
Supplement to Kroll et al. 1

Supplement to Kroll et al., MuCor: Mutation Aggregation and Correlation

Correspondence:

James S. Blachly, M.D.
james.blachly@osumc.edu

mailto:james.blachly@osumc.edu

Supplement to Kroll et al. 2

Contents

Supplementary Text 3

Outline of workflow 3

Usage and Description of Arguments: mucor_config.py 4

Usage and description of arguments: mucor.py 8

Usage and description of arguments: depth_gauge.py 9

Example Workflow 1: Compare calls in multiple samples 10

Example Workflow 2: Compare calls from multiple callers in multiple samples 11

Example Workflow 3: Compare two or more variant callers in a single sample 12

Example Workflow 4: Compare two platforms in a single sample 15

Example Workflow 5: Be confident about wild type calls with DepthGauge 16

Example Workflow 6: Survey an amplicon panel for adequate coverage 17

Writing New Input and Output Modules 18
New Input Modules 18
New Output Modules 19

Supplementary Tables 22

Supplementary Figures 25

Supplementary Table 1. Input formats recognized by MuCor 22
Supplementary Table 2. Output report formats written by MuCor 23

Supplementary Figure 1. Direct Comparison of two variant callers. 14
Supplementary Figure 2. DepthGauge output with average coverage for 2 locations of interest. 16
Supplementary Figure 3. DepthGauge output demonstrating an amplicon failure. 17
Supplementary Figure 4. Example xls output. 26
Supplementary Figure 5. Example longxls output. 27
Supplementary Figure 6. Example featXsamp output. 28
Supplementary Figure 7. Example mutXsamp and mutXsampVAF output. 29

Supplement to Kroll et al. 3

Supplementary Text

Outline of workflow

MuCor is intended to be run in two steps. A companion utility, DepthGauge, is optional.

In the first step, mucor_config.py generates a configuration file either automatically (inferring
certain values; see below), or as a syntactically-valid but blank template for editing. The configuration
file is a JSON1 format document that can be edited by hand if required.

In the second step, mucor.py reads the contents of the configuration file and executes the run. No
additional parameters are required at this step.

Finally, to ensure the veracity of variant and wild type calls in the input space, depth_gauge.py can
use the same configuration file as MuCor to query the original source BAM files, if available, and
demonstrate adequate sequencing depth (or lack thereof) at points of interest: for example, at the site
of one or more interesting variants in the MuCor results.

1 JavaScript Object Notation. http://json.org.
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf

http://json.org/
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf

Supplement to Kroll et al. 4

Usage and Description of Arguments: mucor_config.py

mucor_config.py [-h]

 [-ex]

 -g GFF

 -f FEATURETYPE

 [-db <dbname:/path/to/db.vcf.gz>]

 -s SAMPLES

 [-d PROJECT_DIRECTORY]

 [-vcff VCF_FILTERS]

 [-a ARCHIVE_DIRECTORY]

 [-r REGIONS]

 [-u]

 -jco JSON_CONFIG_OUTPUT

 -outd OUTPUT_DIRECTORY

 [-outt OUTPUT_TYPE]

Mandatory arguments:

Note that in -ex (example) mode, no other parameters are required.

-g GFF, --gff GFF Annotation GFF/GTF for feature binning

Specify a GTF/GFF3 format file with feature definitions. Each identified variant will be binned into and
reported as belonging to one (or more, in case of genomic overlap) feature(s). Typically, this would be
genes, but could be anything (operons, cytogenetic bands, etc.)

-f FEATURETYPE, --featuretype FEATURETYPE

Specify the feature type (a key from GTF or GFF3 column 9). For example, from the GENCODE
annotations, choices include: gene_name, gene_id, transcript_name, transcript_id, etc.

Supplement to Kroll et al. 5

-s <sample_list.txt>, --samples <sample_list.txt>

This parameter points to a file name containing sample names, with one sample name per line. An
example is given below (Listing 1). Each sample name or ID read from this file will be matched against
filenames in subdirectories of the directory specified in --project_directory. Note that this means
in rare cases, the substring matching algorithm might incorrectly associate a file with a sample ID,
particularly if sample IDs and filenames are not padded with zeros. For example, the ID sample9 would
match the [incorrect] file name sample99, but not the file name sample09 ! The ID sample1
would match filenames for both sample1 and sample10 . This problem can be avoided by using
appropriately-padded sample identifiers and filenames, or by using a scheme such as UUIDs (practiced
by the TCGA, among others).

lung_cancer_001
lung_cancer_002
lung_cancer_003
lung_cancer_004
lung_cancer_005
Listing 1. Example sample_list.txt

-jco <filename.json>, --json_config_output <filename.json>

This required parameter names the output configuration file, which is in JSON format.

-outd <OUTPUT_DIRECTORY>, --output_directory <OUTPUT_DIRECTORY>

This required parameter defines the directory (in relative or absolute terms) where output will be placed
during and after a MuCor run.

Optional arguments:

-h, --help show a help message and exit

-ex, --example Write a valid, example JSON config file and exit.

-db <dbname:/path/to/file.vcf.gz>,

--databases <dbname:/path/to/file.vcf.gz>

Supplement to Kroll et al. 6

This parameter is used to define lookup databases, and can be passed zero or more times. Databases
are specified as a colon-delimited pair of the user-defined database name, and full path (no wildcard or
~ expansion) to the bgzipped, tabix-indexed (see Supplementary Table 1) VCF file. Passing this
parameter multiple times will include multiple lookup databases simultaneously in the analysis.

Examples of lookup databases that might be used include dbSNP and COSMIC. One could also define
databases with arbitrary identifiers associated with specific nucleotide changes of interest.

-d <dirname>, --project_directory <dirname>

This parameter specifies the working or project directory in which the configurator can find input variant
call files. It defaults to the current working directory.

-vcff <FILTERS>, --vcf_filters <FILTERS>

This parameter specifies a comma-separated list of VCF filters for which data will be allowed to pass
through. It defaults to the PASS filter.

-a ARCHIVE_DIRECTORY, --archive_directory ARCHIVE_DIRECTORY

This parameter specifies a directory in which MuCor can read and write archived annotations. The
GTF/GFF files can take some time to process, and for very small input VCFs this parsing might consume a
large fraction of total processing time. By specifying an archive directory, the parsed annotation file can
serialized to disk and in future runs can be rapidly deserialized for faster startup.

-r REGIONS, --regions REGIONS

This parameter limits analysis to a list of regions specified either on the command line or in a BED2 file.
For example, in whole-genome or whole-exome sequencing, voluminous data make analysis difficult.
Limiting MuCor output to a pre-specified list of “hotspots” can facilitate more rapid analysis.

Format: a comma-separated list of any combination of

1. Regions in the format <chr>[:<start>-<end>]
2. BED filenames

2 BED file format is documented at UCSC and Ensembl:
https://genome.ucsc.edu/FAQ/FAQformat.html#format1
http://www.ensembl.org/info/website/upload/bed.html

https://genome.ucsc.edu/FAQ/FAQformat.html%23format1
http://www.ensembl.org/info/website/upload/bed.html

Supplement to Kroll et al. 7

For example:

-r chr1:10230-10240,chr7,hotspots.bed,other_regions.bed

-u, --union Join all items with same ID for feature_type

This parameter joins all features (from the annotation passed using –g) with the same feature ID
(specified with –f) into a single, continuous bin. For example, if you want intronic variants counted in
your genes, use this option. However, be warned that this may lead to some spurious results: many
annotations have entries (often small RNAs) annotated at multiple locations throughout the genome;
when two or more entries are located on the same chromosome or contig, this can result in one huge
unified bin. For example, MIR4283-2 exists twice on the + and – strand of the same chromosome over 1
megabase apart. MuCor contains some code to detect and eliminate wrongly unified bins, but not all
cases are currently handled, nor could they be.

-outt OUTPUT_TYPE, --output_type OUTPUT_TYPE

This parameter specifies a comma-separated list of desired output types. It defaults to ‘all’. See
Supplementary Table 2 for a list of acceptable values.

Supplement to Kroll et al. 8

Usage and description of arguments: mucor.py

MuCor is dependent only on the JSON formatted configuration file which may be entirely hand created,
entirely automatically generated by mucor_config.py, or automatically generated and hand-tuned.

mucor.py config_file.json

Supplement to Kroll et al. 9

Usage and description of arguments: depth_gauge.py

Like MuCor, DepthGauge is dependent only on the JSON formatted configuration file which may be
entirely hand created, entirely automatically generated by mucor_config.py, or automatically
generated and hand-tuned. DepthGauge has three additional options, the latter of which can override
the regions, if any, specified in the JSON configuration file.

depth_gauge.py config_file.json [-p] [–c] [-r <regions>]

-p, --point

Instead of reporting an average depth for every location within a window (default), take the middle
coordinate within the range and calculate the depth at that point as a surrogate for the entire region

-c, --count

Instead of reporting an average depth for every location within a window (default), or taking a point
estimate from the middle (-p), instead count the total number of reads mapped within the region.

-r <regions>

This option specifies a list of regions to query for depth. If present, it overrides the region(s) specified in
the JSON configuration file. As an alternative, the JSON configuration file could be edited before running
DepthGauge.

Supplement to Kroll et al. 10

Example Workflow 1: Compare calls in multiple samples
In this example, suppose we have many independent samples for which variants have been called with a
single variant caller. Perhaps these variant calls came directly from an Ion Torrent PGM or Miseq
instrument as VCF files. Suppose further that the sample names consist of sample + a four digit
number. For example, they might be called sample0107 or sample1234.

Step 1. Create a text file with each sample name/id on a separate line.

If the sample names are serial and there are many, you may wish to create the list programmatically. In
bash:

for ((i=1;i<=10;i++); do
 printf “sample%04d\n” ${i} >> samples.txt
done

This example will save a file samples.txt that contains ten serial sample IDs.

Step 2. Ensure all variant files are stored under a single project directory.

The files needn’t be all together in the same parent directory or same subdirectory, so long as they are
accessible in the file system tree underneath the project directory. For example, either of the following
is compatible with the sampleid->filename auto-detection:

projA/
├── sample01.vcf
├── sample02.vcf
└── sample03.vcf

projB/
├── sample01/
│ └── sample01.vcf
├── sample02/
│ └── sample02.vcf
└── sample03/
 └── sample03.vcf

Step 3. Run mucor_config.py with appropriate arguments.

mucor_config.py –g /data/ref/gencode.gtf –f gene_id –s
samples.txt –jco example1.json –outd example1/ -outt all –db
dbsnp:/data/ref/dbsnp.vcf.gz

\
\

Step 4. Run MuCor and examine output files of interest.

mucor.py example1.json

Output files will reside in example1/. For this study, outputs txt/xlsx and featXsamp may be of
interest.

Supplement to Kroll et al. 11

Example Workflow 2: Compare calls from multiple callers in multiple samples
This workflow would proceed exactly as in Example Workflow 1, except that any sample might (but is
not required to) have multiple variant files associated with it. For example, suppose that MuTect were
used to call somatic mutations, and Varscan to detect INDELs. Each subdirectory in the tree above might
have multiple files:

proj/
├── sample01/
│ ├── sample01_mutect.vcf
│ └── sample01_varscan.vcf
├── sample02/
│ ├── sample02_mutect.vcf
│ └── sample02_varscan.vcf
└── sample03/
 ├── sample03_mutect.vcf
 └── sample03_varscan.vcf

As before, the files needn’t be separated into individual subdirectories and will be correctly auto-
detected, even if they are all in the same directory. Note that filename-based auto-detection is based
solely on sample id, and has nothing to do with the individual variant caller or the sub-type of VCF file.
The filenames in the example above included _mutect or _varscan only for clarity’s sake.

No other changes to the work flow in Example Workflow 1 are necessary; multiple inputs per sample will
be merged internally.

Supplement to Kroll et al. 12

Example Workflow 3: Compare two or more variant callers in a single sample
For this example, suppose we wish to compare the results of three different variant calling pipelines or
packages when run on a single sample. Now, unlike in example workflow 2, wherein we wanted multiple
callers within a single sample to be merged internally, here we aim to keep them separate. To do this,
we can either build the JSON formatted config file manually, specifying which VCF files belong to which
test conditions, or we can try to build it automatically with some trickery: in order to prevent the sample
ID autodetection routine, which operates based on filename, from merging all pipeline outputs into a
single sample, we’ll need to rename files, removing reference to sample ID in the filename.

Step 1. Create a sample list text file consisting of a single sample ID.

cat sample01 > samples.txt

Step 2. Rename files, removing reference to sample ID in the filename.

proj/
└── sample01/
 ├── sample01_pipelineA.vcf
 ├── sample01_pipelineB.vcf
 └── sample01_pipelineC.vcf

rename

→

proj/
└── sample01/
 ├── pipelineA.vcf
 ├── pipelineB.vcf
 └── pipelineC.vcf

Step 3. Run mucor_config.py with appropriate arguments.

No specific change to the configurator compared to example workflow 1 is required. Generate
example3.json by running the configuration script with the file tree as above. Note that now when
examining example3.json (see Listing 2, below, page 13), in contrast to example workflow 2, each
pipeline is listed as a separate sample (lnote at the “id” field for each element in the samples array).
By extension and in contrast to Listing 2, the samples file passed to mucor_config.py would have
the entries A, B, C on three separate rows.

Step 4. Run MuCor and examine output files of interest.

mucor.py example3.json

Output files will reside in example3/. For this study, outputs mutXsamp and mutXsampVAF may be of
interest, as they will provide a direct comparison on a variant-by-variant basis among the different
pipelines. Supplementary Figure 1, below, page 14, demonstrates the mutXsampVAF report as a head-
to-head comparison of two variant callers.

Supplement to Kroll et al. 13

{
 "databases": {},
 "fast": "",
 "feature": "gene_name",
 "filters": [
 "PASS"
],
 "gff": "/home/references/annotation.gtf",
 "outputDir": "./example3",
 "outputFormats": [
 "all"
],
 "regions": [],
 "samples": [
 {
 "files": [
 {
 "path": "/proj/sample01/pipelineA.vcf",
 "snpeff": true,
 "source": "pipelineA",
 "type": "vcf"
 }
],
 "id": "A"
 },
 {
 "files": [
 {
 "path": "/proj/sample01/pipelineB.vcf",
 "snpeff": true,
 "source": "pipelineB",
 "type": "vcf"
 }
],
 "id": "B"
 },
 {
 "files": [
 {
 "path": "/proj/sample01/pipelineC.vcf",
 "snpeff": true,
 "source": "pipelineC",
 "type": "vcf"
 }
],
 "id": "C"
 }
],
 "union": false
}

Listing 2. example3.json

Supplement to Kroll et al. 14

CallerA CallerB

feature chr pos ref alt
 BRAF chr7 140434647 G A 1 1

140449071 C G 0.602 0.6083
140449150 T C 0.571 0.6

CTNNB1 chr3 41274764 C A 0 0.9966
41280641 T C 0 0.016

GSK3B chr3 119541539 A G 0.03 0
119541588 A G 0.015 0.0174
119542377 A C 0 0.0112
119542716 C T 0.977 0.9778
119542765 T A 0.098 0
119543921 T C 1 1
119544144 G T 1 1
119545152 C T 0.995 0.9949
119595503 A G 1 1
119631814 A G 0.996 0.9962
119812422 T C 0.013 0.0107
119812450 A C 0 0.0113

MAPK1 chr22 22160384 T C 1 1
22162145 G A 0.02 0

MAPK3 chr16 30125854 T G 0.208 0
30128294 A G 0.026 0

NRAS chr1 115256669 G A 1 1
PIK3CD chr1 9780659 T G 0.42 0

9780667 A C 0.353 0
9780669 A G 0.341 0
9783937 A T 0.009514 0

Supplementary Figure 1. Direct Comparison of two variant callers.

This direct comparison of two variant callers uses the mutXsampVAF reporting format. Any number of
callers could be run simultaneously and would be displayed as additional columns.

Supplement to Kroll et al. 15

Example Workflow 4: Compare two platforms in a single sample
This example does not differ conceptually from example workflow 3, except that the source of inputs
may result from the same variant calling pipeline but different platforms. For example, the same library
might be run on an Illumina HiSeq and an Illumina MiSeq. Or, identical DNA may be run on both an
Illumina MiSeq and an Ion Torrent instrument.

Make sure to either construct the JSON config file correctly by hand or by naming files appropriately
(i.e., removing reference to any sample ID listed in the sample list input) before running the
configurator.

Supplement to Kroll et al. 16

Example Workflow 5: Be confident about wild type calls with DepthGauge
This example begins with the same steps as in workflow 1 or 2.

Suppose that 100 cases were sequenced and then, using MuCor, that two interesting variants were
revealed to be present in 20% of samples. To be confident that we are not making false negative wild
type calls in any of the remaining 80% of cases, we may wish to ensure that there was adequate
sequencing depth at the two loci of interest in the remaining 80% of cases.

Step 1. Create a BED file listing the hotspot(s)

chr16 85909136 85909137 rs397514710
chr16 85909052 85909053 rs397514711
Listing 3. hotspots.bed

Remember that BED file coordinates are zero-based, half-open. In addition, it may be helpful to expand
coordinates around a hotspot ±3 to catch other changes within the same codon.

Step 2. Use DepthGauge to report the total depth at each position within the regions of interest.

depth_gauge.py example5.json –r hotspots.bed

Alternatively, example5.json could be modified to limit further analysis to the regions of interest;
the -r command-line parameter would then not be necessary when running DepthGauge.

Step 3. Examine DepthGauge output and confirm or refute MuCor’s “wild type” calls

chr start stop name S01 S02 S03 S04 S05 S06

chr16 85909136 85909137 rs397514710 5268 5266 5266 4410 3628 5268

chr16 85909052 85909053 rs397514711 34 10 32 32 16 36

Supplementary Figure 2. DepthGauge output with average coverage for 2 locations of interest.

In Supplementary Figure 2, we see that we can be highly confident about wild type/variant status called
for SNV rs397514710, but much less confident about the wild type/variant status of rs397514711. We
may decide on the basis of these results to re-sequence, to eliminate that SNV from final analysis, or to
analyze it as a ternary variable: wild type, mutant, and, for cases with fewer than some threshold
number of reads, unknown.)

Supplement to Kroll et al. 17

Example Workflow 6: Survey an amplicon panel for adequate coverage
It is not necessary to run MuCor before DepthGauge; this order can be reversed if required.

For this workflow, we have a targeted amplicon panel and wish to ensure that a run under consideration
for evaluation (perhaps by MuCor) was successful in terms of amplification and sequencing. That is, in
targeted amplicon sequencing, particular regions can occasionally fail to amplify; this may be due to GC-
bias, genomic deletions, SNVs, or other technical factors. Before evaluating these data, it could be
prudent to review the amplicons’ coverage.

However, in targeted amplicon sequencing, coverage is generally uniform across a region of interest.
Therefore, reporting individual depth at every point is redundant, and (naïvely) calculating the average
depth is too time-consuming. Additionally, in paired-end sequencing of shorter amplicons, overlapping
read pairs falsely increase (double) the sense of depth at the middle of the region, making a point-
estimate (the –p option) misleading (and may differ between amplicons of different length). The –c/--
count option was specifically designed for this scenario.

For this example, begin with the workflow from example 1 by organizing files (Step 1 and Step 2).

Modify Step 3 by limiting to regions specific to your amplicon design. This is usually supplied by your
vendor. For Illumina TruSeq Custom Amplicon, the CAT Manifest file contains both targets and off-target
regions; either can be parsed into a BED file. Ion Torrent Ampliseq designs may already include a BED
file.

mucor_config.py […arguments from example 1, step 3] –r amplicons.bed

 Step 4. Run DepthGauge in count mode

depth_gauge.py –c example6.json

Examine the output file, Depth_of_Coverage-c.xlsx. An example demonstrating an amplicon
failure is shown in Supplementary Figure 3, below. Based on the results of this analysis, the user may
wish to remove the suspect region from the region of interest BED file before running MuCor.

chr start stop name Sample_1 Sample_2 Sample_3

chrX 47428092 47428457 A-RAF 996 1,081 623

chr7 140453075 140453193 BRAF_Exon_2290058 3,182 3,735 4,939

chr19 33792516 33792965 CEBPA_Cds (35504885)_65295834 3 1 0

chr22 22160145 22160147 MAPK1_Exon_1839796 4,216 3,864 1,626

chr15 90631819 90631979 IDH2_Exon_2130155 1,902 287 346

chr5 170837490 170837895 NPM1_Cds (36346856)_65295889 2,990 2,277 952

chr12 25398280 25398285 KRAS:Exon 2 codons G12 and G13 4,948 4,949 4,761

chr12 25380275 25380278 KRAS:Exon 3, codon Q61 5,203 4,839 3,240

Supplementary Figure 3. DepthGauge output demonstrating an amplicon failure.

Supplement to Kroll et al. 18

Writing New Input and Output Modules
The core functionality underlying MuCor’s input, sorting, decoration, aggregation, and reporting is the
excellent Python data analysis library Pandas (http://pandas.pydata.org/). Much of Pandas’ core
functionality is based around the DataFrame; MuCor uses pandas.DataFrame as its key internal
data structure. All input flowing into MuCor must be written into a master data frame. Additional
annotations from databases etc. are written as new columns to the data frame, and finally, getting
output back out is a matter of slicing, dicing, aggregating, and reshaping the data frame. With this
background in mind, we will briefly discuss the development of new input and output modules for
MuCor.

New Input Modules

Step 1. Write Input Module
This input module will consist of a function that processes rows from a variant file and returns objects of
class variant (see definition in variant.py). First, create a new file, NewInputType.py; it
should at a minimum import the Variant class from the variant module, and the HTSeq module.
In this file, define a function, ParseNewType(self, Parser).

Now, within this function examine the Parser object; it has member variables source, row,
fieldId, header, fn, eff, and fc, not all of which may be populated. For example, if a
supported variant effect predictor has not decorated the file, eff (effect) and fc (functional
consequence) will be empty; certainly, you may build your own variant effect prediction parsing into
your function, instead of relying on what is being passed to the parser from parseVariantFiles;
the SnpEff parsing code will eventually be moved from parseVariantFiles into the parsing
modules where it belongs. Parse each row however appropriate, store the results in an instance of class
Variant, and return it.

The calling function will deal with storing the returned Variant in the master data frame.

Place your new source file in the same directory as the rest of the MuCor code.

Step 2. Import Input Module
The first step in integration of your new input module is to import the new module and its attendant
function(s). For this example, add import NewInputType to the top of inputs.py.

Step 3. Add Input Function to Supported Formats
The new format must be added to the list of supported input types. This is used to identify which parser
should be used to generate the Variant object. The name given here must exactly match the ‘source’
field in the JSON configuration file (see point 2. d). These are typically named after the variant caller
used, so we will refer to it as, “NewCaller.” The following line would be added to the end of the
Parser initialization function:

self.supported_formats["NewCaller"] = self.ParseNewType

http://pandas.pydata.org/

Supplement to Kroll et al. 19

Step 4. Bind Input Function to Parser
Next, the new function must be bound to the Parser object. Again following the example, the new
function is called ParseNewType. One would need to add the following line to the end of the Parser
initialization function:

self.ParseNewType = NewInputType.ParseNewType.__get__(self,Parser)

Step 5. Add New Format to Configurator Auto-Detector
Finally, one must modify mucor_config.py so it can identify variant files of this new type that
should be parsed with our new function. This is done by adding some code to the function
DetectDataType to return the format type string used in step 3, above (“NewCaller”).

If we called the new input type “NewCaller,” the source field in the config file must equal
“NewCaller” for all samples of this type in order for the ParseNewType function to be called for
this file type. Alternatively, if auto-detection is not possible or too difficult, a user may manually edit the
JSON configuration file to enter the correct type in the “source” field.

New Output Modules

Step 1. Write Output Module
The first step in adding an output module to MuCor is to write the output module’s core function. The
function will eventually become a method bound to the outputWriter object; one may expect to
have the global variant data frame (produced by the analysis core), output directory name, and the
Config object available.

The main goal of the output module will be to transform the variant data frame into the desired output
shape (for example, by filtering, aggregating, or pivoting), then write that output to one or more files. It
would be good practice to limit output to one file per output mode or function; the file name is entirely
of your choosing. More information about filtering and manipulating a Pandas data frame can be found
in the Pandas documentation.

Once you’ve written a module with a function capable of reformatting the data frame and writing a file
to the pre-specified output directory, save your python source file in the directory that contains the rest
of the MuCor scripts.

Step 2. Integrate Output Module
Once the new output module can transform a dataframe into the desired output format, it can be
integrated into the MuCor output writer object. This writer object is located in the ‘output.py’ python
script included with MuCor.

Step 2A.

Supplement to Kroll et al. 20

If the output module is in the same directory as the rest of the MuCor source, it can be imported in the
output writer script output.py by adding a new line at the top of the file. For example, if the new
output module is named, “NewModule.py”,write import NewModule.

Step 2B.
Next, the function that writes the output file must be bound to the output Writer object. This is done so
the method can be called without explicitly passing the Writer object. For example, if your new function
is called MyNewFunction, it can be bound to the output writer by adding the following line to end of
the Writer object initialization function:

self.MyNewFunction = NewModule.MyNewFunction.__get__(self,Writer)

Step 2C.
The output format must be named and added to the list of supported formats. The format name is a
short descriptor that users may use to identify the output type. Existing format names include counts,
featXsamp, and longtxt. Let us assume that the new output function will be identified as, “mnf-xls.” In
this case, it can be added to the list of supported formats using the line

self.supported_formats["mnf-xls"] = self.MyNewFunction.

This should be added to the bottom of the Writer object initialization function.

Step 2D.
Finally, the new output file name must be added to the list of known output file names. Continuing with
the above example, one would add a new output file name with the following line:

self.file_names["mnf-xls"] = "my_new_function_output.xls"

As before, this should be added to the bottom of the Writer object initialization function.

Listing 4, below, is an example of how the modified output.py might look after adding the example
detailed above. Added lines of code are bolded and highlighted for clarity. Notice that in this case
MyNewFunction can write both excel files or text files, so there are two additions to the supported
formats list and the output file types list. The rest of the changes follow the above example precisely.

 With these modifications complete, users may run the new output module by passing the output types
“mnf-txt” or “mnf-xls” to the mucor_config.py --output_type option. Furthermore,
passing “all” will now include these two additional output types.

Supplement to Kroll et al. 21

from Step 2A in the text:
import an output module from a separate file
import NewModule

class Writer(object):
 """Object that parses the dataframe and can write output in several different
formats"""

def __init__(self):
 self.data = pd.DataFrame()
 self.config = Config()
 self.outputDirName = ''
 self.attempted_formats = [] # used to prevent output modules from
 # being executed multiple times
 self.supported_formats = { "default": self.Default,
 "counts": self.Counts,
 "txt": self.VariantDetails,
 "longtxt": self.LongVariantDetails,
 "xls": self.VariantDetails,
 "longxls": self.LongVariantDetails,
 "bed": self.VariantBed,
 "featXsamp": self.FeatureXSample,
 "mutXsamp": self.Feature_and_MutationXSample,
 "vcf": self.VCF,
 "all": self.All,
 "runinfo": self.RunInfo }

 self.file_names = { "counts": "counts.txt",
 "txt": "variant_details.txt",
 "longtxt": "long_variant_details.txt",
 "xls": "variant_details.xlsx",
 "longxls": "long_variant_details.xlsx",
 "bed": "variant_locations.bed",
 "featXsamp":"feature_by_sample.xlsx",
 "mutXsamp": "feature_and_mutation_by_sample.xlsx",
 "vcf": "variant_locations.vcf",
 "runinfo": "run_info.txt" }

from Step 2B in the text:
first, make the function a bound method so it can be executed
without explicitly passing the Writer object
self.MyNewFunction = NewModule.MyNewFunction.__get__(self,Writer)

from Step 2C in the text:
add the desired formats to the supported_formats dict
self.supported_formats["mnf-txt"] = self.MyNewFunction
self.supported_formats["mnf-xls"] = self.MyNewFunction

from Step 2D in the text:
add the desired output file names to the file_names dict
self.file_names["mnf-txt"] = "my_new_function_output.txt"
self.file_names["mnf-xls"] = "my_new_function_output.xls"

Listing 4. output.py in our example; added code bolded and highlighted for emphasis.

Supplement to Kroll et al. 22

Supplementary Tables

Supplementary Table 1. Input formats recognized by MuCor

Parser File format Description and References
Database VCF.GZ Tabix-indexed, bgzipped VCF version ≥ 4.1

https://github.com/samtools/htslib
http://samtools.sourceforge.net/tabix.shtml
http://genome.ucsc.edu/goldenpath/help/vcf.html

Feature GTF Gene Transfer Format
http://mblab.wustl.edu/GTF22.html

Feature GFF3 General Feature Format version 3
http://www.sequenceontology.org/gff3.shtml

Region BED https://genome.ucsc.edu/FAQ/FAQformat.html#format1

Variant OUT MuTect .out format, basic and extended
https://www.broadinstitute.org/cancer/cga/mutect_run

Variant VCF Variant Call Format version ≥ 4.1
http://samtools.github.io/hts-specs/VCFv4.2.pdf

• Generic VCF
• snpEff decorated
• Ion Torrent PGM (default machine output)
• Illumina Miseq (Miseq reporter output)
• GATK
• GATK SomaticIndelDetector
• GATK HaplotypeCaller
• MuTect
• VarScan
• FreeBayes
• Samtools

https://github.com/samtools/htslib
http://samtools.sourceforge.net/tabix.shtml
http://genome.ucsc.edu/goldenpath/help/vcf.html
http://mblab.wustl.edu/GTF22.html
http://www.sequenceontology.org/gff3.shtml
https://genome.ucsc.edu/FAQ/FAQformat.html%23format1
https://www.broadinstitute.org/cancer/cga/mutect_run
http://samtools.github.io/hts-specs/VCFv4.2.pdf

Supplement to Kroll et al. 23

Supplementary Table 2. Output report formats written by MuCor

Identifier Description
all Execute all output types

counts Print counts of the number of variants per feature.

Filename: counts.txt

txt Print all information about each variant, one-per-row, irrespective of how many
samples in which it appears. Useful for variant-centric studies. Identical to xls in
layout.
Filename: variant_details.txt

xls Print all information about each variant, one-per-row, irrespective of how many
samples in which it appears. Useful for variant-centric studies. Identical to txt in
layout.
Filename: variant_details.xls/xlsx

longtxt Similar to txt above, but writes each instance of a variant to a new row. Each variant is
written once per source file, instead of combining recurrent variants into one unique
row. Identical to longxls in layout.
Filename: long_variant_details.txt

longxls Similar to xls above, but writes each instance of a variant to a new row. Each variant is
written once per source file, instead of combining recurrent variants into one unique
row. Identical to longtxt in layout.
NB: The XLS format has a hard limit of 216 rows; in long record format, a moderate
sized study could exceed this (2,000 total variants/sample * 32 samples = 65,536
rows). MuCor can use Python's xlwt module to write .xls format, but it is preferable
to have XlsxWriter or openPyxl installed for .xlsx support.
Filename: long_variant_details.xls/xlsx

featXsamp Print table of mutation counts per feature per sample. Samples are in columns, while
features are in rows. The count of unique mutations per sample per feature are the
table values. This output is useful for examining patterns in variation across samples,
for example, to look at combinatoric mutation status for selected recurrently mutated
genes. If used with data from a focused panel, or if the MuCor run output was limited
by region (-r), this output could be used directly to make a heatmap.
Filename: feature_by_sample.xls/xlsx

 table continued next page

Supplement to Kroll et al. 24

mutXsamp Print table of mutations per sample. Unlike featXsamp, this differentiates among
different variants within the same features. For example, in acute leukemia, the
functional effect of mutations in DNMT3A depends on whether it is an R882 mutation
or non-R882 mutation. As before, samples are in columns, with features in rows.
However, rows 2-4 contain information about chromosome, position, ref, and alt. The
table values are boolean: 1 for present mutation, 0 for missing mutation. This output
could be used directly or with appropriate filtering to make an Oncoprint.
Filename: feature_and_mutation_by_sample.xls/xlsx

mutXsampVAF Identical to mutXsamp, but prints the variant allele frequency (VAF) in each cell,
rather than 1 or 0.
Filename: feature_and_mutation_by_sample_vaf.xls/xlsx

Supplement to Kroll et al. 25

Supplementary Figures

For Supplementary Figure 1, see page 14.

For Supplementary Figure 2, see page 16.

For Supplementary Figure 3, see page 17.

Supplement to Kroll et al. 26

Supplementary Figure 4. Example xls output.

Note that this is variant-centric output; multiple samples exhibiting the same variant are collapsed into a
single row. In these cases, the vf, dp, sample, and source fields are lists of comma-separated values.

In this example, the columns labeled “1000 Genomes”, “1000 Genomes VAF”, and “dbSNP-137-
Common” are dynamically created from the databases specified with the –db option.

chr pos ref alt vf dp feature effect fc
chr14 105235867 T G 0.116 46 AKT1 ? UTR_3_PRIME
chr14 105236355 C T 0.452, 0.4105 125, 95 AKT1 ? UTR_3_PRIME
chr2 32707554 A G 0.0119 839 BIRC6 N2534D NON_SYNONYMOUS_CODING
chr2 32707591 A G 0.0112, 0.0108, 0.0111, 0.0132 1161, 927, 1174, 831 BIRC6 K2546R NON_SYNONYMOUS_CODING
chr2 32707708 A G 0.515, 0.5237 795, 1161 BIRC6 ? INTRON
chr2 32712738 A C 0.033, 0.024, 0.0215, 0.028, 0.038, 0.03, 0.042, 0.026 272, 498, 465, 329, 265, 272, 192, 346 BIRC6 D2613A NON_SYNONYMOUS_CODING
chr20 31022441 A AG 0.0648, 0.0394, 0.06, 0.0659, 0.0581, 0.0588 247, 254, 200, 258, 172, 272 ASXL1 G643G? FRAME_SHIFT
chrX 47424128 T A 0.021 476 ARAF ? INTRON
chrX 47424560 TG T 0.0131, 0.0191 766, 628 ARAF ? INTRON
chrX 47424611 GA G 0.0423, 0.0462, 0.0266 379, 630, 568 ARAF ? INTRON

1000_Genomes 1000_Genomes_VAF dbSNP-137-Common count freq sample
? ? ? 1 0.027777778 Sample_1

 rs1130245 0.0165735 ? 1 0.027777778 Sample_2, Sample_2
? ? ? 1 0.027777778 Sample_22

 ? ? ? 4 0.111111111 Sample_23, Sample_21, Sample_16, Sample_10
 rs80071639 0.00519169 rs80071639 1 0.027777778 Sample_23, Sample_23
 ? ? ? 7 0.194444444 Sample_24, Sample_13, Sample_13, Sample_23, Sample_8, Sample_25, Sample_11, Sample_4
 ? ? ? 6 0.166666667 Sample_12, Sample_13, Sample_14, Sample_9, Sample_15, Sample_16

? ? ? 1 0.027777778 Sample_6
 ? ? ? 2 0.055555556 Sample_7, Sample_8
 ? ? ? 3 0.083333333 Sample_3, Sample_8, Sample_9

source
Sample_1.MuTect.vcf

 Sample_2.MuTect.vcf, Sample_2.VarScan.vcf
Sample_22.VarScan.vcf

 Sample_23.VarScan.vcf, Sample_21.VarScan.vcf, Sample_16.VarScan.vcf, Sample_10.VarScan.vcf
 Sample_23.MuTect.vcf, Sample_23.VarScan.vcf
 4Sample_24.MuTect.vcf, Sample_13.MuTect.vcf, Sample_13.VarScan.vcf, Sample_23.MuTect.vcf, Sample_8.MuTect.vcf, Sample_25.MuTect.vcf, Sample_11.MuTect.vcf, Sample_4.MuTect.vcf
 Sample_12.VarScan.vcf, Sample_13.VarScan.vcf, Sample_14.VarScan.vcf, Sample_9.VarScan.vcf, Sample_15.VarScan.vcf, Sample_16.VarScan.vcf

Sample_6.VarScan.vcf
 Sample_7.VarScan.vcf, Sample_8.VarScan.vcf
 Sample_3.VarScan.vcf, Sample_8.VarScan.vcf, Sample_9.VarScan.vcf

Supplement to Kroll et al. 27

Supplementary Figure 5. Example longxls output.

Note that this is raw output; variants common across multiple samples are not collapsed into single
rows. The “count” and “crequency” columns tally the number and commonality of individual variants
across samples in this long format.

As in the previous example, the database columns are dynamically generated according to the config.

chr pos ref alt vf dp feature effect fc 1000_Genomes 1000_Genomes_VAF dbSNP-137-Common count freq sample source
chr14 105235867 T G 0.116 46 AKT1 ? UTR_3_PRIME ? ? ? 1 0.027777778 Sample_1 Sample_1.MuTect.vcf
chr14 105236355 C T 0.452 125 AKT1 ? UTR_3_PRIME rs1130245 0.0165735 ? 1 0.027777778 Sample_2 Sample_2.MuTect.vcf
chr14 105236355 C T 0.4105 95 AKT1 ? UTR_3_PRIME rs1130245 0.0165735 ? 1 0.027777778 Sample_2 Sample_2.VarScan.vcf
chr14 105236377 G A 0.484 160 AKT1 ? UTR_3_PRIME rs41307094 0.0203674 rs41307094 1 0.027777778 Sample_3 Sample_3.MuTect.vcf
chr14 105236377 G A 0.5082 122 AKT1 ? UTR_3_PRIME rs41307094 0.0203674 rs41307094 1 0.027777778 Sample_3 Sample_3.VarScan.vcf
chr20 31022247 C T 0.018 433 ASXL1 R578C NON_SYNONYMOUS_CODING ? ? ? 1 0.027777778 Sample_10 Sample_10.MuTect.vcf
chr20 31022296 GC G 0.012 832 ASXL1 C594 FRAME_SHIFT ? ? ? 1 0.027777778 Sample_11 Sample_11.VarScan.vcf
chr20 31022441 A AG 0.0648 247 ASXL1 G643G? FRAME_SHIFT ? ? ? 6 0.166666667 Sample_12 Sample_12.VarScan.vcf
chr20 31022441 AG A 0.0674 282 ASXL1 G643 FRAME_SHIFT ? ? ? 8 0.222222222 Sample_13 Sample_13.VarScan.vcf
chr20 31022441 A AG 0.0394 254 ASXL1 G643G? FRAME_SHIFT ? ? ? 6 0.166666667 Sample_14 Sample_14.VarScan.vcf
chr20 31022441 AG A 0.0446 315 ASXL1 G643 FRAME_SHIFT ? ? ? 8 0.222222222 Sample_7 Sample_7.VarScan.vcf
chr20 31022441 AG A 0.0611 262 ASXL1 G643 FRAME_SHIFT ? ? ? 8 0.222222222 Sample_1 Sample_1.VarScan.vcf
chr20 31022441 A AG 0.06 200 ASXL1 G643G? FRAME_SHIFT ? ? ? 6 0.166666667 Sample_15 Sample_15.VarScan.vcf
chr20 31022441 A AG 0.0659 258 ASXL1 G643G? FRAME_SHIFT ? ? ? 6 0.166666667 Sample_9 Sample_9.VarScan.vcf
chr20 31022441 AG A 0.0673 223 ASXL1 G643 FRAME_SHIFT ? ? ? 8 0.222222222 Sample_16 Sample_16.VarScan.vcf
chr20 31022441 AG A 0.0652 230 ASXL1 G643 FRAME_SHIFT ? ? ? 8 0.222222222 Sample_17 Sample_17.VarScan.vcf
chr20 31022441 AG A 0.0529 227 ASXL1 G643 FRAME_SHIFT ? ? ? 8 0.222222222 Sample_18 Sample_18.VarScan.vcf
chr20 31022441 A AG 0.0581 172 ASXL1 G643G? FRAME_SHIFT ? ? ? 6 0.166666667 Sample_19 Sample_19.VarScan.vcf
chr20 31022441 AG A 0.0352 284 ASXL1 G643 FRAME_SHIFT ? ? ? 8 0.222222222 Sample_20 Sample_20.VarScan.vcf
chr20 31022441 A AG 0.0588 272 ASXL1 G643G? FRAME_SHIFT ? ? ? 6 0.166666667 Sample_21 Sample_21.VarScan.vcf
chr2 32707554 A G 0.0119 839 BIRC6 N2534D NON_SYNONYMOUS_CODING ? ? ? 1 0.027777778 Sample_22 Sample_22.VarScan.vcf
chr2 32707591 A G 0.0112 1161 BIRC6 K2546R NON_SYNONYMOUS_CODING ? ? ? 4 0.111111111 Sample_23 Sample_23.VarScan.vcf
chr2 32707591 A G 0.0108 927 BIRC6 K2546R NON_SYNONYMOUS_CODING ? ? ? 4 0.111111111 Sample_20 Sample_20.VarScan.vcf
chr2 32707591 A G 0.0111 1174 BIRC6 K2546R NON_SYNONYMOUS_CODING ? ? ? 4 0.111111111 Sample_21 Sample_21.VarScan.vcf
chr2 32707591 A G 0.0132 831 BIRC6 K2546R NON_SYNONYMOUS_CODING ? ? ? 4 0.111111111 Sample_10 Sample_10.VarScan.vcf

Supplement to Kroll et al. 28

Supplementary Figure 6. Example featXsamp output.

In this figure, we see a matrix with cases across the X axis (top) and features (defined by parameters –g
and –f) down the Y axis (left). In each cell is a count of the number of variants corresponding to each
case and feature. The totals above are reflective of many SNVs within whole genes. Recall that analysis
space can be constrained by region; by running MuCor with region definitions (e.g., of hotspots) the
featXsamp output format is suitable for direct translation to a mutation heatmap or oncoprint.

feature S001 S005 S010 S011 S012 S013 S015 S020 S021 S022 S023
C11orf65 52 70 58 30 35 71 39 61 41 59 37

CEACAMP10 0 13 0 10 8 9 8 0 11 6 11
GALNT8 21 22 24 22 20 22 20 15 18 25 17

GS1-179L18.1 0 1 0 0 0 0 0 0 0 0 0
HLA-A 0 0 0 0 0 1 0 0 0 0 0

RN7SL15P 0 0 0 1 0 0 0 0 0 0 0
WRAP53 2 2 2 0 2 2 2 2 2 2 2

Supplement to Kroll et al. 29

Supplementary Figure 7. Example mutXsamp and mutXsampVAF output.

 X027 X391 X538 X584 X825 X136 X107

feature chr pos ref alt

ARAF chrX 47424615 C T 0 0 0 1 1 0 0

BRAF chr7 140482908 T C 0 0 1 0 0 0 0

KRAS chr12 25380285 G A 0 0 0 0 1 0 0

NRAS chr1 115258744 C A 0 0 0 0 0 0 1

115258748 C T 0 0 0 0 1 0 0

PIK3CD chr1 9776339 A G 0 0 1 1 0 1 0

9784423 C T 0 0 1 1 0 1 0

9784861 G A 0 0 0 0 1 0 0

TP53 chr17 7577027 G A 0 0 0 0 1 0 0

7578115 T C 1 1 1 1 1 1 1

7578146 T C 0 0 0 1 0 1 0

7578645 C T 1 1 1 1 1 0 1

7578671 C T 0 0 1 0 0 0 0

7579472 G C 1 1 0 1 1 0 1

7579801 G C 1 1 0 1 1 0 1

 X027 X391 X538 X584 X825 X136 X107

feature chr pos ref alt

ARAF chrX 47424615 C T 0 0 0 0.5366 0.5597 0 0

BRAF chr7 140482908 T C 0 0 0.4444 0 0 0 0

KRAS chr12 25380285 G A 0 0 0 0 0.0644 0 0

NRAS chr1 115258744 C A 0 0 0 0 0 0 0.4282

115258748 C T 0 0 0 0 0.0592 0 0

PIK3CD chr1 9776339 A G 0 0 0.4798 0.4902 0 0.5171 0

9784423 C T 0 0 0.4592 0.5556 0 0.5 0

9784861 G A 0 0 0 0 0.0334 0 0

TP53 chr17 7577027 G A 0 0 0 0 0.0131 0 0

7578115 T C 0.4455 0.9975 0.5241 0.5144 0.5045 0.5066 0.9976

7578146 T C 0 0 0 0.4725 0 0.4831 0

7578645 C T 0.5583 0.9916 0.0699 0.4679 0.5265 0 0.9903

7578671 C T 0 0 0.0938 0 0 0 0

7579472 G C 0.5652 1 0 0.5263 0.6897 0 1

7579801 G C 0.4853 1 0 0.5351 0.491 0 1

The only difference between these tables is whether the cell contains a binary 0/1, or floating-point VAF.

	Supplementary Text
	Outline of workflow
	Usage and Description of Arguments: mucor_config.py
	Usage and description of arguments: mucor.py
	Usage and description of arguments: depth_gauge.py
	Example Workflow 1: Compare calls in multiple samples
	Example Workflow 2: Compare calls from multiple callers in multiple samples
	Example Workflow 3: Compare two or more variant callers in a single sample
	Example Workflow 4: Compare two platforms in a single sample
	Example Workflow 5: Be confident about wild type calls with DepthGauge
	Example Workflow 6: Survey an amplicon panel for adequate coverage
	Writing New Input and Output Modules
	New Input Modules
	Step 1. Write Input Module
	Step 2. Import Input Module
	Step 3. Add Input Function to Supported Formats
	Step 4. Bind Input Function to Parser
	Step 5. Add New Format to Configurator Auto-Detector

	New Output Modules
	Step 1. Write Output Module
	Step 2. Integrate Output Module
	Step 2A.
	Step 2B.
	Step 2C.
	Step 2D.

	Supplementary Tables
	Supplementary Figures

