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Supplementary Figure S1: Organization of leak-induced neuronal excitability transitions by a Bogdanov-
Takens-Cusp bifurcation.



1 Supplementary Figures S3

Supplementary Figure S1 (caption continued):
Schematic two-dimensional section through the 3-parameter unfolding of a Bogdanov-Takens-cusp bifurcation
of focus type (cf. Fig. 2 and [1]) with sketches of the corresponding phase plane dynamics. The horizontal axis
represents the input current I

e

, the vertical axis the leak conductance g

L

. The different phase plane dynamics
are sketched in the two-dimensional center manifold with the membrane-potential V and an effective delayed
rectifier variable w as coordinates. In the bifurcation diagram, solid lines represent co-dimension 1 and points
co-dimension 2 bifurcations. Within the unshaded region, no spikes occur; the gray area( ) corresponds to stable
periodic spiking; while orange shading ( ) denotes bi-stability between resting and stable periodic spiking; The
dashed line ( ) represents a node-to-focus transition where the linearized dynamics around the fixed points
become oscillatory, as the eigenvalues change from being purely real (node) to becoming complex (focus). In
the sketches, stable (unstable) fixed points are indicated by filled (open) dots and stable (unstable) limit cycles
by solid (dashed) gray lines. Lines with arrows represent parts of (un)stable manifolds of the fixed points.
Various co-dimension 2 bifurcations organize the individual transitions steps in the bifurcation diagram: The
saddle node loop bifurcation (SNL, ) organizes a switch from a saddle node on limit cycle (SNLC, , below )
to a homoclinic (Hom

s

, ) and a saddle-node (SN, , above ) bifurcation. The neutral saddle loop bifurca-
tion (NSL, ) splits the homoclinic that yields a stable limit cycle (Hom

s

, ) into a double limit cycle (DC, )
and a homoclinic bifurcation involving an unstable cycle (Hom

u

, ). Finally the DC bifurcation changes via
a degenerate Hopf (DH, ) to an ordinary Hopf bifurcation ( ). The Bogdanov-Takens bifurcation (BT, )
organizes a change from saddle node (SN, ) to Hopf ( ) and homoclinic (Hom

u,2

, ) bifurcations. The node-
to-focus transition ( ), which is related to the change in membrane resonance, passes through the BT point
tangentially to the other bifurcation lines.
The numerically calculated global bifurcation diagrams for the unfolding of an elliptic Bogdanov-Takens-cusp
point have the same topology as the focus type shown here; in the elliptic sub-type example shown in Fig. S3G-I,
region ƒ almost vanishes.
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Supplementary Figure S2:
Organization of leak-induced neuronal excitability transitions by a Bogdanov-Takens-Cusp Bifurcation for High
capacitances.
Increasing the capacitance past the BTC point (cf. Fig. 2C) changes the two- dimensional section through the
3-parameter unfolding of the Bogdanov-Takens-cusp (BTC) bifurcation of focus type. In contrast to Fig. S1,
the Bogdanov-Takens bifurcation (BT, ) has moved to the branch of the saddle-node bifurcations (SN, ) that
is to the left of the cusp (CP, ). The homoclinic (Hom

s

, ) bifurcation generates a stable limit cycle that only
encircles the upper focus but not the other fixed points. Colors as in Fig. S1.
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Supplementary Figure S3:
Leak-induced transition to membrane-potential resonance in model neurons.
As the leak conductance g

L

in the Wang-Buzsaki model [2] increases resonance properties emerge in addition
to the changes in neuronal excitability (cf. also Figs. 1-3 in the main manuscript).
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Supplementary Figure S3 (caption continued):
(A) Linear response |Z| at 95% of the AP onset current. The curves change from monotonically decaying to
uni-modal with resonance frequency at the maximum (black line). Resonance frequency ⌫

R

color-coded as in
Fig. 2D.
(B) Resonance frequency ⌫

R

as a function of the holding membrane potential V
hold

for leak conductances ranging
from 0.6 to 1.2mS/cm2 in steps of 0.05mS/cm2. Filled dots on the curves indicate the membrane threshold
V

✓

at which the neuron starts spiking due to destabilization of the fixed point. The dependence of ⌫
R

on V

hold

is non-monotonic for leak values below and close to the BT point (cf. Fig. 2, S4, and S6). In this region, the
saddle-node bifurcation marks the onset of AP generation and the initial rise in ⌫

R

must be followed by a decay
to zero as the AP threshold is approached, because at the saddle-node the eigenvalues of the linearized system
are real and not complex. In view of the (I

e

,g
L

)-parameter space (cf. Fig. 2 and S1) the initial rise ⌫

R

originates
from the transition to resonance curve (dashed line, ) becoming tangential to the saddle-node line at the BT
point giving rise to a region of resonance even below the BT point. The graph highlights two effects by which the
addition of a leak conductance changes the resonance frequency: First, for fixed V

hold

, increasingg
L

, hastens the
speed with which the membrane voltage recovers from deflections and thereby increases ⌫

R

. Second, increasing
g

L

moves the potential threshold V

✓

upwards and thereby exerts an indirect effect on the measured resonance
frequency at threshold ⌫

R,0

.
(C) Q-factor Q = |Z (⌫

R

) /Z (0)| as a function of the leak conductance g
L

. The Q-factor measures the amplitude
of the response Z at the resonance frequency ⌫

R

relative to the steady-state amplitude |Z (0)|. Q is shown for
different currents I

e

that are fixed fractions of the threshold current I

✓

for AP generation, ranging from 95%
(light gray) to 100% (black). At 100% of the threshold current the Bodgdanov-Takens bifurcation point (BT, )
marks the onset of resonance at zero frequency; however, the linearized dynamics are no longer bounded and
thus linear response theory predicts a diverging Q-Factor. The dynamics of the full nonlinear model will, of
course, remain bounded.
(D,E) The Q-factor Q = |Z (⌫

R

) /Z (0)| as a function of the input current I

e

and g

L

. Bifurcations lines are as
in Fig. 2B. Q-factors are shown with an upper cut off at 2. The linear response and Q diverge at spike onset
(see black line in B).
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Supplementary Figure S4:
Prevalence and generality of leak-induced neuronal excitability and resonance transitions in neuron models.
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Supplementary Figure S4 (caption continued):
Shown are the bifurcation diagrams together with spike and resonance frequencies in the I

e

-g
L

-parameter plane
for three different neuron models. All exhibit the same pattern of leak-induced transitions as observed for the
Wang-Buzsaki neuron model shown in Fig. 2 and S1. I

e

is measured in µA/cm2 and g

L

in mS/cm2.
(A-C) Leak-induced transitions in the Morris-Lecar neuron model [3]. (A) bifurcation diagram for the the entire
region of spiking dynamics. The spiking frequency f is indicated by gray shading (maximal spiking frequency
f

max

= 33.9Hz). For stable fixed points the resonance frequency ⌫

R

, as determined by linear response theory,
is shown in alpine colors (maximal resonance frequency is ⌫

R,max

= 47.8Hz). Colored lines indicate the co-
dimension 1 bifurcations: saddle node or saddle node on invariant cycle ( ), homoclinic ( ), Hopf ( ) and
double limit cycle ( ). Points are the co-dimension 2 bifurcations: cusp (CP, ) Bogdanov-Takens, (BT, ),
neutral saddle loop (NSL, ), saddle node loop (SNL, ) and degenerate Hopf (DH, ) (cf. Suppl. Fig. S1).
Black dashed line ( ) demarcates the transition in which two eigenvalues of the linearized dynamics become a
complex conjugate pair, indicative of oscillatory ringing in the membane potential. Black solid line ( ) shows
the transitions from monotonically decaying to non-monotonic peaked amplitudes |Z| of the transfer functions
Z, as obtained by linear response theory. A peaked |Z| indicates resonance. The diagram shows that increasing
leak not only induces a switch in neuronal excitability, but also in resonance, which first appears entirely within
the sub-threshold regime. (B) close-up of the transition area (f

max

= 18.5Hz). The current I

e

is shifted by the
current I at onset of periodic spiking. Orange shading ( ) indicates the region of bi-stability between stable
spiking and resting. (C) close-up highlighting the region of sub-threshold resonance (⌫

R,max

= 17.1Hz). The
curve marking the transition to resonance ( ) passes the BT point and runs parallel to the Hopf and saddle
node lines. Near the BT point, this results in a non-monotonic dependence of the resonance frequency ⌫

0

(I
e

)
on I

e

for fixed g

L

as it first rises then falls as I

e

increases towards the spiking threshold (cf. also Fig. S3).
(D-F) as in (A-C) for a fast spiking inter-neuron model [4]. Maximal frequencies are (D) f

max

= 251.7Hz and
⌫

R,max

= 263.7Hz, (E) f

max

= 90.5Hz, (F) ⌫

R,max

= 46.0Hz
(G-I) as in (A-C) for a reduced pyramidal neuron model [5, 6]. Maximal frequencies are (G) f

max

= 2315Hz
and ⌫

R,max

= 2110Hz, (H) f
max

= 311.6Hz, (I) ⌫
R,max

= 377.0Hz. High frequencies arise as APs change to very
fast small-amplitude oscillations for very high leak conductances or high inputs currents near the conductance
block.
All diagrams, including the Wang-Buzsáki neuron model in Fig. 2, share the same topology. In the supplemen-
tary text, we prove that leak-induced excitability and resonance transitions in class-I conductance-based neuron
models possess a Bogdanov-Takens-cusp point of focus or elliptic type whose unfolded bifurcation diagrams
have the topology observed here and in Fig. 2, S1, S5 and S6.



1 Supplementary Figures S9

A B

C D

E F

G H

Ie

Ie

Ie

Ie

Ie

Ie

Ie

Ie

b nb n

g N
a

g N
a

g N
a

g N
a

g Kg K

BT

BT

BT

BT

BT

CP

CP

CP

CP

DH

DH

SNL

SNL

NSL

NSL

NSL

0 140

0

30

�0.25 0.25

4.0

6.4

0 150
0

500

�0.20 �0.08

25.0

35.0

0 50

5

25

0.04

14.0

16.5

16.5

�20 40

10

70

�0.4 0.2

13.5

17.5

Supplementary Figure S5:
Neuronal excitability and resonance transitions induced by changes in ion-channel parameter.
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Supplementary Figure S5 (caption continued):
The BTC point not only organizes leak-induced neuronal excitability transitions but more generally captures the
transitions induced by arbitrary changes in the AP generating ion-channel parameters. Shown are bifurcation
diagrams for different parameter planes in the Wang-Buzsaki model [2]. Bifurcation lines and labels as in
Fig. S1, S3, S4. Green shading denotes the presence of resonance. I

e

is measured in µA/cm2, g
Na

and g

K

in
mS/cm2 and b

n

in mV.
(A,B) Coarse and fine-scale bifurcation diagram in the input current I

e

and maximal sodium conductance
g

Na

plane. The structure is equivalent to a section in the three dimensional (I
e

, g

L

, c

m

)-bifurcation diagram
(Fig. 2C) for constant c

m

above the BTC point (cf. Fig. S2). The sodium current is directed inwards, in the
opposite direction of the leak, which inverts the ordinate axis compared to Fig. 2 .
(C,D) as in (A,B) for smaller c

m

= 0.2µF/cm2. The diagram has exactly the transition structure as observed
for the I

e

� g

L

-bifurcation diagrams (cf. Fig. 2 and S1) whit reversed ordinate axis.
(E,F) Bifurcation diagram in the input current I

e

and maximal potassium conductance g
K

for c
m

= 0.2µF/cm2.
The delayed rectifier and leak currents are both outward; the bifurcation diagram hence has the same orientation
as the I

e

� g

L

-bifurcation diagram.
(G,H) Bifurcation diagram in the input current I

e

and half-activation voltage of the potassium conductance b

n

for c
m

= 0.2µF/cm2. the transition structure of the I

e

�g

L

-bifurcation diagram below the BTC point (cf. Fig. 2
and S1).
For c

m

= 1.0µF/cm2, all diagrams have a transition structure as in (A,B) (not shown).
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Supplementary Figure S6:
Leak-induced neuronal excitability transitions and adaptation
Bifurcation diagrams together with spike and resonance frequencies in the I

e

-g
L

-parameter plane for a Morris-
Lecar neuron model with an additional adaptation current [7]. Adaptation causes the firing rate upon sustained
current injection to slow down and is a characteristic feature of regularly spiking cells. The BTC structure
persists, with one exception: for leak conductances above g

L

⇡ 0.4 mS/cm2 and below the degenerate Hopf
point (DH) the onset of spiking with a non-zero frequency interacts with the adaptation currents that act
on a slower time scale. Thus, the transition to spiking no longer occurs through a single double limit cycle
(DC) bifurcation but rather a sequence of complex transitions involving period-doublings. Large-scale voltage
excursions mixed with sub-threshold oscillations appear in the vicinity of what used to be the DC line. The
maximal and minimal spiking and resonance frequencies displayed within each diagram are (A) f

max

= 544Hz
and ⌫

R,max

= 536Hz, (B) f

max

= 6.1Hz, (C) ⌫

R,max

= 8.6Hz. Eliminating the adaptation current changes the
BT point from g

L

⇡ 0.18 to g

L

⇡ 2.165mS/cm3 but leaves the overall bifurcation structure unchanged (not
shown).
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Supplementary Figure S7
Leak-induced neuronal excitability transition and bistability in DNLL and CA3 neurons.
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Supplementary Figure S7 (caption continued):
(A) Measured leak g

L

as a function of the externally applied leak g

L,e

for the neuron shown in Fig. 4A. The
external leak provided by dynamic clamp is additive, as evidenced by the graph’s linear relationship with a
slope close to unity. Across all cells studied, the fit was linear with slopes varying between 0.85 and 1.35.
(B) Measured capacitance c

m

as a function of the externally applied leak g

L,e

for the neuron shown in Fig. 4A.
The capacitance stays nearly constant during the experiment. This behavior is observed for all cells, with
variations that are within 30% of the control capacitance.
(C) Spiking dynamics of the neuron in Fig. 4A for I

e

= 1220 pA (light blue) and I

e

= 1240 pA (blue). The higher
input current caused a conductance block and the neuron stopped firing periodic APs. The AP amplitudes for
I

e

= 1220 pA decrease continuously, which is characteristic of the dynamics near a Hopf bifurcation. The
Bogdanov-Takens-cusp theory predicts not only the leak-induced bifurcation structures near the onset of APs,
but also the Hopf bifurcation that terminates periodic spiking for high input-currents (Figs. 2A and S1, S4, and
S6).
(D) f -I-curves for another DNLL cell (cf. Fig. 4A) that showed a transition in neuronal excitability and an
enlargement of the region of bistability with increasing leak (cf. theory in Figs. 1-3, S4, and S6). Immediately
after the switch (+5nS), the region of bistability might be difficult to detect due its smallness.
(E) Width �I

e

of the region of bistability for all intrinsically class-II DNLL cells in Fig. 4F that showed
bistability. �I

e

systematically increases with leak as predicted by theory (cf. Fig. 3B, S4, and S6). A subtraction
in leak conductance in the cells that showed bistability led to onset spiking frequencies near the detection
threshold for class-I neuronal excitability (Fig. 4F). The neuron in Fig. 4F that switched to class-I is colored
brown.
(F,G) Latency from stimulus onset to the first action potential for (F) the intrinsically class-I and (G) class-II
DNLL neurons in Fig. 4B and F, respectively. Increasing the leak conductance strongly decreased the time to
the first spike, consistent with a transition form class-I to II neuronal excitability [8, 9, 10]. The neuron in
Fig. 4F for which we observed a switch to class-I is colored red.
(H) Onset spiking frequency f

0

for intrinsically class-II CA3 pyramidal neurons for different values of externally
added and subtracted leak. Neuronal dynamics in all cases became unstable for strongly negative external leak
conductances.
(I) Width �I

e

of the region of bistability for the and class-II CA3 cells. The increase in �I

e

is predicted in
Fig. 3 from the Bogdanov-Takens-cusp organization of leak-induced excitability transitions.
(J,K) Intrinsic measured leak vs. spike onset frequency is positively correlated in both DNLL (J) and CA3 (K)
neurons. r is the correlation coefficient, ⇢ Spearmans rank order correlation coefficient with p the likelihood
that the null hypothesis of zero correlation holds (p-value).
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Supplementary Figure S8:
Leak-induced transition from integration to resonance in CA3 and DNLL neurons.
(A) Q factor Q = |Z (⌫

R,0

) /Z (0)| for the resonances of CA3 pyramidal neurons shown in Fig. 5I as a function
of the measured leak conductance g

L

for different externally applied leak conductances g
L,e

. An increase in leak
conductance induced resonances in n = 6/7 non-resonant neurons, and it increased the resonance frequency
in n = 3/3 neurons that were intrinsically resonant. Both increasing and decreasing Q values were observed.
Linear theory predicts a monotonic increase (Fig. S3B).
(B) Dependence of the resonance frequency ⌫

R

on the externally applied current I

e

and the external leak
conductance g

L,e

for the neuron shown in Fig. 5G,H. Open (solid) symbols indicate non-spiking (spiking)
responses. For increasing g

L

the resonance curves are shifted towards higher I
e

and v

R

increases. Corresponding
theory is shown in the main manuscript, Fig. 3B.
(C,D) Resonance frequency ⌫

R

as a function of the holding potential V
hold

for different values of the external
leak conductance g

L,e

for two CA3 cells. The model predictions are in Figs. S3. The resonance frequencies
generally increase with increasing membrane potential for all cells (n = 12). For an external leak conductance
of +0nS in (C) and +5nS in (D), an initial resonance disappears before reappearing again as V

hold

is increased.
We observe such non-monotonic behavior in n = 5/12 cells. The non-monotonicity is consistent with the
structure of leak induced resonance transitions organized by a Bogdanov-Takesn-cusp point (Figs. 2, S4 and
S6). The range of leak conductances that lead to a non-monotonic relationship between ⌫

R

and V

hold

depends
on the underlying active conductances (Figs. 2, S3, S4 and S6).
(E) Leak-induced resonance for the DNLL neuron in Fig. 4 in the main manuscript which parallels the leak-
induced neuronal-excitability transition observed in Fig. 4A-D. CA3 neurons show the same behavior (Fig. 5).
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Supplementary Figure S9:
GABA-induced resonance in CA3 neurons.
Q factors Q = |Z (⌫

0

) /Z (0)| for the resonances in Fig. 6F show a systematic increase upon application of
GABA, as predicted by theory (Fig. S3B). Colored dots represent neuron shown in Fig. 6D,E
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Supplementary Figure S10:
Leak-controlled synchronization, phase response and bistable switching.
(A) Network (top) of N = 10 excitatory Wang-Buzsáki neurons (red) receiving synapses from two groups of
inhibitory neurons. For silent inhibitory neurons (dark turquoise), the excitatory neurons are class-I (red) and
desynchronize. For initial conditions close to the synchronized state the neurons desynchronize (raster plot,
middle) and the vector strength s decreases from 1 (bottom, black line) towards asynchronous state (gray line).
(B) Activation of all inhibitory neurons (top, light turquoise) switches all excitatory neurons to class-II (top,
orange) which synchronize (raster plot, middle). Vector strength s for random initial conditions (bottom, black
line) increases towards the synchronous state (gray line).
(C) Phase response curve PRC(�) for the periodically spiking Wang-Buzsáki neurons in Fig. 7A-C with and
without activation of a inhibitory conductance g

syn,inh

. A positive (negative) phase response PRC(�) > 0
(PRC(�) < 0) indicates that the next spike is advanced (delayed) due to small excitatory input at phase � in
the spiking cycle. A region with significant phase delay just after the spike (� = 0) is visible for the neuron with
class-II excitability (g

syn,inh

= 0.7mS/cm2) and absent for class-I excitability (g
syn,inh

= 0.0mS/cm
2). Weakly

coupled tonically firing neurons with a negative PRC just after spiking synchronize [11], explaining the results
in Fig. 7.
(D) Thresholds for bistable switching in the Wang-Buzsáki neurons. An isolated tonically firing neuron with
period T ⇡ 10ms received the average shunting inhibition as in Fig. 7C and an additional excitatory synaptic
current of the form I

syn,ex

(t) = ⇥ (t� t

0

) g
p

exp (�(t� t

0

)/⌧
d

) (V
syn,ex

� V (t)) with amplitude g
p

and time delay
t

0

= �T/2⇡. Here t

0

= � = 0 was chosen to mark the upward crossing of �20mV in the potential. In the
shaded region, the excitatory pulse was able to trigger a switch from spiking to resting dynamics. Switching
is possible for smaller inputs near the action potential (� = 0). The synchronization of the class-II neurons
observed in Fig. 7C thus facilitates switching to the resting state via two effects: First, an increase in total
synaptic pulse strength (i.e. g

p

) as more neurons start to fire simultaneously and, second, by shifting the phase
at which synaptic pulses are received towards � = 0 and thereby lowering the switching threshold. Together
these two effects limit the number of synchronously firing neurons in the bistable region induced by shunting
inhibition.
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2 Organization of Neuronal Excitability Transitions

In this section we mathematically analyze transitions in neuronal excitability using multiple bifurcation theory.
A focal or elliptic BTC point creates a three dimensional bifurcation structure in its neighborhood (its unfolding)
as shown in Fig. 2C [1]. This unfolding provides a unified picture for all the theoretically and experimentally
observed transition phenomena. In particular, the bifurcation diagrams with parameters spanned by the applied
external current I

e

and the leak conductance g

L

(Figs. 1, 2, S1, S2, S4, S6) are two-dimensional slices of the
three parameter unfolded bifurcation diagrams of the BTC points (Figs. 2, S1, S2) when the capacitance c

m

is
included as a third parameter. Further, other two-dimensional bifurcation diagrams obtained when altering the
properties of the AP generating currents also represent such slices (Figs. S5). The co-occurrence of transitions
in the f -I-curve, the creation of a region of bistability, as well as the structure of membrane resonance is thus
inherently linked to the existence of a BTC point.

We here prove that class-I conductance-based neuron models have a co-dimension three Bogdanov-Takens-
cusp (BTC) bifurcation point [1] in (I

e

,g
L

, c

m

)-parameter space. We give precise conditions for the model
that ensure the BTC point will be of either the focus or elliptic subtype [1]; furthermore, we show that these
conditions for the sub-types are fulfilled in a large class of non-bursting neuron models. We conclude that
leak-induced transitions in neuronal excitability are generically organized by BTC points.

To study the impact of leak currents onto the neuronal excitability class we consider general conductance-
based neuron models of the form

c

m

d

dt

V = I

e

+ g

L

(V
L

� V ) + I

ion

(V, a) (S.1)

d

dt

a

j

=
1

⌧

j

(V )
(a1,j

(V )� a

j

)

where V is the trans-membrane potential, c

m

the capacitance, I

e

the external input current, g

L

and V

L

the
conductance and reversal potential of the leak current. The active ion currents are given by

I

ion

(V, a) =
X

k

g

k

a

lk,1

ik,1
. . . a

lk,pk
ik,pk

a

mk,1

1,jk,1
. . . a

mk,qk
1,jk,qk

(V
k

� V ) (S.2)

and depend on the maximal conductances g
k

, reversal potentials V
j

and activation variables a = (a
2

, a

2

, . . . , a

N

)
T

with steady state activations a1,j

and time constants ⌧

j

. Note that (S.1) also covers neuron models for which
certain fast activation variables have been replaced by their steady state value a1,j

(V ).
We impose the following mathematical restrictions: (i) all conductances g

k

in (S.2) are positive; (ii) the
steady state activations are bounded, non-negative, monotonic, twice differentiable C

3 functions of V that
become sufficiently flat in the limits V ! ±1. In particular, we demand

lim
V!±1

V @

V

a

j,1 (V ) = 0. (S.3)

By rescaling the activation functions they may be assumed without loss of generality to be normalized as

0  a

j,1 (V )  1 for all V 2 R. (S.4)

Hodgkin classified neuronal excitability by the dependence of the firing rate f of a neuron on the input
current I

e

[12]: class-I has continuous f -I-curves while in class-II neurons spiking cannot be sustained below
a certain non-zero frequency. A continuous f -I-curve implies periodic spiking solutions whose period becomes
infinitely long as the input current I

e

approaches the threshold current. In other words, by tuning I

e

the time
evolution in some part of the phase space can be made arbitrarily slow. Dynamical mechanisms that can lead
to such divergences include the saddle-node on limit cycle as well as the homoclinic bifurcation (cf. Figs. 1 and
S1). In neuron models, the membrane potential feeds back on itself: In class-I neurons where the critical current
is reached a small membrane potential increase leads to a further increase in inward currents, which increase
the membrane potential, causing more input current to flow. If this feedback can be made arbitrarily slow by
approaching the threshold, the time to the next AP can be arbitrarily long. If the membrane potential evolves
very slowly, the activation variables will have relaxed towards their steady-state values. Defining the steady
steady-state I-V -curve as

I1 (V ) = I

e

+ g

L

(V
L

� V ) + I

ion,1 (V ) (S.5)

where
I

ion,1 (V ) = I

ion

(V, a1 (V ))

a positive feed back on arbitrarily slow times scales can be achieved if

d

dV

I1
�
V

+

�
> 0 (S.6)
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for some V

+ 2 R. We here define class-I neuronal dynamics by arbitrarily slow spiking generated by such a
positive feedback mechanism. Thus, for class-I dynamics, a necessary (but not necessarily sufficient) condition
is that there exists some V

+ for which (S.6) holds.
By using a combination of a center-manifold and normal form reduction [13, 14] together with multiple

bifurcation theory [15, 16] we prove the following result:

Theorem 1. Every conductance-based class-I neuron of the form (S.1) has a Bogdanov-Takens-Cusp point in
the (I

e

, g

L

, c

m

)-parameter space.

Proof. There are two main features of Eq. (S.1) that facilitate our analytical treatment: First, the bifurcation
parameters I

e

, g

L

, and c

m

, are general parameters that appear in the vector fields of all conductance-based
neuron models, with I

e

and g

L

appearing as coefficients of the constant and first order terms in V only. Second,
the dynamics of the gating variables are coupled solely through the membrane potential V .

To simplify the notation, we introduce new parameters

b =
1

c

m

, I =
I

e

+ g

L

V

L

c

m

, and g

l

=
g

L

c
m

(S.7)

and rewrite the model (S.1) as

d

dt

x =
d

dt

✓
V

a

◆
=

✓
I � g

l

V + bI

ion

(V, a)
⌧

�1 (a1 � a)

◆
=

✓
f

V

(V, a)
f

a

(V, a)

◆
= f (V, a) = f (x) (S.8)

where we set
⌧ = diag (⌧

2

, . . . , ⌧

N

) , a1 (V ) = (a
2,1 (V ) , . . . , a

N,1 (V ))
T

We further use a notation in which multiplication of two vectors x and y is to be understood as their scalar
product, i.e. xy =

P
i

x

i

y

i

and denote the transpose of x by x

T. Partial derivatives @
a

are understood as taking
the derivative in each component of the a

i

and thus applied to a scalar (a N�1 dimensional vector) the result is
a N � 1 dimensional vector (a (N � 1)⇥ (N � 1) dimensional matrix). Further we use the short hand notations
@

V,a

= @

V

@

a

, @
V,V,a

= @

2

V

@

a

etc.
We will show that one can always adjust the three parameters  = (I, g

l

, b) and the state vector x such that
the system is at a co-dimension three BTC point. We denote this fixed point by x

BTC

= x

0

= (V
0

, a

j,0

) and
the parameter values by 

BTC

= 

0

= (I
0

, g

l,0

, b

0

). The construction of the proof is as follows: a

j,0

and 

0

can
be expressed as functions of V

0

alone to satisfy N + 2 out of the N + 3 constraints for a codimension-3 BTC
bifurcation. The last constraint reduces to an equation for V

0

that is independent of the parameter set 

0

and
can be shown to have a solution. We now proceed step by step.

A BTC point is a fixed point and thus, assuming the steady state voltage is given by V

0

, setting the right
hand side of (S.8) to zero the fixed point values a

j,0

for the activation variables are uniquely determined by

a

j,0

= a

j,1 (V
0

) (S.9)

Instead of solving for V
0

to satisfy the remaining fixed point equation obtained from (S.8) we use the observation
that this equation can uniquely be solved for the parameter I

0

given x

0

and the parameters g

l,0

and b

0

. We
obtain

I

0

= �g

l,0

V

0

� b

0

I

ion

(V
0

, a1 (V
0

)) (S.10)

Besides being a fixed point, an ordinary Bogdanov-Takens (BT) point [17, 18] is characterized by a zero eigen-
value of algebraic multiplicity two and geometric multiplicity one, i.e. by a nilpotent Jacobian in the reduced
dynamical system within a center-manifold. The Jacobian of (S.8) is given by

Df =

0

BBB@

@

V

f

V

@

a2fV . . . @

aN f

V

@

V

f

a2 � 1

⌧2
0

...
. . .

@

V

f

aN 0 � 1

⌧N

1

CCCA
=

✓
@

V

f

V

@

a

f

T

V

@

V

f

a

�⌧

�1

◆
(S.11)

For a BT point at x

0

we therefore must demand the existence of four generalized eigenvectors q

0

, q
1

, p
0

, p
1

of
A = Df |

x0
, the Jacobian at x

0

, such that

Aq

1

= q

0

, Dfq

0

= 0, A

T

p

0

= p

1

, A

T

p

1

= 0, p

T

i

q

j

= �

ij

. (S.12)

We now employ the fact that the dynamics of the activation variables a

j

in a conductance based neuron model
only couple via the membrane potential V . This is reflected in the special structure of Df , Eq. (S.11), having
a block diagonal matrix on the lower right. Writing q

j

= (q
j,1

, . . . , q

j,N

) and p

j

= (p
j,1

, . . . , p

j,N

) for i 2 {0, 1},
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we can thus solve the equations (S.12) using (S.11) for all components p

j,i

and q

j,i

with i � 2 to obtain the q

j

and p

j

in the form

q
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= q

0,1

✓
1

⌧@

V

f
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� q

0,1

⌧) ⌧@
V

f

a

◆
p

0

=

✓
p

0,1

(p
0,1

� p

1,1

⌧) ⌧@
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f

V

◆ (S.13)

The remaining equations for the first components with i = 1 then become
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V

f

a

�
= 0

As the generalized eigenvectors must be non-zero, we have q

0,1

6= 0 6= p

1,1

and the solvability of the above
system yields

@

V

f

V

+ @

a

f

V

⌧@

V

f

a

= 0 (S.14)
1 + @

a

f

V

⌧

2

@

V

f

a

= 0 (S.15)

These equations render the fixed point x

0

to be an ordinary Bogdanov-Takens point. Using (S.8) we have

@

V

f

a

= ⌧

�1

@

V

a1 � ⌧

�2 (@
V

⌧) (a1 � a) and thus @

V

f

a

|
x0

= ⌧

�1

@

V

a1
��
V0

as a = a1 at x

0

via the fixed point condition (S.9). Hence, the first condition (S.14) is equivalent to

d

dV

I1|
x0 = 0 (S.16)

Note that this equation is also equivalent to the condition that the determinant at x

0

given by

det (Df)|
x0

=
(�1)

N�1

Q
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�����
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Q
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I1

�����
x0

(S.17)

evaluates to zero indicating the position of a fold point in general. The fold condition (S.16) is a linear equation
in the two parameters g

l

and b and can be solved uniquely for g

l

to give

g

l,0

= b

0

d

dV

I

ion

(V, a1 (V ))

����
V0

= b

0

d

dV

I

ion,1 (V )

����
V0

(S.18)

The next step is to solve the second BT point condition (S.15) for the parameter b which gives

b

�1

0

= �@

a

I

ion

⌧@

V

a1|
V0

(S.19)

For a two-dimensional system, this condition becomes tr (Df)|
x0

= 0 and together with (S.17) this again shows
that these are the conditions for an ordinary BT point.

As a next step, we calculate the equation that forces the BT point to be degenerate, i.e. a BTC point. The
results in [17, 18] imply that in any two dimensional center manifold with properly chosen coordinates (w

0

, w

1

)
centered at a BT fixed point, the the system can be written in the following form

d

dt

w

0

= w

1

d

dt

w

1

= ↵

2

w

2

0

+ �

2

w

0

w

1

+O
⇣
k(w

0

, w

1

)k3
⌘

(S.20)

with constant coefficients ↵
2

and �

2

that depend on the details of the original model. A BT point is degenerate
if either ↵

2

6= 0, �
2

= 0 or ↵
2

= 0, �
2

6= 0 [1, 19, 20]. We consider the second case, which encompasses the focus
and elliptic BTC points of relevance to leak-induced transitions. We now show that we can tune the fixed point
value V

0

such that ↵

2

= 0.
The normal form coefficient ↵

2

can be directly calculated using center-manifold theory and imposing the
Fredholm solvability conditions [14]. This yields an expression for ↵

2

in terms of the generalized eigenvectors
q

0

and p

1

, (S.12) as

↵

2

=
1

2
p

1

D

2

f (x
0

) (q
0

, q

0

) , (S.21)
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where D

2

f (x) (·, ·) is the Hessian quadratic form of the vector field f at x . Using the expressions (S.13) for
the generalized eigenvectors we obtain
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where in the second equation we used @

a

f
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we obtain
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The degeneracy condition for the BT point thus becomes

d

2

dV

2

I1

����
x0

= 0. (S.22)

Now we use the second ingredient, namely that the I and g

l

are coefficients of the constant and linear part of
the vector field f so that d

2

dV

2 I1 does not depend on I and g

l

. It is further proportional to b 6= 0, so that the
condition can be solved for V

0

independently of the choice of the parameters (I, g
L

, b).
To show the existence of a solution to (S.22) we use the precondition that the neuron has class-I excitability,

i.e. the neuron satisfies (S.6). Observe that I1 has the form I1 (V ) = q (V ) � p (V )V , for which q (V ) and
p (V ) are pure polynomials in the variables a

j,1 (V ). As all maximal conductances and activation variables are
positive, we have p (V ) � g

l

> 0 and thus using (S.3) we obtain

lim
V!±1

d
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I1 (V )  �g

l

. (S.23)

Combining equations (S.6) and (S.23) it follows that d

dV

I1 must have at least one local maximum and hence
there is a V

0

2 R such that d

2

dV

2 I1 (V )
���
V=V0

= 0. Finally, given V

0

that solves the degeneracy condition (S.22)

the equations (S.10), (S.18) and (S.19) show that there exists a parameter set (I
0

, g

l,0

, b

0

) such that x
0

is a BTC
point.

This shows the existence of a BTC point in all class-I conductance based neuron models. The following
lemma provides a condition for the neuron model to ensure that the BTC point lies in a bio-physically plausible
parameter regime.

Lemma 2. For a class-I conductance based neuron model of the form (S.1) the BTC point at x
0

= (V
0

, a
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) and
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< 0 (S.24)

holds.
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Proof. In the proof of the Theorem above we showed that d

dV

I1 has at least one local maximum. Combining
(S.6) with (S.18) and (S.19) shows that choosing V

0

at such maximum we have

sign (g
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The condition (S.24) then implies that

sign (g
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) = sign (g
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) sign (b
0

) = 1

and
sign (c

m,0

) = sign (b
0

) = 1

We next calculate some useful expressions occurring frequently in the calculations that follow.

Lemma 3. For a class-I conductance based neuron model of the form (S.1) at a BTC point x
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Proof. The first two sets of identities follow from lengthy but direct algebraic computation using the structure
of the conductance-based neuron model, such as @

a,a

f

a

= 0 and the fact that @
a

f

a

is a diagonal matrix, together
with the properties of the BTC point such as a
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) then follow directly by applying the above identities
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follows from the choice of V
0

as a local maximum of d

dV

I1 (V
0

) in the proof of the Theorem above.
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We now consider the precise type of BTC points encountered in conductance-based neuron models. In
the representation of the center manifold dynamics as in (S.20) we therefore also consider terms of higher
order. For a system at a BTC bifurcation point with ↵

2

= 0 there is a smooth coordinate change and time
re-parametrization such that the reduced model dynamics in (S.20) on the center manifold take the form [1, 14]
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If necessary a further coordinate change can be applied to assure that �
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is positive. Now the precise values of
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6= 0 determine the sub-type of the BTC point. In particular the point is of saddle type if
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< 0. Note that the
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< 0 [1, 14].

Proposition 4. For a conductance-based neuron model of the form (S.1) with a BTC point at x
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the BTC point is of focus or elliptic sub-type.

Proof. The normal form coefficients ↵
2

, ↵
3

and �

2

can be calculated by imposing solvability conditions onto lin-
ear systems that arise in the combined calculation of the normal form reduction and center-manifold coordinates
[14]. The resulting expression for ↵
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is given above in (S.21), while the other coefficients are
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The scalars p
1,1

and q

0,1

can be calculated from the normalization conditions given in (S.12) and the additional
normalization conditions q

0

q

0

= 1 and q

0

p

1

= 0. Then, by evaluating the expressions for the normal form coef-
ficients and using the identities from the previous lemma we obtain the result after lengthy but straightforward
algebra.
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Neuron Model class V0 I0 gL,0 cm,0 �2 ↵3 BTC type
[mV] [µA/cm2] [mS/cm2] [µF/cm2]

Morris and Lecar [3] I -11.90 175.62 5.53 42.69 0.011 �2.28⇥ 10�5 focus
Wang and Buysaki [2] I -46.75 7.68 0.74 1.53 0.13 �2.73⇥ 10�3 focus
Erisir et al. [4] I -39.34 15.24 0.83 5.88 0.021 �1.12⇥ 10�4 focus
Rose and Hindmarsh [21] I -37.59 305.9 11.26 35.90 0.082 �1.85⇥ 10�3 focus
Destexhe and Pare [22] I -47.29 9.77 0.32 407.5 0.0003 �1.71⇥ 10�7 focus
Prescott et al. [23] I -36.27 19.95 0.85 19.80 0.0034 �1.67⇥ 10�5 focus
Golomb et al. [24] I -50.57 1.35 0.14 1.16 0.029 �1.03⇥ 10�4 focus
Acker et al. [25] I -82.34 -0.066 0.0016 0.15 0.031 �4.85⇥ 10�7 elliptic
Ermentrout and Kopell [6] I -49.71 98.53 8.20 30.41 0.17 �2.43⇥ 10�3 elliptic

Hodgkin and Huxley [26] II -18.08 -14.67 -0.28 -0.042 0.021 2.45⇥ 10�4 saddle

Supplementary Table S1
Bogdanov-Takens-cusp bifurcation points in neuron models. For each conductance based neuron model the
resting potential V

0

as well as the parameter (I
0

, g

L,0

, c

m,0

) at the BTC point at x

0

= (V
0

, a1 (V
0

)) are listed
together with the non-zero normal form coefficients. All intrinsic class-I neuron models have either a BTC
bifurcation point of elliptic or focus sub-type. The focus type is prevalent for intrinsically class-I neurons, while
a saddle type BTC is not encountered. Intrinsically class-II neurons are not subject to the Theorem. For
instance, the Hodgkin-Huxley model is class-II; the BTC point in this case is found at negative c

m,0

and g

L,0

,
which are not bio-physically plausible ; moreover, the putative BTC point is of saddle type.

We used the Theorem and Proposition derived here to determine the BTC points and their sub-type in
various conductance-based neuron models. The results in Table S1 show that intrinsically type I neurons are
either of focus or elliptic sub-types. Both of these BTC points yield a common topology for the bifurcation
diagrams in the in the (I

e

, g

L

)-plane (Fig. S1). For the elliptic sub-type the full theory requires one to restrict the
analysis to a bounded region in phase-space encircling the fixed points. This local restriction imposes additional
border tangency bifurcations in the bifurcation diagram [1]. However, when taking into account the full phase
space, we numerically observe that these border bifurcations give rise to global bifurcations that, in their sum,
render the bifurcation diagram as shown in Fig. S1. This observation holds for both the unfolded normal form
of the elliptic BTC as well as for all the class-I neurons models of elliptic type considered here. Thus, all class-I
neurons show the same sequence of transitions in the f -Icurves, bistability and resonance organized by a focus
or elliptic BTC bifurcation point.

More than one solution to eq. (S.22) can exist. For the neuron models studied above, we typically find
two to five solutions. About half of the solutions correspond to minima of d

dV

I1 and imply that g

L,0

has the
opposite sign of c

m,0

; such parameters lead to unstable unbounded dynamics. Numerically we find that in
all class-I neuron models considered, there is a single unique focus or elliptic BTC point among all solutions
with biophysical permissible parameters. Moreover, the overall organization of the bifurcation diagrams in the
(I

e

, g

L

)-plane is as depicted in Fig. S1 or S2. The existence of other degenerate bifurcation points may alter the
fine structure of the bifurcation diagram. For example, in the original Connor-Stevens model we observe that
in the transition from class-I to class-II the (I

e

, g

L

)-bifurcation diagram shows additional signatures of a nearby
swallowtail bifurcation (cf. [16] for definition).

We had to demand class-I excitability in order to ensure the existence of a BTC point. For class-II neurons a
BTC may still exist, however, one cannot exclude negative values of g

L,0

or a saddle BTC point with unbounded
dynamics (cf. the Hodgkin-Huxley model in Table S1). Further, to define class-I excitability we used Eq. (S.6),
i.e. the existence of a arbitrarily slow positive feedback in the voltage evolution. For planar dynamics (any
system with only two dynamical variables), this is a natural consequence of the presence of a saddle-point.
Indeed, one can show the following:

Lemma 5. Suppose a conductance-based neuron model given by Eq. (S.1) has a continuous f -I-curve and can
be mapped by a diffeomorphism onto a planar system while preserving the voltage variable V (t). Then this model
has a steady-state I-V -curve that satisfies (S.6), i.e. for some V

+ we have d

dV

I1(V +) > 0.

Proof. We briefly sketch the arguments here. The dynamics for the activation variables a are bounded by defini-
tion of the neuron model class Eq. (S.1). Set V

max

= max
j

V

j

and V

min

= min
j

V

j

. For V > max
⇣
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,
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gL

⌘

the total current I
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e
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L

(V
L

� V ) + I

ion

(V, a) becomes negative while for V < min
⇣
V

min

,� Ie+gLVL

gL

⌘
,

I

tot

> 0. Thus, the dynamics in V is bounded, too, so that overall dynamics is confined.
In two dimensions, a continuous f -I-curve can only arise via a saddle-node on limit cycle or a homoclinic

bifurcation; the only two other generic one-parameter bifurcations that give rise to a stable limit cycle in two
dimensions are Hopf and double limit cycle bifurcations, each of which generates a discontinuous f -I-curve,
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cf. [16, 27]). Both, the SNLC and homoclinic bifurcations imply the existence of a saddle fixed-point. Now, for
generic and bounded two dimensional dynamics Poincaré index theory dictates that a saddle-fixed point arises
only when accompanied by two other fixed points (called nodes). The steady-state I1 (V ) must vanishes at
these points. As the steady state variables a are uniquely determined by the steady state voltage at a fixed
point, we conclude that I1 (V ) must have at least three zeros. Now as d

dV

I1(V ) is continuous and becomes
negative in the limits V ! ±1, the sign of d

dV

I1(V ) must alternate across the three fixed point solutions.
In other words, there must be at least one solution for which d

dV

I1(V +) > 0. Qualitatively speaking, the
steady-state I-V -curve must “curve back” to yield three fixed point solutions of Eq. (S.1).

To summarize, we here analytically showed the existence of BTC points in all conductance-based class-I
neuron models, as supported by numerical simulations of different neuron models (Figs. 1-3, S3-S6, Table S1).
We demonstrated that in class-I neurons the BTC point is either of focus or elliptic type. A BTC point of focus
type implies the existence of three organizing centers of co-dimension two: an NSL a SNL and a DH bifurcation
that regulate the transition of neuronal excitability from class-I (via a SNLC bifurcation) to class-II (via a DC
bifurcation). The elliptic type guarantees a transition from SNLC to DC bifurcations, but does not specify the
exact sequence of intermediate non-local bifurcations. Nonetheless, numerically calculated bifurcations diagrams
for class-I neuron models with an elliptic type BTC point, show that the same transition structure from SNLC
to DC via a homoclinic bifurcation occurs. Both, elliptic and focus BTC points organize leak-induced bistability
and predict a BT bifurcation that controls the transition from sub-threshold to peri-threshold resonance. We
conclude that excitability transitions in class-I neurons are generally organized by a BTC bifurcation of elliptic
or focus type. The unfolding of the BTC bifurcation provides a unified explanation for all the experimentally
observed co-occuring sub-transitions (Figs. 4-6, S7-S9).

3 Supplementary Methods

Experiments and Data Analysis

All experiments were done and all data analyzed as described in the main text. The latency from stimulus
onset to the first spike was determined form the traces of the f -I-experiments, i.e. from the voltage response
to injection of step currents of 1s duration with a fine current amplitude increase of fixed step size of 1-20 pA
starting close to but below the threshold. The latency was then determined from the trace with lowest step
current amplitude displaying at least one spike. Q-factors were determined form the fitted impedance curves
via Q = |Z (⌫

R

) /Z (0)|.

Neuron Models

Bifurcation diagrams for the neuron models were obtained as in the main text using the numerical continuation
software AUTO [28] with HomCont [29]. Model dynamics were simulated in Wolfram’s Mathematica 9. The
conductance-based neuron models dynamics are given in (S.1). For voltage-dependent opening and closing rates
↵

a

(V ) and �

a

(V ) of the activation variable a, the time constant is ⌧

�1

a

(V ) = ↵

a

(V ) + �
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(V ) and the steady
state activation is given by a1 (V ) = ↵

a

(V ) ⌧
a

(V ). Phase response curves for the models were determined
by solving the adjoint equation as described in [11]. Normal form coefficients were calculated according to
the theorem and proposition proved above. Neuron models in Table S1 not listed below used equations and
parameter as in the listed references.

The Wang-Buzsáki Neuron Model The Wang-Buzsáki neuron model [2] is defined by the equation
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supplemented by the dynamics for the gating variables n and h as in (S.1). The rate constants are:
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Parameters are as in [2] with c
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= �65mV. We introduced the parameter b

n

that shifts the half-activation and time constants of the
delayed rectifier along the direction of the membrane potential.

The Morris-Lecar Neuron Model The Morris-Lecar neuron model [3] is defined by
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with activation variables evolving according
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with parameters from [8, 11] given by c
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The Fast Spiking Neuron Model by Erisir et al. The fast spiking neuron model [4] is defined by
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supplemented with the standard equations for the dynamics of the gating variables m, h and n with voltage
dependent rates
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.

(S.6)

Membrane specific parameters are c

m

= 1 µF

cm

2 , g
Na

= 112.5 mS

cm

2 , g
K

= 225 mS

cm

2 , g
L

= 0.25 mS

cm

2 , V
Na

= 74mV,
V

K

= �90mV and V

L

= �70mV.

The Reduced Traub-Miles Pyramidal Neuron Model The reduced Traub-Miles model [5, 6] is defined by

d

dt

V = I

e

+ I

syn

+ g

L

(V
L

� V ) + g

Na

m1 (V )h (n) (V
Na

� V ) + g

K

n

4 (V
K

� V )

d

dt

n = (1� n)↵
n

(V )� n�

n

(V )

The steady state functions and time constants are inferred form the rates

↵

m

(V ) =
0.32 (V + 54)

1� exp (� (V + 54) /4)
�

m

(V ) =
0.28 (V + 27)

exp ((V + 27) /5)� 1

↵

n

(V ) =
0.032 (V + 52)

1� exp (� (V + 52) /5)
�

n

(V ) = 0.5 exp

✓
� (V + 57)

40

◆
.

(S.7)

and h (n) = max {1� 0.25n, 0}. Membrane specific parameters are c

m

= 1 µF

cm

2 , g
Na

= 100 mS

cm

2 , g
K

= 80 mS

cm

2 ,
g

L

= 0.1 mS

cm

2 , V
Na

= 50mV, V
K

= �100mV and V

L

= �67mV.
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The Morris-Lecar Neuron Model with Adaptation The model is defined by the Morris-Lecar equations (S.3)
[3] with an additional adaptation current

I

adapt

= g

z

z (V
z

� V )

and adaptation variable z that evolves as in (S.3) with

z1 (V ) =
1

1 + exp
⇣

Va�V

Vb

⌘
⌧

z

(V ) = 200

and parameters as in [7] given by c

m

= 2 µF

cm

2 , g
Na

= 20.0 mS

cm

2 , g
K

= 208.0 mS

cm

2 , g
L

= 2.0 mS

cm

2 , V
Na

= 50mV,
V

K

= �100mV,V
L

= �60mV, V

1

= �1.2mV, V

2

= 18mV, V

3

= �9mV and V

4

= 10mV , � = 4 and
adaptation parameters V

z

= �100mV, V
a

= �30mV, V
b

= 5mV.

Linear Response Theory

We determine the resonance frequency of a general conductance based neuron model from the impedance
(or transfer) curve obtained from the linear response to sinusoidal input stimuli. We therefore consider a
conductance based neuron model of the form (S.1). We denote a steady state of the dynamics for a constant
external current I

e,0

by x

0

= (V
0

, a

2,0

, . . . , a

N,0

)
T , set I

e

= I

e,0

+ �I and define

⌧

j,0

= ⌧

j

(V
0

) , g

k,0

= g

k

a

lk,1

ik,1,1 (V
0

) . . . a
lk,pk
ik,pk

,1 (V
0

) a
mk,1

1,jk,1
(V

0

) . . . a
mk,qk
1,jk,qk

(V
0

) .

Linearization around the fixed point in the variables �x = x� x

0

yields
d

dt

�x = Df (x
0

) �x (S.8)

or explicitly

c

m

d

dt

�V = �g

L

�V +
@

@V

I

ion

(V
0

, a

0

) �V +
X

j

@

@a

j

I

ion

(V
0

, a

0

) �a
j

+ �I (t)

d

dt

�a

j

=
1

⌧

j,0

�
a

0
j,1 (v

0

) �V � �a

j

�

For periodic inputs of the form �I (t) = I

�

e

◆!t with ◆ =
p�1 and ! = 2⇡⌫, we take the following ansatz,

�x (t) = �ye

◆!t, where y = (Z,Z
2

, . . . , Z

N

)
T . Inserting this into the linearized system (S.8) yields

Z

j

(!) =
a

0
j,1 (V

0

)Z

◆!⌧

j,0

+ 1

and thus for the impedance Z we get

Z (!) =
I

�

◆!c

m

+ g

L

� @

@v

I

ion

(V
0

, a

0

)�P
j

@

@aj
I

ion

(V
0

, a

0

)
a

0
j,1(V0)

◆!⌧j,0+1

(S.9)

For I

�

= 1, this is nothing else than the well know expression for a parallel RCL circuit
1

Z

=
1

Z

R

+
1

Z

C

+
X

j

1

Z

j

Close inspection of (S.9) shows that the impedance may be expressed as

Z (!) =

Q
N

j=2

⇣
�◆! � 1

⌧j,0

⌘

det (Df (x
0

)� ◆!)
=

Q
N

j=2

⇣
�◆! � 1

⌧j,0

⌘

Q
N

i=1

(�◆! + �

i

)

where �

i

are the eigenvalues of the Jacobian Df (x
0

). From this we have

|Z (!)|2 = Z (!) Z̄ (!) =

Q
N

j=2

�
⌧

�2

j,0

+ !

2

�

Q
N

i=1

(�2

i

+ !

2)

The resonance frequency ⌫

R

was determined by the values that maximized |Z|, i.e. by ⌫

R

= argmax
⌫

|Z (2⇡⌫)|.
The transition to resonance was detected by numerical continuation of the condition d

d(!

2
)

���Z (!)
2

���
!

2
=0

= 0,
indicating a change from a monotonically decaying to a peaked |Z| at zero frequency. The transitions from
real to imaginary eigenvalues (i.e. saddle to focus transitions) were detected by continuation of the zeros of the
discriminant for the characteristic polynomial det (Df (x

0

)� �).
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