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Supplementary Note

1 UK Biobank data

We analyzed genetic data from the UK Biobank full release consisting of 487,409 samples typed at
~800,000 markers and imputed to ~93 million variants [5]. We restricted the sample set to 459,327
individuals of European ancestry (based on self-reported white ethnicity), and for linear regres-
sion analyses, we further restricted the sample set to 337,539 British-ancestry individuals passing
principal component analysis filters and containing no third-degree or closer relationships [5].
(The ancestry filter eliminated ~50,000 samples and the relatedness filter eliminated an additional
~70,000 samples.) We restricted the genotyped marker set to autosomal markers with missingness
<10% and minor allele frequency (MAF) >0.1%, leaving 672,292 markers. We analyzed ~20
million imputed variants with MAF >0.1% (applying this filter within BOLT-LMM).

In our running time benchmarks, we also analyzed genetic data from the UK Biobank interim
release of 152,249 samples imputed to ~72 million variants. Applying analogous exclusions pro-
duced a sample set of 145,613 European-ancestry individuals typed at 651,011 autosomal markers
with missingness <10% and MAF>0.1%. We used QCTOOL v2 to convert imputed data between
the BGEN vl.1 and v1.2 formats (to benchmark previous versions of BOLT-LMM, which only
support the BGEN v1.1 format).

We analyzed 23 phenotypes selected based on phenotyping rate >80% (Supplementary Ta-
ble 1), SNP-heritability ,>>0.08 (Supplementary Table 2), and low correlation between traits.
We performed basic QC on each trait, removing outliers outside the reasonable range for each
quantitative trait and quantile normalizing within sex strata after correcting for covariates as de-
scribed in previous GWAS [11-16].

In all association analyses, we included assessment center, genotyping array, sex, age, and age
squared as covariates. In linear regression analyses (implemented in the BOLT-LMM software),
we also included 20 principal components to correct for ancestry (provided with the UK Biobank
data release [5]). In our primary BOLT-LMM analyses, we included 20 principal components
computed on our filtered marker set using the FastPCA [9] algorithm (as implemented in PLINK
2.0[17] ——pca approx). In auxiliary BOLT-LMM analyses, we varied the number of principal
components included as covariates (Supplementary Table 7).

2 BOLT-LMM version 2.3

Our new release of the BOLT-LMM software (version 2.3) performs much faster processing of
imputed genotypes, which we discovered was the bottleneck for analyses of extremely large im-
puted data sets (e.g., ~93 million variants in the UK Biobank N=500K release). This step of the
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BOLT-LMM computation, which occurs after the model-fitting steps and scales only linearly in
sample size and variant count, nonetheless accounted for the large majority of running time for
previous versions of BOLT-LMM on UK Biobank data. To overcome this bottleneck, we imple-
mented fast multi-threaded support for analysis of imputed genotypes in the new BGEN v1.2 file
format (used to encode genotype probabilities in the UK Biobank full release). BOLT-LMM v2.3
analyzes these imputed genotypes by reading compressed probability data for blocks of 400 vari-
ants at a time from disk and then analyzing these data in parallel compute threads. Analysis of
a single variant involves decompressing the genotype probabilities, computing the variant’s allele
frequency and INFO score (and exiting early if MAF or INFO thresholds are not met), projecting
out covariates, and computing the BOLT-LMM test statistic (via a dot product with the residualized
phenotype and rescaling term [3]).

For analyses of very large data sets with BOLT-LMM v2.3, we additionally now recommend
including principal components as covariates for the purpose of increasing the rate of convergence
of the iterative computations performed during BOLT-LMM’s model-fitting steps [3]. For pheno-
types with high heritability, these steps of the computation account for the majority of run time
(after the improvements to processing of imputed data described above) but can be sped up by
including PC covariates. Projecting out top PCs improves the conditioning of the matrix com-
putations that BOLT-LMM implicitly performs, improving convergence; details are provided in

Section 5 below.

3 Power analyses

We benchmarked statistical power of three association analysis approaches: linear regression (us-
ing 20 principal component covariates), BOLT-LMM using a Gaussian SNP effect prior (BOLT-
LMM-inf, equivalent to the standard “infinitesimal” mixed model [1,2, 18-23]), and BOLT-LMM
using its default mixture-of-Gaussians prior on SNP effect sizes, which accounts for larger-effect
SNPs [3]. We tested all three methods on the subset of N=337,539 unrelated British samples, and
we additionally tested BOLT-LMM-inf and BOLT-LMM (which are robust to sample structure) on
the full set of N=459,327 European-ancestry samples.

We performed two types of benchmarks to assess statistical power afforded by each analysis.
First, we counted independent genome-wide significant associations identified by each analysis.
To obtain counts that were robust to linkage disequilibrium among associated variants and avoided
double-counting of loci, we used PLINK’s LD clumping algorithm [17] using LD computed in
N=113,851 unrelated British individuals [24] at 9.6 million imputed SNPs with MAF>0.1% (cor-
responding to a conservative genome-wide significance threshold of p<5x10~). We used a strin-
gent 5Mb window and R? threshold of 0.01 for LD clumping, and we further collapsed associ-
ated SNPs within 100kb of each other. These analyses demonstrated that BOLT-LMM-inf and



BOLT-LMM achieved considerable power gains over linear regression when run on the same set
of N=337,539 unrelated British samples (21% and 28% increases in locus discovery, respectively;
Supplementary Table 2). Expanding the sample set to include all European individuals (allowing
relatives) achieved even larger boosts in power (76% and 84%, respectively; Fig. 1a and Supple-
mentary Table 2).

Second, to provide additional insight into the power gain achieved by BOLT-LMM, we exam-
ined the amounts of phenotypic variance explained by BOLT-LMM’s internal linear predictors and
the increases in 2 test statistics (for BOLT-LMM-inf and BOLT-LMM vs. linear regression) at
associated SNPs. We previously showed that these two quantities are tightly coupled [3]; the intu-
ition is that independent of its ability to analyze data sets containing sample structure (and thereby
gain power by analyzing more samples), BOLT-LMM also achieves increased power by implicitly
conditioning on polygenic predictions using genome-wide SNPs [3,6]. Conditioning on polygenic
predictions effectively reduces noise in an association test, producing a multiplicative boost in 2
statistics at associated loci in a manner similar to increasing sample size.

We compared the variance explained by BOLT-LMM’s linear predictor—using either the de-
fault mixture-of-Gaussians prior on SNP effect sizes or the single-Gaussian BOLT-LMM-inf model,
equivalent to best linear unbiased prediction (BLUP)—to the variance theoretically explained by
an optimal linear predictor, i.e., SNP-heritability h,*. Variance explained by the linear predic-
tors within BOLT-LMM and BOLT-LMM-inf were estimated internally by the BOLT-LMM soft-
ware via out-of-sample benchmarks (training on 80% of samples and testing on the remaining
20%). We observed that for several traits, BOLT-LMM successfully predicted more than half of
SNP-heritability; for height and hair color, BOLT-LMM predicted >40% of phenotypic variance
(Fig. 1b, Supplementary Fig. 1, and Supplementary Table 3).

To estimate the effective sample size achieved by BOLT-LMM and BOLT-LMM-inf, we then
measured the boosts in y? association statistics of BOLT-LMM and BOLT-LMM-inf (on either
N=337,539 or 459,327 samples) versus linear regression on N=337,539 unrelated British sam-
ples. Specifically, for BOLT-LMM on N=459,327 samples, we computed the median ratio of
BOLT-LMM ? statistics on N=459,327 samples to linear regression y? statistics (on N=337,539
samples) across genotyped SNPs with x?>30 in BOLT-LMM N=337,539 analyses. We ascer-
tained associated SNPs in this way to avoid biasing our benchmarks in favor of either BOLT-LMM
(N=459,327) or linear regression (N=337,539). We conducted the other benchmarks in an analo-
gous manner; for each pair of association analyses that we compared, we always used a third set of
association test statistics to ascertain associated SNPs. We observed boosts in y? test statistics at
associated SNPs (equivalently, boosts in effective sample size) that tracked closely with the propor-
tions of variance predicted by BOLT-LMM and BOLT-LMM-inf (Fig. 1b, Supplementary Fig. 1,
and Supplementary Table 3). For traits in which BOLT-LMM predicted only a very small fraction
of phenotypic variance (e.g., hypothyroidism and smoking status), we observed that BOLT-LMM



N=459,327 analyses still achieved moderate gains in association power over linear regression on
N=337,539 unrelated British samples; here, BOLT-LMM still benefited from the increased sample
size (achieving power equivalent to ~430K unrelated individuals; Supplementary Table 3). For
traits in which BOLT-LMM predicted large fractions of phenotypic variance (e.g., height and hair
color), we observed that BOLT-LMM N=459,327 analyses achieved power equivalent to linear
regression on up to ~700K unrelated samples (Fig. 1b, Supplementary Fig. 1, and Supplementary
Table 3). As expected, BOLT-LMM achieved substantial additional gains over BOLT-LMM-inf for
traits with larger-effect SNPs (e.g., hair color, tanning ability, and blood cell traits; Supplementary
Table 3).

4 Calibration analyses

To assess the calibration of BOLT-LMM (i.e., control of false positives) when used to analyze
all N=459,327 European samples (keeping related individuals) we performed benchmarks using
LD score regression [7]. For each phenotype, we considered BOLT-LMM N=459,327 association
statistics, linear regression N=337,539 association statistics computed using 20 principal compo-
nent covariates (as a negative control robust to confounding), and linear regression N=337,539
association statistics computed without PC covariates (as a positive control susceptible to slight
confounding from population stratification among British individuals). We used the LDSC soft-
ware to run LD score regression on each set of association statistics using the baselineLD model [8]
(which applies stratified LD score regression, S-LDSC [25]).

We previously proposed using the LD score regression intercept as a way of distinguishing
polygenicity from confounding as possible sources of increased association test statistics [7]. In
theory, SNPs with larger numbers of LD partners have more opportunities to tag causal variants,
such that regressing observed x? statistics (for a properly calibrated association test) against the
LD score of a SNP should produce a regression line with a y-intercept of 1 (even if the mean
x? statistic across all SNPs is larger than 1 due to polygenicity); in contrast, the y-intercept will
be larger than 1 if the association test is confounded by ancestry or relatedness. In practice, we
previously observed that LD score intercepts were typically close to 1 but slightly larger than 1 due
to deviations from the theoretical model (e.g., attenuation bias) [7].

Here, we observe that in highly-powered analyses of traits with substantial heritability, these
deviations push the LDSC intercept well above 1 for uninflated association tests, e.g., PC-corrected
linear regression on unrelated British samples (Supplementary Fig. 2a and Supplementary Table 4).
The reason is that in such analyses, the mean x? test statistic is much larger than 1 (e.g., ~4 for lin-
ear regression N=337,539 and ~7 for BOLT-LMM N=459,327 analysis of height, after excluding
SNPs explaining >0.1% of variance), such that even a slight deviation from theory results in large

intercepts (here, as high as 1.5). In general, we observe that LD score regression intercepts tend



to rise with SNP-heritability and sample size (Supplementary Fig. 2a and Supplementary Table 4).
This behavior of the LDSC intercept makes test statistic inflation difficult to discern based on the
value of the LDSC intercept alone: for example, for the height phenotype, linear regression on
N=337,539 unrelated British samples without principal component covariates—which is suscepti-
ble to inflation—and BOLT-LMM on N=459,327 European samples both have LDSC intercepts of
nearly 1.5.

Fortunately, accounting for differences in mean x? statistic for different phenotypes and associ-
ation methods improves the interpretability of the LDSC intercept. The attenuation ratio, (LDSC
intercept — 1) / (mean 2 — 1), calibrates the intercept against the overall shift in y? statistics (due
to polygenicity for uninflated association tests). Here we observe that for each trait, PC-corrected
linear regression and BOLT-LMM have near-identical attenuation ratios, typically around 0.08
(Fig. 1c), whereas uncorrected linear regression typically has larger attenuation ratios, indicating
confounding (Supplementary Fig. 2b and Supplementary Table 4). Across 23 traits, we observe
mean attenuation ratios of 0.078 (s.e.m. 0.006) for PC-corrected linear regression, 0.082 (0.005)
for BOLT-LMM, and 0.104 (0.012) for uncorrected linear regression, providing confidence that
BOLT-LMM is successfully controlling for sample structure (as expected for mixed model meth-
ods) [1,2]. We note that attenuation ratios are broadly smaller under the baselineLD model, which
incorporates genome annotations [8], than under the original LDSC model (Supplementary Ta-

ble 5), consistent with better model fit upon incorporating genome annotations.

5 Running time analyses

We benchmarked the running time of BOLT-LMM v2.3 (with 20 principal component covariates
to increase convergence rate; see below), the previous version of BOLT-LMM [3], and linear re-
gression using 20 principal component covariates (implemented efficiently within the BOLT-LMM
software; cf. Bycroft et al. Table S9 [5]) in example analyses of the years-of-education phenotype.
We ran each method on all European-ancestry individuals in the UK Biobank interim and full data
releases, analyzing ~72M and ~93M imputed SNPs, respectively, and imposing a MAF>0.1%
filter on minor allele frequency. (We ran linear regression on all European-ancestry individuals
for the sake of run time comparison even though this analysis would not be performed in practice
due to potential confounding from sample structure. Also, for BOLT-LMM vl analysis of the full
data release, we analyzed imputed data from only chromosome 22 and extrapolated the compu-
tational cost to the full genome.) We performed all analyses using 8 threads of a 2.10 GHz Intel
Xeon E5-2683 v4 processor and reported the median of 5 runs (Fig. 1d and Supplementary Ta-
ble 6), observing a ~4x speedup of BOLT-LMM v2.3 over the previous version, achieving speed
comparable to linear regression.

We further explored the effect of including varying numbers of principal components as co-



variates in BOLT-LMM analyses to improve convergence speed. During its model-fitting steps,
BOLT-LMM applies iterative methods (specifically, conjugate gradient iteration and variational
Bayes) to eliminate computationally expensive matrix operations that scale quadratically or cubi-
cally with sample size [3]. The cost of a single iteration scales only linearly with N; however, we
previously observed that the number of iterations required to achieve convergence increases slowly
with N [3]. Our analyses here (Supplementary Table 7) demonstrate that convergence can be sped
up by including principal component covariates (which effectively improve the conditioning of the
underlying matrix computations), thus achieving close-to-linear scaling of run time with sample
size. We note that to achieve increased convergence, principal components need to be computed
on the set of SNPs used in the mixed model; PCs that do not match the implicit genetic relationship
matrix (GRM) will not improve conditioning. We also note that after model-fitting, BOLT-LMM
performs a linear-time association test on imputed SNPs (which we sped up separately using multi-

threading; see Section 2); the speedup described here only applies to the model-fitting step.
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Supplementary Figure 1. Conditioning on polygenic predictions from genome-wide SNPs
boosts association power. (a) Comparison of variance explained by BOLT-LMM'’s linear
predictor—using either the default mixture-of-Gaussians prior on SNP effect sizes, which
accounts for larger-effect SNPs [3], or the single-Gaussian “infinitesimal” model
(BOLT-LMM-inf, equivalent to best linear unbiased prediction, BLUP)—and variance
theoretically explained by an optimal linear predictor, i.e., SNP-heritability /,>. BOLT-LMM and
BOLT-LMM-inf results (on N=459,327 European-ancestry samples) are from out-of-sample
prediction performed internally by the BOLT-LMM software (holding out 20% of samples for
testing). (b) Boost in effective sample size using BOLT-LMM or BOLT-LMM-inf on N=459,327
European samples vs. linear regression on N=337,539 unrelated British samples, as assessed by
multiplicative increase in y? statistics at associated SNPs (Supplementary Note). Numerical data
are provided in Supplementary Table 3.
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Supplementary Figure 2. LD score regression intercepts. Plotted points correspond to
analyses of 23 phenotypes using 3 association methods (under the baselineLLD model [8] of
LDSC). (a) LD score regression intercepts [7] tend to rise with SNP-heritability and sample size,
even for association tests robust to confounding (e.g., linear regression on N=337,539 unrelated
British samples using 20 principal component covariates and BOLT-LMM on N=459,327
European samples). This behavior of the LDSC intercept makes test statistic inflation difficult to
discern based on the value of the LDSC intercept alone: for example, for the height phenotype,
linear regression on N=337,539 unrelated British samples without principal component
covariates—which is susceptible to inflation—and BOLT-LMM on N=459,327 European samples
both have LDSC intercepts of nearly 1.5. (b) Accounting for differences in mean x? statistic for
different phenotypes and association methods improves the interpretability of the LDSC intercept.
Deviations from the theoretical model assumed by LD score regression (e.g., attenuation bias [7])
push the LDSC intercept above 1—even for uninflated association tests—toward the mean ? test
statistic (which can be much larger than 1 for highly-powered analyses of traits with substantial
heritability, e.g., ~7 for BOLT-LMM analysis of height, after excluding SNPs explaining >0.1%
of variance). The attenuation ratio, (intercept — 1) / (mean x? — 1), calibrates the intercept against
the overall shift in ? statistics (due to polygenicity for uninflated association tests). In these data,
we observe that for each trait, PC-corrected linear regression and BOLT-LMM (connected by a
line segment) have near-identical attenuation ratios, typically around 0.08, whereas uncorrected
linear regression typically has larger attenuation ratios, indicating confounding. Numerical data
are provided in Supplementary Table 4.
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Supplementary Table 1. Number of phenotyped individuals analyzed per UK Biobank trait.

Phenotype N  Fraction phenotyped
Height 458303 1.00
Body mass index 457824 1.00
Waist hip ratio 458417 1.00
Bone mineral density 445921 0.97
Forced vital capacity 371949 0.81
FEV1 FVC ratio 371949 0.81
Red blood cell count 445174 0.97
RBC distribution width 442700 0.96
White blood cell count 444502 0.97
Platelet count 444382 0.97
Eosinophil count 439938 0.96
Blood pressure (systolic) 422771 0.92
Cardiovascular disease 459324 1.00
Type 2 diabetes 459324 1.00
Respiratory disease 459324 1.00
Allergy or eczema 458699 1.00
Hypothyroidism 459324 1.00
Neuroticism 372066 0.81
Chronotype 410520 0.89
Hair color 452720 0.99
Tanning ability 449984 0.98
Years of education 454813 0.99
Smoking status 457683 1.00

Self-reported white, QC pass 459327 -

Phenotypes we analyzed were available for large majorities of the 459,327 UK Biobank
participants we analyzed who self-reported white ancestry and passed genotyping QC
(Supplementary Note). Throughout this manuscript, when we refer to analyses of 459K
European-ancestry individuals, we take it to be understood that the actual number of individuals
analyzed per phenotype is slightly smaller than 459K and varies depending on phenotyping rate.

12



Supplementary Table 2. Number of independent GWAS loci identified by different
association analysis methods.

N=337K unrelated British

N=459K all European

Phenotype he®* | Linearreg. BOLT-LMM-inf BOLT-LMM | BOLT-LMM-inf BOLT-LMM
Height 0.579 1086 1479 1540 1992 2098
Body mass index 0.308 300 379 387 645 665
Waist hip ratio 0.210 217 241 255 365 384
Bone mineral density 0.401 537 681 713 947 978
Forced vital capacity 0.277 203 244 251 406 412
FEV1 FVC ratio 0.313 308 368 391 552 566
Red blood cell count 0.324 406 485 505 697 714
RBC distribution width  0.288 354 387 418 544 570
White blood cell count  0.272 347 387 404 555 584
Platelet count 0.404 558 694 751 955 1007
Eosinophil count 0.277 342 403 414 576 625
Blood pressure 0.271 282 332 346 516 522
Cardiovascular disease  0.160 126 131 135 210 213
Type 2 diabetes 0.074 38 39 41 62 62
Respiratory disease 0.086 46 46 50 75 76
Allergy or eczema 0.120 99 99 99 149 153
Hypothyroidism 0.088 69 67 70 112 111
Neuroticism 0.156 36 41 43 75 78
Chronotype 0.143 53 54 57 100 101
Hair color 0.454 210 273 326 352 436
Tanning ability 0.242 95 105 113 129 136
Years of education 0.193 95 89 91 165 172
Smoking status 0.134 32 37 36 93 96
All phenotypes 5839 7061 7436 10272 10759

Counts of independent genome-wide significant associations (p<5x 10~%) are reported for three
types of association tests: linear regression using 20 principal component covariates, BOLT-LMM
using a Gaussian SNP effect prior (the standard “infinitesimal” mixed model, BOLT-LMM-inf),
and BOLT-LMM using its default mixture-of-Gaussians prior on SNP effect sizes, which
accounts for larger-effect SNPs [3]. We tested all three methods on N=337K unrelated British
samples, and we additionally tested BOLT-LMM-inf and BOLT-LMM (which are robust to
sample structure) on all individuals who reported white ethnicity (N=459,327 European-ancestry
samples). For reference, we also report SNP-heritability estimated by BOLT-LMM on the
N=337K unrelated British samples.

For each analysis, we counted independent associations by performing stringent LD clumping
(requiring R?<0.01 in SMb windows) and further collapsing associated SNPs within 100kb of
each other (Supplementary Note).
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Supplementary Table 3. Conditioning on polygenic predictions boosts association power.

(a) Proportion of variance explained (BOLT-LMM prediction R? in cross-validation and hgz)

N=337K unrelated British

N=459K all European

Phenotype BOLT-LMM-inf BOLT-LMM  h,> | BOLT-LMM-inf BOLT-LMM  h,*

Height 0.332 0.397 0.579 0.373 0.429 0.570
Body mass index 0.111 0.122 0.308 0.129 0.139 0.303
Waist hip ratio 0.055 0.075 0.210 0.063 0.084 0.205
Bone mineral density 0.168 0.236 0.401 0.191 0.255 0.391
Forced vital capacity 0.079 0.089 0.277 0.095 0.108 0.272
FEV1 FVC ratio 0.102 0.136 0.313 0.115 0.147 0.303
Red blood cell count 0.119 0.166 0.324 0.137 0.181 0.314
RBC distribution width 0.101 0.166 0.288 0.119 0.180 0.279
White blood cell count 0.091 0.124 0.272 0.105 0.137 0.266
Platelet count 0.170 0.255 0.404 0.201 0.275 0.394
Eosinophil count 0.091 0.139 0.277 0.108 0.154 0.272
Blood pressure 0.079 0.101 0.271 0.096 0.116 0.264
Cardiovascular disease 0.034 0.042 0.160 0.039 0.049 0.155
Type 2 diabetes 0.009 0.014 0.074 0.010 0.015 0.073
Respiratory disease 0.013 0.019 0.086 0.014 0.020 0.083
Allergy or eczema 0.022 0.033 0.120 0.025 0.035 0.115
Hypothyroidism 0.012 0.023 0.088 0.014 0.024 0.085
Neuroticism 0.027 0.028 0.156 0.033 0.036 0.151
Chronotype 0.024 0.027 0.143 0.030 0.034 0.138
Hair color 0.234 0.397 0.454 0.257 0.401 0.434
Tanning ability 0.080 0.173 0.242 0.092 0.177 0.226
Years of education 0.050 0.052 0.193 0.061 0.064 0.188
Smoking status 0.025 0.026 0.134 0.033 0.035 0.136

(b) Boost in effective sample size (vs. linear regression on N=337K unrelated British samples)

N=337K unrelated British

N=459K all European

Phenotype BOLT-LMM-inf BOLT-LMM | BOLT-LMM-inf BOLT-LMM | BOLT-LMM N
Height 1.37x 1.45x 1.83x 1.93x 650K
Body mass index 1.14x 1.15x 1.45x 1.47x 500K
Waist hip ratio 1.06x 1.08x 1.37x 1.40x 470K
Bone mineral density 1.21x 1.29x 1.62x 1.71x 580K
Forced vital capacity 1.10x 1.11x 1.43x 1.44x 490K
FEV1 FVC ratio 1.13x 1.17x 1.48x 1.53x 520K
Red blood cell count 1.14x 1.19x 1.50x 1.56x 530K
RBC distribution width 1.12x 1.19x 1.45x 1.55x 520K
White blood cell count 1.09x 1.11x 1.40x 1.43x 480K
Platelet count 1.23x 1.33x 1.66x 1.79x 600K
Eosinophil count 1.11x 1.17x 1.46x 1.53x 520K
Blood pressure 1.13x 1.15x 1.42x 1.44x 480K
Cardiovascular disease 1.04x 1.04x 1.32x 1.33x 450K
Type 2 diabetes 1.01x 1.01x 1.33x 1.33x 450K
Respiratory disease 1.02x 1.02x 1.30x 1.32x 440K
Allergy or eczema 1.05x 1.05x 1.29x 1.30x 440K
Hypothyroidism 1.03x 1.05x 1.31x 1.29x 430K
Neuroticism 1.02x 1.02x 1.34x 1.34x 450K
Chronotype 1.04x 1.05x 1.33x 1.34x 450K
Hair color 1.30x 1.60x 1.74x 2.08x 700K
Tanning ability 1.06x 1.17x 1.38x 1.51x 510K
Years of education 1.02x 1.03x 1.31x 1.31x 440K
Smoking status 1.04x 1.05x 1.27x 1.28x 430K
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Supplementary Table 4. LDSC intercepts increase with mean \? statistics while attenuation
ratios are consistently low for BOLT-LMM and linear regression with PC covariates.

(a) LDSC intercept (jackknife s.e.) and mean x? statistic for different association methods

LDSC intercept (baselineLD model) Mean 2 statistic
Phenotype he* | Lin.reg. w/o PCs  Lin. regression BOLT-LMM | LR w/oPCs LR BOLT-LMM
Height 0.579 1.456 (0.035) 1.252 (0.033)  1.468 (0.057) 4.48 4.19 7.00
Body mass index 0.308 1.121 (0.016) 1.090 (0.015)  1.132(0.019) 2.68 2.63 3.45
Waist hip ratio 0.210 1.088 (0.016) 1.062 (0.015)  1.091 (0.019) 2.05 2.00 2.44
Bone mineral density 0.401 1.129 (0.034) 1.117 (0.034)  1.250 (0.048) 2.88 2.86 4.01
Forced vital capacity 0.277 1.095 (0.013) 1.089 (0.013)  1.113(0.015) 2.14 2.13 2.70
FEV1 FVC ratio 0.313 1.071 (0.015) 1.065 (0.016)  1.119(0.021) 2.20 2.18 2.89
Red blood cell count 0.324 1.183 (0.025) 1.142 (0.026)  1.189 (0.036) 2.46 2.39 3.23
RBC distribution width ~ 0.288 1.078 (0.025) 1.067 (0.025)  1.151 (0.032) 2.26 2.24 2.83
White blood cell count  0.272 1.120 (0.018) 1.097 (0.018)  1.137 (0.021) 2.28 2.24 2.89
Platelet count 0.404 1.163 (0.029) 1.154 (0.029)  1.281 (0.044) 2.68 2.66 3.96
Eosinophil count 0.277 1.108 (0.021) 1.082 (0.021)  1.165 (0.030) 2.26 2.23 2.89
Blood pressure 0.271 1.084 (0.015) 1.079 (0.015)  1.128 (0.018) 2.24 2.23 2.84
Cardiovascular disease  0.160 1.056 (0.013) 1.053 (0.013)  1.083 (0.016) 1.77 1.76 2.03
Type 2 diabetes 0.074 1.040 (0.012) 1.040 (0.012)  1.043 (0.015) 1.31 1.31 1.41
Respiratory disease 0.086 1.024 (0.011) 1.019 (0.011)  1.040 (0.013) 1.37 1.36 1.49
Allergy or eczema 0.120 1.034 (0.014) 1.026 (0.014)  1.043 (0.016) 1.51 1.50 1.70
Hypothyroidism 0.088 1.033 (0.013) 1.029 (0.013)  1.036 (0.013) 1.37 1.36 1.48
Neuroticism 0.156 1.034 (0.015) 1.028 (0.015)  1.069 (0.011) 1.66 1.65 1.85
Chronotype 0.143 1.072 (0.012) 1.043 (0.012)  1.055 (0.013) 1.66 1.62 1.84
Hair color 0.454 1.218 (0.057) 1.139 (0.054)  1.224 (0.078) 1.92 1.82 2.52
Tanning ability 0.242 1.209 (0.032) 1.071 (0.029)  1.105 (0.042) 1.73 1.53 1.81
Years of education 0.193 1.152 (0.013) 1.089 (0.012)  1.112(0.013) 2.09 1.98 2.26
Smoking status 0.134 1.088 (0.011) 1.032 (0.010)  1.057 (0.011) 1.76 1.67 1.92

(b) LDSC attenuation ratio: (intercept — 1) / (mean x? — 1); jackknife s.e.

Phenotype Lin. reg. w/o PCs  Lin. regression = BOLT-LMM
Height 0.131 (0.010) 0.079 (0.010)  0.078 (0.009)
Body mass index 0.072 (0.009) 0.055 (0.009)  0.054 (0.008)
Waist hip ratio 0.084 (0.015) 0.061 (0.015)  0.063 (0.013)
Bone mineral density 0.069 (0.018) 0.063 (0.018)  0.083 (0.016)
Forced vital capacity 0.083 (0.012) 0.079 (0.012)  0.066 (0.009)
FEV1 FVC ratio 0.060 (0.013) 0.055 (0.013)  0.063 (0.011)
Red blood cell count 0.125 (0.018) 0.102 (0.018)  0.085 (0.016)
RBC distribution width 0.062 (0.020) 0.054 (0.020)  0.082 (0.017)
White blood cell count 0.093 (0.014) 0.078 (0.014)  0.072 (0.011)
Platelet count 0.097 (0.017) 0.093 (0.017)  0.095 (0.015)
Eosinophil count 0.085 (0.017) 0.067 (0.017)  0.087 (0.016)
Blood pressure 0.067 (0.012) 0.065 (0.012)  0.069 (0.010)
Cardiovascular disease 0.073 (0.017) 0.070 (0.017)  0.081 (0.016)
Type 2 diabetes 0.130 (0.040) 0.129 (0.041)  0.105 (0.036)
Respiratory disease 0.064 (0.030) 0.052 (0.031)  0.080 (0.026)
Allergy or eczema 0.067 (0.028) 0.051 (0.029)  0.061 (0.023)
Hypothyroidism 0.089 (0.035) 0.079 (0.035)  0.076 (0.026)
Neuroticism 0.051 (0.024) 0.043 (0.024)  0.082 (0.013)
Chronotype 0.109 (0.018) 0.070 (0.019)  0.066 (0.015)
Hair color 0.236 (0.062) 0.170 (0.066)  0.147 (0.051)
Tanning ability 0.288 (0.045) 0.134 (0.054)  0.129 (0.051)
Years of education 0.140 (0.012) 0.091 (0.012)  0.089 (0.010)
Smoking status 0.117 (0.015) 0.047 (0.015)  0.062 (0.012)
See caption of Supplementary Fig. 2. 15



Supplementary Table 5. LDSC intercepts and attenuation ratios are higher under the
original LDSC model (vs. baselineLLD model).

(a) LDSC intercept (jackknife s.e.) and mean x? statistic for different association methods

LDSC intercept (original LDSC model) Mean x? statistic
Phenotype he* | Lin.reg. w/o PCs  Lin. regression BOLT-LMM | LR w/oPCs LR BOLT-LMM
Height 0.579 1.706 (0.031) 1.493 (0.030)  1.870(0.043) 4.70 4.40 7.62
Body mass index 0.308 1.235 (0.017) 1.202 (0.016)  1.318 (0.019) 2.69 2.64 3.48
Waist hip ratio 0.210 1.217 (0.015) 1.185(0.015)  1.267 (0.018) 2.05 2.01 2.44
Bone mineral density 0.401 1.315 (0.022) 1.305 (0.022)  1.497 (0.028) 3.12 3.10 4.51
Forced vital capacity 0.277 1.194 (0.014) 1.190 (0.014)  1.267 (0.017) 2.14 2.13 2.70
FEV1 FVC ratio 0.313 1.218 (0.015) 1.212 (0.014)  1.326 (0.018) 2.24 222 2.96
Red blood cell count 0.324 1.323 (0.020) 1.272 (0.019)  1.393 (0.026) 2.58 2.51 3.44
RBC distribution width ~ 0.288 1.181 (0.017) 1.171 (0.017)  1.274 (0.022) 242 2.40 3.15
White blood cell count  0.272 1.264 (0.018) 1.238 (0.018)  1.349 (0.023) 2.34 2.30 2.97
Platelet count 0.404 1.283 (0.020) 1.272 (0.020)  1.461 (0.026) 2.85 2.83 4.35
Eosinophil count 0.277 1.232 (0.019) 1.207 (0.019)  1.324 (0.024) 2.38 2.36 3.15
Blood pressure 0.271 1.200 (0.014) 1.195 (0.013)  1.303 (0.017) 2.24 2.23 2.85
Cardiovascular disease  0.160 1.127 (0.012) 1.123(0.012)  1.181 (0.015) 1.77 1.76 2.03
Type 2 diabetes 0.074 1.066 (0.009) 1.065 (0.009)  1.084 (0.010) 1.31 1.31 1.42
Respiratory disease 0.086 1.076 (0.010) 1.071 (0.010)  1.103 (0.011) 1.37 1.36 1.49
Allergy or eczema 0.120 1.114 (0.011) 1.107 (0.011)  1.148 (0.012) 1.51 1.50 1.70
Hypothyroidism 0.088 1.081 (0.011) 1.078 (0.011)  1.103 (0.012) 1.37 1.36 1.49
Neuroticism 0.156 1.079 (0.010) 1.074 (0.010)  1.113 (0.010) 1.66 1.65 1.85
Chronotype 0.143 1.114 (0.011) 1.082 (0.010)  1.103 (0.011) 1.66 1.62 1.84
Hair color 0.454 1.212 (0.017) 1.133 (0.015)  1.238 (0.021) 3.02 2.89 4.80
Tanning ability 0.242 1.219 (0.013) 1.075 (0.011)  1.109 (0.013) 2.35 2.12 2.70
Years of education 0.193 1.216 (0.012) 1.147 (0.011)  1.187 (0.012) 2.09 1.98 2.26
Smoking status 0.134 1.149 (0.010) 1.085 (0.010)  1.125(0.011) 1.76 1.67 1.92

(b) LDSC attenuation ratio: (intercept — 1) / (mean x? — 1); jackknife s.e.

Phenotype Lin. reg. w/o PCs  Lin. regression = BOLT-LMM
Height 0.191 (0.008) 0.145 (0.009)  0.132 (0.006)
Body mass index 0.139 (0.010) 0.123 (0.010)  0.128 (0.008)
Waist hip ratio 0.206 (0.015) 0.184 (0.015)  0.185(0.013)

Bone mineral density
Forced vital capacity
FEV1 FVC ratio

Red blood cell count
RBC distribution width
White blood cell count
Platelet count
Eosinophil count
Blood pressure
Cardiovascular disease
Type 2 diabetes
Respiratory disease
Allergy or eczema
Hypothyroidism
Neuroticism
Chronotype

Hair color

Tanning ability

Years of education
Smoking status

0.148 (0.010)
0.170 (0.013)
0.176 (0.012)
0.204 (0.013)
0.127 (0.012)
0.197 (0.014)
0.153 (0.011)
0.168 (0.014)
0.162 (0.011)
0.165 (0.016)
0.212 (0.029)
0.207 (0.028)
0.223 (0.022)
0.220 (0.029)
0.120 (0.015)
0.172 (0.016)
0.104 (0.008)
0.162 (0.009)
0.199 (0.011)
0.197 (0.014)

0.145 (0.010)
0.168 (0.013)
0.173 (0.012)
0.180 (0.013)
0.122 (0.012)
0.184 (0.014)
0.149 (0.011)
0.153 (0.014)
0.159 (0.011)
0.162 (0.016)
0.211 (0.030)
0.198 (0.028)
0.211 (0.022)
0.214 (0.029)
0.113 (0.015)
0.134 (0.016)
0.070 (0.008)
0.067 (0.010)
0.149 (0.011)
0.127 (0.015)

0.142 (0.008)
0.157 (0.010)
0.166 (0.009)
0.161 (0.011)
0.128 (0.010)
0.177 (0.012)
0.138 (0.008)
0.150 (0.011)
0.164 (0.009)
0.177 (0.014)
0.202 (0.025)
0.209 (0.022)
0.211 (0.017)
0.212 (0.025)
0.134 (0.012)
0.123 (0.013)
0.063 (0.005)
0.064 (0.008)
0.148 (0.010)
0.137 (0.012)

Compare to Supplementary Table 4.
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Supplementary Table 6. Running time of association methods on UK Biobank data.

Data set | Linear regression BOLT-LMM vl BOLT-LMM v2.3
N=150K 0.49 days 2.43 days 0.62 days
N=500K 1.62 days 9.34 days 2.54 days

Run time benchmarks for association analyses using BOLT-LMM v2.3 (with 20 principal
component covariates to increase convergence rate; Supplementary Table 7), the previous version
of BOLT-LMM [3], and linear regression using 20 principal component covariates (implemented
efficiently within the BOLT-LMM software; cf. Bycroft et al. Table S9 [5]). We analyzed the
years-of-education phenotype as a representative trait, and we ran all methods on the same set of
all European-ancestry individuals in the UK Biobank N=150K and N=500K data releases
(Supplementary Note), analyzing ~72M and ~93M imputed SNPs, respectively, and imposing a
MAF>0.1% filter on minor allele frequency. Analyses used 8 threads on a 2.10 GHz Intel Xeon
E5-2683 v4 processor.
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Supplementary Table 7. Faster convergence of BOLT-LMM iterative computations using
principal component covariates.

Principal component | Conjugate gradient Variational Bayes
covariates iterations iterations
0 85 178
10 75 82
20 63 79
30 55 80
40 49 73

During its model-fitting steps, BOLT-LMM applies iterative methods (specifically, conjugate
gradient iteration and variational Bayes) to eliminate computationally expensive matrix operations
that scale quadratically or cubically with sample size [3]. The cost of a single iteration scales only
linearly with N; however, we previously observed that the number of iterations required to achieve
convergence increases slowly with N [3]. Our analyses here demonstrate that convergence can be
sped up by including principal component covariates (which effectively improve the conditioning
of the underlying matrix computations), thus achieving close-to-linear scaling of run time with
sample size. The iteration counts reported in this table are for total numbers of iterations
performed in BOLT-LMM’s conjugate gradient steps (for estimating parameters and fitting the
infinitesimal mixed model) and variational Bayes steps (for estimating parameters and fitting the
mixture-of-Gaussians model) [3]. We note that to achieve increased convergence, principal
components need to be computed on the set of SNPs used in the mixed model; PCs that do not
match the implicit genetic relationship matrix (GRM) will not improve conditioning. We also
note that after model-fitting, BOLT-LMM performs a linear-time association test on imputed
SNPs; the speedup described here only applies to the model-fitting step.
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