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1 Method details

1.1 Correction of population substructure
To correct for non-causal correlations of genotype with disease via population substructure, we
performed a singular value decomposition (SVD) of the genotype matrix X′ =

∑
s λsuT

svs. As
discussed in the main text, X′ is the centered and normalized genotype matrix with N rows for
each patient, and I + 1 columns for I SNPs and extra column with a value of 1 for the bias term
v0. Here, λs are the singular values sorted in decreasing order, vs ∈ RI+1 the singular vectors or
principal components and us ∈ R

N are the loadings of the singular vectors. We store the loadings
multiplied by the singular values of the first S (e.g. S = 3 . . . 10) principal components in a vector
of covariates, x′′n = (λ1u1,n, . . . , λSuS,n)T for each patient. We consider these as covariates X′′
and append them to the genotype matrix X′. The total data matrix after the concatenation has
rows xT =

(
x′T, x′′T

)
∈ RI+S+1, and the covariates are treated as a separate locus. The number of

loadings used for the population substructure correction can be controlled by using the �pca
option in B-LORE. i

1.2 Notes on quasi-Laplace approximation
The quasi-Laplace approximation,as discussed in themain text, is a key concept in themethodology
presented here. We approximate the product of the likelihood of v and a regularizer with a
Gaussian distribution.

p (φ | X, v) N
(
v | µ̃, diag

(
σ̃2

))
∝ N

(
v | ṽ, Λ̃−1

)
(1)

The logarithm of the left-hand side, which we call regularised log likelihood,

LLreg (v | θ, z) = log p (φ | X, v) + log N
(
v | µ̃, diag

(
σ̃2

))
(2)

is a quadratic function with respect to any of the vi , log N
(
v | µ̃, diag

(
σ̃2) ) , plus the sum of

N concave functions. The Hessians of these concave functions must all have negative (or zero)
diagonal elements and therefore their sum will grow roughly proportionally with the number
of patients N . In contrast to the second derivatives, the third and higher partial derivatives will
take both positive and negative signs. If the number of diseased and control patients is roughly
equal, p (φn | xn, v) will lie mostly around (1/N)

∑
n I (φn = 1) ≈ 0.5, and therefore vTxn will be

roughly as often positive as negative. Consequently, the third partial derivatives will tend to be
close to zero and have no preferred sign. The same is true for the higher derivatives. Their signs
fluctuate around 0 for all patients n, hence the magnitudes of the third and higher derivatives will
grow only as

√
N . The larger N is, the more the second derivatives will dominate over the higher

derivatives and the better will the log likelihood be approximated by a quadratic function, or in
other words, by the logarithm of a multivariate Gaussian.

If we are dealing with a GWA studywith strongly differing numbers Ndis and Nctr of disease and
control patients, a simple reweighting of the control group patients can ensure that p (φn | xn, v)
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will lie around 0.5. We would multiply the contributions of the control patients to the log
likelihood with weights Ndis/Nctr.

1.3 Integration of the marginal likelihood
We optimize the hyperparameters by maximizing the marginal likelihood function, which is
obtained by integrating over the effect sizes v:

mL(θ) = p (φ | X, θ)

=

∫
p (φ | X, v) p (v | θ) dv

=
∑

z
p (z | θ)

∫
p (φ | X, v) N

(
v | µz, diag

(
σ2

z

))
dv

=
∑

z
p (z | θ)

∫
p (φ | X, v) N

(
v | µ̃, diag

(
σ̃2

)) N
(
v | µz, diag

(
σ2

z
) )

N
(
v | µ̃, diag

(
σ̃2) ) dv

∝
∑

z
p (z | θ)

∫
N

(
v | ṽ, Λ̃−1

) N
(
v | µz, diag

(
σ2

z
) )

N
(
v | µ̃, diag

(
σ̃2) ) dv (3)

where we have used the quasi-Laplace approximation of Eq. (1) in the last step. We can analytically
evaluate the integral in Eq. (3) because the logarithm of the integrand is now a quadratic function
of v. We make use of the following equality, which we prove in Appendix A:

∫
N

(
v | µ1,Λ

−1
1

) N
(
v | µ2,Λ

−1
2

)
N

(
v | µ3,Λ

−1
3

) dv =
N

(
0 | µ1,Λ

−1
1

)
N

(
0 | µ2,Λ

−1
2

)
N

(
0 | µ123,Λ

−1
123

)
N

(
0 | µ3,Λ

−1
3

) (4)

where

Λ123 := Λ1 + Λ2 − Λ3 (5)

µ123 := Λ−1
123 (Λ1µ1 + Λ2µ2 − Λ3µ3) (6)

Identifying Λ1 = Λ̃, Λ2 = diag (λz), Λ3 = diag
(
λ̃
)
, µ1 = ṽ, µ2 = µz, µ3 = µ̃ and defining

Λz := Λ̃ + diag (λz) − diag
(
λ̃
)
= Λ123 (7)

vz := Λ−1
z

(
Λ̃ṽ + diag (λz) µz − diag

(
λ̃
)
µ̃
)
= µ123 (8)

we obtain

mL(θ) ≈
∑

z
p (z | θ)

N
(
0 | ṽ, Λ̃−1

)
N

(
0 | µz, diag

(
λ−1

z
) )

N
(
0 | vz,Λ

−1
z

)
N

(
0 | µ̃, diag

(
λ̃−1) ) (9)

The upper left and lower right Gaussians do not depend on θ or z and can be pulled into a constant
factor D′, yielding

mL(θ) = D′
∑

z
p (z | θ)

|diag (λz)|
1
2

|Λz |
1
2

exp
(
−

1
2
µT

z diag (λz) µz +
1
2

vT
zΛzvz

)
(10)

1.4 Estimation of the regularization parameters µ̃ and σ̃

We use an iterative estimation procedure to find optimum regularisation parameters µ̃ and σ̃.
For the quasi-Laplace approximation to hold well, we need to find regularisation parameters that
make the regulariser almost as good a prior as the full two-component mixtures prior. This can
be achieved by optimising (with respect to the regularisation parameters) a simplified marginal
likelihood in which the regulariser replaces the full prior.
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We start by setting the regularisation parameters to µ̃ = 0 and σ̃ = σreg1 = 0.011,
corresponding to a coupling of a causal SNP with vi = 0.2 distributed over 20 strongly correlated
SNPs with coupling vi = 0.01 each. We then find improved estimates of µ̃ and σ̃ by setting
µz := µ1 and λz := σ−21 – which corresponds to only one single causality configuration z = 1
in which all SNPs are causal – and maximising the likelihood in Eq. (10) with respect to µ and
σ. We iterate a few times using the new, updated estimates of µ and σ to update the regulariser
parameters µ̃ and σ̃ and reesitmating new, improved values for µ and σ.

1.5 Summary statistics: Optimization of the regularised likelihood
As discussed in the main text, we intend to learn the mode ṽ and precision Λ̃ of the regularized
likelihood given by Eq. (1). Once we know the regularization parameters µ̃ and σ̃, we maximize
the regularized log likelihood of Eq. (2) with respect to v using the gradient-based optimisation
method L-BFGS. The partial derivatives are:

∂

∂vi
LLreg (v | θ, z) =

N∑
n=1
(φn − pn) xni − λ̃ivi (11)

where pn = p(φn = 1 | xn, v). The solution of this optimisation, ṽ, is the mean and mode of the
Gaussian. The term −λ̃ivi pulls vi towards zero. It prevents the maximum likelihood solutions v∗i
to assume large values in the absence of strong evidence for a SNP-disease coupling, e.g. when
two SNPs are in near-perfect linkage desequilibrium and therefore very highly anti-correlated.

To find the precisionmatrix,we note that it should be equal to the negativeHessianmatrix−H of
the regularised log likelihood at ṽ. Using the derivative of the logistic function lf(x) = 1/(1+ e−x)
given by,

d lf(x)
dx

= lf(x)(1 − lf(x)), (12)

we obtain the matrix elements of the Hessian H,

∂2

∂vi∂vj
LLreg (ṽ) = −

N∑
n=1

p (φn = 1 | xn, ṽ) p (φn = 0 | xn, ṽ) xni xnj − λ̃iδi j

= −

N∑
n=1

p̃n (1 − p̃n) xni xnj − λ̃iδi j (13)

where p̃n = p (φn = 1 | xn, ṽ). The equation shows that strongly correlated SNPs will have high
coupling coefficients in the Hessian matrix. The precision matrix of the Gaussian distribution in
our quasi-Laplace approximation is therefore,

Λ̃ =

N∑
n=1

p̃n (1 − p̃n) xnxT
n + diag

(
λ̃
)

(14)

which is the sum of two matrices, one proportional to a weighted sample covariance matrix of
the x1, . . . , xI and the precision matrix of the regularisation prior.

1.6 Factorization over loci
If the covariance matrix of the genotype XTX is block-diagonal, as discussed in the main text, then
it is obvious from Eq. (14) that Λ̃ is also block-diagonal. This allows us to factorise the marginal
likelihood in equation Eq. (10), writing zl for the binary configuration vector corresponding to
the Il SNPs of locus l and µz,l, λz,l,Λz,l, vz,l for the subvectors and submatrices corresponding to
only the SNPs of locus l:

mL(θ) = D′
∑

z

L+1∏
l=1

p (zl | θ)
��diag

(
λz,l

) �� 1
2��Λz,l

�� 1
2

exp
(
−

1
2
µT

z,l diag
(
λz,l

)
µz,l +

1
2

vT
z,lΛz,lvz,l

)
(15)
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For notational brevity, we defined a virtual locus l = L + 1 for the confounding variables,
xL+1 = x′′. We allow only one configuration zL+1 := 1 and define p (zL+1 | θ) := 1, µz,L+1 := 0
and λz,L+1 := λ ′′. Hence this virtual locus is treated exactly the same as the real loci, except that
the sum over z runs only over real loci while zL+1 := 1.

Finally, we denote all possible configurations in locus l as zl , which allows us to write

mL(θ) = p (φ | X, θ) = D′
L+1∏
l=1

∑
zl

p (zl | θ) Fl (zl, θ) (16)

with

Fl (zl, θ) =
��diag

(
λzl

) �� 1
2��Λzl

�� 1
2

exp
(
−

1
2
µT

zl diag
(
λzl

)
µzl +

1
2

vT
zlΛzlvzl

)
(17)

1.7 Inferences
1.7.1 Finemapping

It follows from the derivation of the marginal likelihood in Eq. (16) that

p (φ, z | X, θ) = D′
L+1∏
l=1

p (zl | θ) Fl (zl, θ) (18)

Using the definition of the conditional probability, we conclude

p (z | φ,X, θ) =
p (φ, z | X, θ)∑

z′
p (φ, z | X, θ)

=

L+1∏
l=1

p (zl | θ) Fl (zl, θ)

L+1∏
l=1

∑
z′

p (zl | θ) Fl (zl, θ)

=

L+1∏
l=1

p (zl | θ) Fl (zl, θ)∑
z′

p (zl | θ) Fl (zl, θ)
(19)

Therefore, the posterior probability for SNP i to be causative is

p (zi = 1 | φ,X, θ) =
∑

z:zi=1
p (z | φ,X, θ) (20)

1.7.2 Posterior probability for causality of loci

The probability for a locus to be causally associated with the disease is equal to the probability
of the locus harbouring at least one causally associated SNP, which is equal to 1 minus the
probability of not containing a single causal SNP:

Prcausal = p (locus is causal | φ,X, θ)
= 1 − p (z = 0 | φ,X, θ)

= 1 −
L+1∏
l=1

p (zl = 0 | θ) Fl (zl = 0, θ)∑
z′

p (zl | θ) Fl (zl, θ)
(21)
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2 Efficient computation

2.1 Setting σbg to zero
We will show here that in the limit of σbg → 0, Eqs. (16) and (17) remain valid if we replace the
vectors with their subvectors containing only those components i for which zi = 1: µzl → µ̂zl ∈
�‖zl ‖1 , λzl → λ̂zl , vzl → v̂zl , and analogously, Λzl → Λ̂zl ∈ �

‖zl ‖1×‖zl ‖1 .

To prove this, let us first prove that when σbg → 0 then |diag(λzl )|

|Λzl |
→
|diag(λ̂zl )|

|Λ̂zl |
. The i th

element of the vector λzl will be λzl,i = σ
−2
bg → ∞ for all i with zi = 0. From Eq. (7), we note

that the diagonal entries in Λzl that go to infinity will dominate the sum over all permutations
in the determinant as λzl,i → ∞ for all i with zi = 0. Hence, we can separate them out:��Λzl

��→ ��Λ̂zl,l
��∏

i:zi=0 σ
−2
bg . The same can be done with

��diag
(
λzl

) ��→ ���diag
(
λ̂zl

)���∏i:zi=0 σ
−2
bg ,

and dividing both terms proves the fist part.
Second, we need to prove that

µT
zl diag

(
λzl

)
µzl → µ̂T

zl diag
(
λ̂zl

)
µ̂zl

vT
zlΛzlvzl → v̂T

zl Λ̂zl v̂zl (22)

The fist line follows from the fact that for all i with zi = 0, we have µzl,i = 0 and hence those
components do not contribute anything on the left hand-side. To prove the second line, we use
Eqs. (7) and (8) to write

vT
zlΛzlvzl =

(
ṽT
l Λ̃l + diag

(
λzl

)
µzl − diag

(
λ̃l

)
µ̃l

)
×(

Λ̃l + diag
(
λzl

)
− diag

(
λ̃l

) )−1 (
Λ̃l ṽl + diag

(
λzl

)
µzl − diag

(
λ̃l

)
µ̃l

)
(23)

The invertedmatrix in the center of the right hand-sidewill force contributions from all components
with zi = 0 to zero. What remains are all other components, which is just the expression on the
right hand-side of the second line.

As a consequence of setting σbg to zero, the complexity of a single gradient computation is
reduced by an order of I2 leading to a huge speed up.

2.2 Branchandboundalgorithm to restrict the sumover z tonon-negligible
terms

The sums over zl in Eq. (16) run over 2Il terms. In the following we propose a method that
omits terms in the sum over zl that do not stand a chance of contributing significantly to it. We
denote the total number of significant configurations chosen for locus l as Cl . For any given
configuration zl , the number of causal SNPs is simply the norm of the z -state, given by ‖zl ‖ = k.
We progressively increase the allowed number of causal SNPs k upto an allowed maximum of
kmax. At every step of ‖zl ‖ = k, the total number of possible configurations is given by Ck , out of
which we select only significant configurations C ′

k
to be appended to Cl .

We define the unnormalised posterior probabilities according to equation Eq. (19) as

p̃ (zl | φ,X, θ) := p (zl | θ) Fl (zl, θ) (24)

The algorithm is initialized with k = 0 and k = 1:

S0 = p̃ (zl = 0 | φ,X, θ)

S1 =
∑
‖zl ‖=1

p̃ (zl | φ,X, θ)

C1 = C ′1 =
{
z ∈ {0, 1}I : ‖zl ‖ = 1

}
(25)
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At every step with k > 1 we use all the possible configurations Ck to compute

Sk =
∑

zl ∈Ck

p̃ (zl | φ,X, θ) (26)

To determine the significant configurations C ′
k
, we sort all the Ck configurations by decreasing

posterior probability and keep appending to C ′
k
until∑

zl ∈C′k

p̃ (zl | φ,X, θ) ≥ 0.98Sk (27)

We combine these C ′
k
configurations with all the Il − k SNPs into new Ck+1 configurations. We

again select C ′
k+1 configurations out of all the available Ck+1 configurations, and this continues

iteratively. We stop the iteration when Sk+1 < 0.02Sk , because the terms with even higher ‖zl ‖
will not contribute significantly to the total sum over all configurations. The posterior probabilities
are then approximated as

p (zl | φ,X, θ) =
p̃ (zl | φ,X, θ)

kmax∑
k=0

Sk

(28)

Since risk loci will usually only contain a few causal SNPs, this procedure should normally stop
without needing to compute millions of terms.

Appendix A
We show that the following result holds for any three D-dimensional Gaussian distributions
N

(
v | µ1,Λ

−1
1

)
, N

(
v | µ2,Λ

−1
2

)
, and N

(
v | µ3,Λ

−1
3

)
,

∫
N

(
v | µ1,Λ

−1
1

) N
(
v | µ2,Λ

−1
2

)
N

(
v | µ3,Λ

−1
3

) dv =
N

(
0 | µ1,Λ

−1
1

)
N

(
0 | µ2,Λ

−1
2

)
N

(
0 | µ123,Λ

−1
123

)
N

(
0 | µ3,Λ

−1
3

) (29)

where

Λ123 := Λ1 + Λ2 − Λ3 (30)

µ123 := Λ−1
123 (Λ1µ1 + Λ2µ2 − Λ3µ3) (31)

We start by writing out the Gaussian functions explicitly:

∫
N

(
v | µ1,Λ

−1
1

) N
(
v | µ2,Λ

−1
2

)
N

(
v | µ3,Λ

−1
3

) dv =
|Λ1 |

1
2 |Λ2 |

1
2

|Λ3 |
1
2 (2π)

D
2

×

∫
exp

(
−

1
2

[
(v − µ1)

T Λ1 (v − µ1) + (v − µ2)
T Λ2 (v − µ2) − (v − µ3)

T Λ3 (v − µ3)
] )

dv

(32)

To perform the integral, we need to write the terms within the exp function as a Gaussian. For
that purpose, we need to sort them into quadratic, linear and constant terms in v,

(v − µ1)
T Λ1 (v − µ1) + (v − µ2)

T Λ2 (v − µ2) − (v − µ3)
T Λ3 (v − µ3)

= vT (Λ1 + Λ2 − Λ3) v − 2
(
µT

1Λ1 + µT
2Λ2 − µT

3Λ3

)
v + µT

1Λ1µ1 + µT
2Λ2µ2 − µT

3Λ3µ3

= vTΛ123v − 2µT
123Λ123v + µT

1Λ1µ1 + µT
2Λ2µ2 − µT

3Λ3µ3

=
(
vT − µT

123

)
Λ123 (v − µ123) − µT

123Λ123µ123 + µT
1Λ1µ1 + µT

2Λ2µ2 − µT
3Λ3µ3

6/7



We can insert this expression into Eq. (32) and perform the integration over the Gaussian function,

∫
N

(
v | µ1,Λ

−1
1

) N
(
v | µ2,Λ

−1
2

)
N

(
v | µ3,Λ

−1
3

) dv

=
|Λ1 |

1
2 |Λ2 |

1
2

|Λ3 |
1
2 (2π)

D
2
×

∫
exp

(
−

1
2

(
vT − µT

123

)
Λ123 (v − µ123)

)
dv

× exp
(
−

1
2

[
µT

1Λ1µ1 + µT
2Λ2µ2 − µT

3Λ3µ3 − µT
123Λ123µ123

] )
=

(
|Λ1 | |Λ2 |

|Λ123 | |Λ3 |

) 1
2

exp
(
−

1
2

[
µT

1Λ1µ1 + µT
2Λ2µ2 − µT

3Λ3µ3 − µT
123Λ123µ123

] )
=

N
(
0 | µ1,Λ

−1
1

)
N

(
0 | µ2,Λ

−1
2

)
N

(
0 | µ123,Λ

−1
123

)
N

(
0 | µ3,Λ

−1
3

) (33)

This proves the proposition in Eq. (29).

7/7


	Method details
	Correction of population substructure
	Notes on quasi-Laplace approximation
	Integration of the marginal likelihood
	Estimation of the regularization parameters  and 
	Summary statistics: Optimization of the regularised likelihood
	Factorization over loci
	Inferences
	Finemapping
	Posterior probability for causality of loci


	Efficient computation
	Setting bg to zero
	Branch and bound algorithm to restrict the sum over z to non-negligible terms


