ER-positive breast cancer cells are poised for RET-mediated endocrine resistance

Sachi Horibata, ${ }^{1,2}$ Edward J. Rice, ${ }^{1}$ Hui Zheng, ${ }^{1}$ Lynne J. Anguish, ${ }^{1}$ Scott A. Coonrod, ${ }^{1,3}$ and Charles G. Danko ${ }^{1,3,4}$

${ }^{1}$ Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
${ }^{2}$ Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
${ }^{3}$ Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
${ }^{4}$ Lead Contact

Address correspondence to:
Charles G. Danko, Ph.D.
Baker Institute for Animal Health
Cornell University
Hungerford Hill Rd.
lthaca, NY 14853
Phone: (607) 256-5620
E-mail: dankoc@gmail.com
Scott A. Coonrod, Ph.D.
Baker Institute for Animal Health
Cornell University
Hungerford Hill Rd.
Ithaca, NY 14853
Phone: (607) 256-5657
E-mail: sac269@cornell.edu

Cell Clone Resistance	Treatment	Time	Uniquely mapped reads	
B7	TamS	None		21314970
C11	TamS	None		20333086
G11	TamR	None		22161480
H9	TamR	None		23454417
Total:				$\mathbf{8 7 , 2 6 3 , 9 5 3}$

Supplementary Table 1. PRO-seq data collection and sequencing depth. PRO-seq was conducted in the indicated cell clone and biological condition. Raw PRO-seq data were sequenced to a read depth >20 million uniquely mapped reads and aligned using established pipelines.

Supplementary Figure 1. dREG identifies highly enriched active enhancers and promoter makers in MCF-7 cells. (a) Heatmap depicting PRO-seq, Dnase-l-seq, H3K27ac, and H3K4me3 near 39,753 transcriptional regulatory elements (TREs) identified using dREG-HD from PRO-seq data (left) in TamS and TamR MCF-7 cells. (b) Transcription and dREG scores in the locus near the CCND1 gene in B7 ${ }^{\text {TamS }}$ and G11 ${ }^{\text {TamR }}$ MCF-7 cells. (c) Luciferase activity in $B 7^{\text {TamS }}$ and G11 ${ }^{\text {TamR }}$ MCF-7 cells in the presence of an enhancer located approximately 300 kb downstream of CCND1. All data normalized to renilla control. Data are represented as mean \pm SEM ($n=3$). ** $p<0.01$, **** $p<0.0001$.

Supplementary Figure 2. GDNF induces fulvestrant resistance in TamS cells. (a) Cell viability of $B 7^{\text {Tams }}$ cells in the presence or absence of $10 \mathrm{ng} / \mathrm{ml}$ GDNF and/or 100 mM fulvestrant for 4 days. Data are represented as mean \pm SEM $(n=3)$. ** $p<0.005$, **** $p<0.0001$.

Supplementary Figure 3. RET ligand expression is low compared to RET and GFR $\alpha 1$ receptors. (a) Density scatterplot showing the relationship between GFRA1 and ESR1 expression levels in 1,177 primary breast cancer samples in the cancer genome atlas (TCGA). Pearson's $\mathrm{R}=0.52$; $\mathrm{p}<2.2 \mathrm{e}-16$. (b) Violin plots depicting the absolute normalized expression level of receptor-tyrosine kinase receptors and ligands in 1,177 primary breast cancer samples (TCGA). For each color, the pair of genes represents receptor (left) and ligand (right). Gray represents the RET gene which encodes the RET tyrosine kinase receptor required for signal transduction of all four RET ligands.

