σsAb

>
us

−σAB

. (S3.57)

And for E1 = 0:367

u2

−σ
+

u2

−sAb

>
us

2
. (S3.58)
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Viable single mutants Last, we consider a scenario with both single mutants viable. With368

Eq. (10), the probability of evolutionary rescue is given by369

1− e
−2sAB

u2N0
σ2

r−2σ
r−2σ−E1 × e

−2sAB
uN0
−σ

(1+sAb)
r

r−2sAb . (S3.59)

This yields for the condition that two-step rescue is more likely than single-step rescue370

u2

σ2

r − 2σ

r − 2σ − E1

+ (1 + sAb)
u

−σ

r

r − 2sAb

>
us

−σAB

, (S3.60)

which for strong recombination simplifies to371

u

−σ

(

u

−σ
+ (1 + sAb)

r

r − 2sAb

)

>
us

−σAB

. (S3.61)

For E1 = 0:372

u2

−σ
+ (1 + sAb)

ur

r − 2sAb

>
us

2
. (S3.62)

S4 Limits of the approximations373

Our approximations assume that wildtype individuals and single mutants are sufficiently fre-374

quent to describe their dynamics deterministically. This requires a sufficiently large population375

size and a sufficiently high fitness of single mutants prior to the change in the environment.376

Fig. S4.4 takes Fig. 3A as a starting point and varies several parameters in order to probe377
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Fig. S4.4: Probability of evolutionary rescue as a function of recombination for
various population sizes N0 with N0sAB = 2000 kept constant (Panel A), recom-
bination r for various values of s (Panel B), and the strength of selection against
single mutants in the old environment σ (Panel C). The figure varies parameters from
Fig. 3A. For all Panels: u = 2 · 10−6, σAB = −0.1, sab = −1. Panel A: N0sAB = 2000,
σ = −0.01, s = −0.01; Panel B: sAB = 0.002, σ = −0.01, N0 = 106; Panel C: sAB = 0.002,
r = 0.5, N0 = 108. Symbols denote simulation results. Each simulation point is the average of
5 · 104 replicates.

the limits of the approximations. Panel A shows Prescue for various initial population sizes N0378

with the product N0sAB kept constant such that the theoretical predictions virtually coincide.379

However, as the population size gets smaller, simulation results greatly deviate from this pre-380

diction. Note that the number of single mutants for N0 = 105 is as low as n̄Ab = n̄aB = 20.381

While in Panel A the number of single mutants in the standing genetic variation differs for382

different population sizes, it is – on average – the same at the right edge of Panel B (N0 = 106,383

σ = −0.01) and the left edge of Panel C (N0 = 108, σ = −1) but stochasticity is higher in384

Panel B, leading to larger deviations between the analytical prediction and simulation results.385
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