Online Methods
Average normalized difference

Average normalized difference is used to measure patient similarity where an input feature
used five or fewer variables. For a single variable g (e.g. age), similarity based on
normalized difference is defined as:

abs(a — b)

max(g) — min(g)

S(a,b,g) =1—

The term with the fraction measures normalized difference, and inverting the value (by
subtracting it from 1) results in the similarity metric. For a set of k variables G={g1,g2,..gx},
where 1<=k<=5, the similarity S between two patients a and b is defined as the average of

normalized differences for each of the variables:

Zf: magbs'(a—ir_nl?ig ;
S(a’ b, G) — 1 (g4) (g:)

k

Integrated patient network

The integrated patient network starts by compiling the edges from all feature-selected
networks into a single network, such that each pair of patients now has multiple similarity
edges. The similarity between two patients in the integrated network is the mean of these
pairwise similarities. Visually, the goal is to view more similar patients as being more
tightly grouped, and more dissimilar patients as being farther apart. Similarity is therefore

converted to dissimilarity, defined as 1-similarity. Weighted shortest path distances are



computed on this resulting dissimilarity network. For visualization, only edges
representing the top 20% of distances in the network are included. For the network with a
single clinical network, the top 50% of distances are included, to limit the number of

patients without edges.

Pathway networks

Pathway definitions were aggregated from HumanCyc! (http://humancyc.org), 10B’s
NetPath? (http://www.netpath.org), Reactome3# (http://www.reactome.org), NCI Curated
Pathways®, mSigDB®¢ (http://software.broadinstitute.org/gsea/msigdb/), and Panther?
(http://pantherdb.org/) (downloaded from
http://download.baderlab.org/EM_Genesets/January_24_2016/Human/symbol/Human_Al
|Pathways_January_24_2016_symbol.gmt)8. Only pathways with 10 to 500 genes were
included (1,801 pathways). Pathway-level patient similarity was defined as the Pearson
correlation of the expression vectors corresponding to member genes, and the network

was sparsified (see next section).

Sparsification of input networks

All negative similarities are set to zero. The 50 strongest correlations are kept per patient.
In case of ties, all interactions tied with the 50th ranked interaction are retained, for a
maximum of 2% of the sample size, or 600 patients. This follows the parameters
established in the GeneMANIA algorithm (used here to integrate networks) for gene

expression correlation network sparsification®.



Map of feature-selected networks

The Enrichment Map app (v2.1.1-HOTFIX_1) in Cytoscape 3.5.110 was used to generate the
map of selected pathways in Figure 2D8. A Jaccard overlap threshold of 0.05 was used to
prune identical gene sets. AutoAnnotate v1.1.0 was used to cluster similar pathways using

MCL clustering with default parameters. The network was visualized in Cytoscape 3.5.139,

The weighted shortest path between patient classes (a node set) was computed using
Dijkstra’s method (igraph v1.0111); distance was defined as 1-similarity (or edge weight
from a patient similarity network). The overall shortest path was defined as the mean

pairwise shortest-path for a node set.



Supplementary Figures
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Supplementary Figure 1. Details of the netDx feature selection and patient classification
steps.

A. Machine learning is used to identify networks predictive of each patient class. Data are
split into training and blind test samples, and feature selection uses only training samples.
Cross validation is used to score how frequently a network is predictive of a given class
(e.g. high-risk). This step results in network scores, with higher values indicating networks
that contribute more to prediction. These scores can be thresholded to identify a set of
high-confidence networks for each class of interest (pink and blue cylinders).

B. Blind test patients are ranked by similarity to known examples from the training set. For
this step, only class-specific feature-selected networks are used. Patients are assigned to

the class to which they have highest similarity.
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Supplementary Figure 2. Conceptual overview of the GeneMANIA algorithm, used for
network integration here. GeneMANIA is a network-based recommender system that ranks
all nodes by similarity to an input query (or “positive” nodes). In netDx, the nodes are
patients and GeneMANIA uses the set of user-defined patient similarity networks (left). An
example application is predicting KIRC poor survival by ranking all patient tumours by
similarity to known KIRC poor survivors. The patient ranking is achieved by a two-step
process. First, input networks are integrated into a single association network via
regularized regression that maximizes connectivity between nodes with the same label and
reduces connectivity to other nodes (middle); this step computes network weights or
predictive value. Second, label propagation is applied to the integrated network starting

with the query nodes (red), thereby ranking patients from most to least similar to the

query (right).
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Supplementary Figure 3. AUPR and F1 score for PanCancer binary survival prediction,
when each datatype is coded as a single similarity network. (A) shows AUPR across cancer
types and data combinations, and (B) shows F1 score across cancer types and data
combinations. Each dot shows mean over 100 train/blind test splits, and error bars show

standard error of the mean (SEM).
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Supplementary Figure 4. ROC curves for PanCancer binary survival discrimination when
each source is represented by a single network. Rows are input data types and columns
show data for different cancer types. Blue: Mean ROC curve (calculated by averaging rank-
ordered x and y-values respectively; Black: random predictor performance. N shows the
number of splits with 1+ features selected; splits without selected features are not

included. Blank slots mean that data type was not available for the given cancer type.
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Supplementary Figure 5. Precision-recall curves for PanCancer binary survival
discrimination when each source is represented by a single network. Rows are data types
included, and columns show data for different cancer types. Blue: Mean PR curve
(calculated by averaging rank-ordered x and y-values respectively; Black: y=0.5. N indicates
the number of splits with 1+ feature selected networks; splits without feature selected
networks are not included in the plot. Blank slots mean that data type was not available for

the given cancer (no protein data for GBM and no methylation data for LUSC).
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Supplementary Figure 6. Separation of survival profiles of netDx-predicted good and

poor survivors in 4 tumour types (panels). Each panel shows data for an individual tumour
type and each boxplot shows log-rank test p-values for 100 train/blind test trials for a
given combination of input data. The background for each boxplot is coloured based on
whether the condition passed, conditionally failed, or failed the test of having separable
survival curves in the two predicted classes (legend). Test status is based on the fraction of
the 100 splits to achieve p < 0.05 on the log-rank test. Reference lines indicate p = 0.05

(solid) and p = 0.0005 (Bonferroni-corrected p; dashed).
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A. Clinical data only, one network B. Clinical data only, one network per variable
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Supplementary Figure 7. Pairwise weighted shorted path distances for the KIRC
integrated patient similarity network, based on different feature designs. Each panel shows
data for a single configuration. Within a panel, the boxplot and violin plots show the
distribution of pairwise distances; nodes are grouped by the class identity of node pairs.

A. Predictor configuration limited to clinical data, where clinical data is represented as
a single patient similarity network.

B. Limited to clinical data, where each clinical variable is represented as its own

patient similarity network.

C. Limited to gene expression data, where input features are defined at the pathway
level.
D. Clinical data combined with gene-expression-based pathways that were feature-

selected in C.

*** one-sided WMW (same class < different classes or same class < overall), p < 0.001
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Supplementary Figure 8. Effect of individual clinical variables on KIRC binary survival

prediction.

A.

Area under the ROC curve and precision-recall curve of a netDx predictor where
clinical data is grouped as a single input feature, compared to one where each
variable is its own input feature. Shown is the mean over 100 train/blind test splits;
error bars show SEM.

Individual clinical variables stratified by patient survival outcome. P-values shown

are from two-sided WMW tests.
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Supplementary Figure 9. Effect of feature design and pathway-level features for mRNA on
predicting KIRC survival

A. netDx predictor performance based on whether gene expression was organized as a
single patient similarity net, into pathway-based features, random gene groupings (pseudo
pathways) size-matched with annotated pathways, or if the gene expression matrix was
scrambled to simulate a random data source. Shown are mean+/-SEM over 100 train/test

splits. P-values from one-sided WMW tests.
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B. Performance of log-rank survival test for netDx-predicted low and high survival. Each
boxplot shows the statistical significance (-log10(p)) for a given predictor configuration,
over 100 test sets. Legend identical to Figure 3. The two distributions have different
medians (one-sided WMW p < 0.003).

C. Integrated patient similarity network for RNA as a single feature (left) as compared to
pathway-level features (right). Each node is a patient, coloured by survival type (red: poor
survival; blue: good survival). An edge indicates the mean similarity between the two
patients across all feature-selected networks (union for good and poor survival). The
network was pruned to retained the largest 20% of distances, and a spring-embedded

layout was applied in Cytoscape.
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Supplementary Figure 10. Integrating expression of feature-selected pathways with

clinical data.

A, B. Predictor performance based on whether clinical data was organized as a single
patient similarity net, into variable-level features, or integrated with pathway-level
features from gene expression data, using pathways that had been previously feature-
selected. Shown are mean AUROC (A) or AUPR (B) +/-SEM over 100 train/test splits. P-
values from one-sided WMW tests.

C. Performance of log-rank survival test for netDx-predicted low and high survival. Each
boxplot shows the statistical significance (-log10(p)) for a given predictor configuration,
over 100 test sets. Legend identical to Figure 3. The difference between the two is not

statistically significant (one sided WMW p > 0.2)
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Supplementary Figure 11. Predictor performance increases with increasing number of
selected features. Binary survival was being predicted for renal clear cell carcinoma (KIRC),
using solely gene expression data. “Pseudo pathways” were generated by randomly-
sampling exactly 10 genes, out of a universe of genes not annotated as being in pathways
(11,326 genes). The x-axis shows the effect of increasing the number of pseudo pathways
provided as input to test sample classification (artificially feature selected). Performance is
shown as mean AUROC (top) or AUPR (bottom) across 25 train/test splits. Error bars show

SEM.
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Supplementary Tables

KIRC | OV | LUSC | GBM
Clinical 0.78 | 0.67 | 0.72 | 0.62
sCNA 0.63 | 0.62|0.61 |0.45
Mir 0.64 | 0.58 | 0.58 | 0.48
RNA 0.66 | 0.62]0.61 |0.58
Prot 0.72 | 0.6 |0.68 | NA
DNAm 0.69 | 0.52 | NA 0.51
clinical + RNA 0.77 | 0.66 | 0.7 0.57
clinical + prot 0.78 | 0.66 | 0.7 NA
clinical + mir 0.78 | 0.67 | 0.7 0.56
clinical + DNAm 0.78 | 0.66 | NA 0.56
clinical + CNV 0.77 | 0.66 | 0.65 | 0.56
all 0.79 | 0.66 | 0.63 | 0.52

Supplementary Table 1. Average F1 for binarized survival prediction data for kidney,
ovarian, lung and brain cancers. In each case, the value shown is the average of F1 across

100 train/blind test splits.
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Pathway Max score in
>=70% trials

Reactions specific to the complex N-glycan synthesis pathway 10

O

Defects in cobalamin (B12) metabolism

Defects in vitamin and cofactor metabolism

Metabolism of folate and pterines

Platelet adhesion to exposed collagen

Thyroxine biosynthesis

Activation of the pre-replicative complex *

FGFR2 ligand binding and activation *

Regulation of pyruvate dehydrogenase (PDH) complex *

RORA activates gene expression

[eolfleclifechec)[ec] N} No] No] No]

TAK1 activates NFkB by phosphorylation and activation of IKKs
complex *

BioCarta STEM pathway *

Calnexin calreticulin cycle

Glypican 1 network

Hedgehog off state

Retinol biosynthesis *

VEGF and VEGFR signaling networks

Androgen biosynthesis

Hedgehog ligand biogenesis

Regulation of cholesterol biosynthesis by SREBP (SREBF)

Synthesis of PC *

Metabolism of water-soluble vitamins and cofactors

The NLRP3 inflammasome *

EalicaticatieNieNie N e RN R NERNERNNENERN|

Removal of aminoterminal propeptides from gamma-
3carboxylated proteins

Gamma-carboxylation, transport, and amino-terminal cleavage | 3
of proteins

Supplementary Table 2. Scores for pathway-level networks for predicting good survival
in renal clear cell carcinoma (KIRC) survival. Score shown is the best achieved by a given
network for over 70% of the 100 trials. Only networks scoring a max of 3 or more out of 10
in over 70% trials are shown here. Asterisks indicate singleton nodes omitted from the

Enrichment Map in Figure 4A.
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Pathway name Max score in
>=70% trials

Abacavir transport and metabolism 10
Bile salt and organic anion SLC transporters 10
Metabolism of water-soluble vitamins and cofactors 10
Platelet Adhesion to exposed collagen 10
Regulation of IFNA signaling 10
Thyroxine biosynthesis 10
Aquaporin-mediated transport 9

Calnexin calreticulin cycle *

Class C 3 (Metabotropic glutamate pheromone receptors) *

9
9
Metabolism of folate and pterines 9
POUS5F1 (OCT4), SOX2, NANOG activate genes related to 9
proliferation *

Vasopressin regulates renal water homeostasis via 9
Aquaporins

Vitamin B5 (pantothenate) metabolism 9
Androgen biosynthesis 8
Regulation of gene expression by Hypoxia-inducible Factor * | 8

Hormone ligand-binding receptors 4

Supplementary Table 3. Scores for pathway-level networks for predicting poor
survival in renal clear cell carcinoma (KIRC) survival. Score shown is the best achieved
by a given network for over 70% of the 100 trials. Only networks scoring a max of 3 or
more out of 10 in over 70% trials are shown here. Asterisks indicate singleton nodes

omitted from the Enrichment Map in Figure 4A.
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