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Supplementary Note 1 

Supplementary Note 1. Identification of outlier samples 2 

Our NMF-based filtering strategy identified 156 potential outliers in the BRIDGES data. These outliers 3 

exhibited one of two distinct mutation signatures. The first signature, characterized by an unusually high 4 

proportion of C>A and G>T singletons, was overrepresented in 112 of these samples, consistent with 5 

patterns of oxidative damage that are known to occur during DNA shearing, likely due to the presence 6 

of reactive contaminants1. The second outlier signature, characterized by depleted rates of C>N and 7 

G>N singletons, was overrepresented in the remaining 44 samples. Upon further investigation of the 8 

samples carrying this signature, we found that many showed a trend of higher GC bias (i.e., 9 

systematically lower depth of coverage in GC-rich regions), likely leading to lower calling rates for C>N 10 

and G>N types. Moreover, 24 of the 44 samples were sequenced in the same batch, and the remaining 11 

20 samples were distributed across only 8 of the 48 other batches, indicating that these coverage 12 

biases and resulting error signatures were a result of batch effects. Note that doubletons in the pre-13 

filtered sample that would have become singletons in the post-filtered sample were not included in our 14 

analysis. Many of these variants are likely true doubletons in the BRIDGES sample and hence present 15 

in the population at a higher frequency (i.e., having arose further in the past) than the average 16 

singleton, so retaining these ambiguous variants might inadvertently affect the distribution of variants. 17 

Supplementary Note 2. Estimation of false discovery rate by Ts/Tv statistics 18 

We estimate the false discovery rate among BRIDGES ERVs using the following method. 19 

(1) Let 𝑇𝑆𝑜 = 𝑇𝑆𝑡𝑝 + 𝑇𝑆𝑓𝑝 be the number of observed transitions (23,733,766), consisting of both 20 

true positives (𝑇𝑆𝑡𝑝), and false positives (𝑇𝑆𝑓𝑝)  21 

(2) Let 𝑇𝑉𝑜 = 𝑇𝑉𝑡𝑝 + 𝑇𝑉𝑓𝑝 be the number of observed transversions (11,840,651).  22 

(3) Based on findings from other large-scale sequencing studies, the true positive Ts/Tv ratio, 23 

𝑇𝑆𝑇𝑉𝑇 =
𝑇𝑆𝑡𝑝

𝑇𝑉𝑡𝑝
 is expected to be between 2.0 and 2.12. 24 
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(4) Because there are 8 possible transversions and 4 possible transitions, if errors have occurred at 25 

random, the Ts/Tv ratio for random false positive errors (𝑇𝑆𝑇𝑉𝜖) should be 0.5, that is, 
𝑇𝑆𝑓𝑝

𝑇𝑉𝑓𝑝
=26 

0.5, assuming no systematic sequencing error biases. 27 

Solving this system of four equations, it follows that 𝑇𝑉𝑓𝑝 =
𝑇𝑆𝑇𝑉𝑇×𝑇𝑉𝑜−𝑇𝑆𝑜

𝑇𝑆𝑇𝑉𝑇−0.5
 and 𝑇𝑆𝑓𝑝 = 0.5 × 𝑇𝑉𝑓𝑝, so the 28 

false discovery rate, 
𝑇𝑆𝑓𝑝+𝑇𝑉𝑓𝑝

𝑇𝑆𝑜+𝑇𝑉𝑜
, can be estimated as: 29 

𝑇𝑆𝑓𝑝 + 𝑇𝑉𝑓𝑝

𝑇𝑆𝑜 + 𝑇𝑉𝑜
=
0.5 (

𝑇𝑆𝑇𝑉𝑇 × 𝑇𝑉𝑜 − 𝑇𝑆𝑜
𝑇𝑆𝑇𝑉𝑇 − 0.5

) +
𝑇𝑆𝑇𝑉𝑇 × 𝑇𝑉𝑜 − 𝑇𝑆𝑜

𝑇𝑆𝑇𝑉𝑇 − 0.5

𝑇𝑆𝑜 + 𝑇𝑉𝑜
 30 

Assuming a true 𝑇𝑆𝑇𝑉𝑇 between 2.0 and 2.1, by this calculation we estimate a false discovery rate of 31 

0.1-2.9% among the BRIDGES ERVs. 32 

Supplementary Note 3. Potential sources of bias among ERVs 33 

3.1. Motif-specific error rates 34 

It has been shown that certain sequence motifs may be more susceptible to sequencing error, which 35 

could lead to a non-random distribution of false positive singleton calls and subsequently bias our 36 

analyses5,6. Allhoff et al. (2013)6 reported context-specific errors for the Illumina HiSeq platform, noting 37 

that the most common of these are strand-specific T>N errors at 5’-GGGT-3’ motifs (i.e., there is no 38 

evidence of an excess of A>N errors at the reverse complement 5’-ACCC-3’ motifs). We reason that if 39 

the BRIDGES ERVs are enriched for such context-specific errors, we should see significantly more 40 

T>N ERVs at the 5’-GGGT-3’ motif than A>N ERVs at the 5’-ACCC-3’ and motif. Of the 127,831 ERVs 41 

that occur at this motif, 63,861 were 5’-[A>N]CCC-3’ variants, and 63,970 were 5’-GGG[T>N]-3’ 42 

variants; this difference was not significant, indicating there is no evidence for an enrichment of T>N 43 

ERVs at this error-prone motif (exact binomial test; P=0.67). Allhoff et al. remark that the variants called 44 

at error-prone positions tended to have low base quality scores as well as significant strand bias, both 45 

of which are detectable with standard filtering protocols6. We therefore assume that most motif-specific 46 

errors are efficiently filtered by the default strand-bias and quality filters used in our variant calling 47 
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pipeline, and any undetected errors have a negligible impact on our calculation of relative mutation 48 

rates and downstream analyses. 49 

3.2. Mapping error 50 

We expect the majority of ERVs in our data are mapped with high confidence, as the pre-filtering steps 51 

in our variant calling pipeline remove sites occurring on reads with average phred-scaled mapping 52 

quality score (MQ) <20 and/or where more than 10% of reads were ambiguously mapped (MQ0>10). 53 

This filtering strategy is similar to the filters employed by other large-scale sequencing projects that 54 

have demonstrated well-controlled error rates among singleton calls4,7. Because mapping errors are 55 

more likely to occur in highly-repetitive regions, such as centromeric and pericentromeric loci8, including 56 

these regions in our analyses might bias our estimates of motif-specific mutation rates and/or the 57 

impact of genomic features. However, excluding these regions entirely might have detrimental side 58 

effects: dropping ERVs in these regions will reduce the precision of our estimates, and removing hard-59 

to-map regions might preclude our ability to assess mutation patterns unique to these regions, as they 60 

may have many levels of heterogeneous overlap with genomic features. 61 

To determine if excluding repeat-rich regions might be necessary, we compared the 7-mer relative 62 

mutation rates estimated from the full, unfiltered set of ERVs with 7-mer rates estimated if we only 63 

count ERVs and reference motifs within the 1000 Genomes strict accessibility mask, which delineates 64 

the most uniquely mappable regions of the genome (covering ~72% of non-N bases). These two sets of 65 

estimates were very well-correlated: within-type correlations were >0.96, indicating the estimated rates 66 

were highly consistent regardless of whether hard-to-map regions were removed (Supplementary Fig. 67 

6a). Moreover, subtypes with larger differences between the two estimates tended to have fewer ERVs 68 

(Supplementary Fig. 6b), suggesting that most observed discrepancies might simply be an artifact of 69 

reduced precision among rare mutation classes. 70 

When we applied the masked rates to predict the set of de novo mutations, we found these estimates 71 

had worse predictive performance than the unmasked estimates (Table 1). This result leads us to 72 

conclude that aggressively filtering for the highest-confidence call set comes at a cost of substantially 73 
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reducing the precision of the relative mutation rate estimates, and potentially causing greater bias by 74 

ignoring the information captured by ERVs in the masked regions. Although we cannot entirely exclude 75 

the possibility of mapping error biases among the unmasked estimates, the benefits of having more 76 

numerous singletons across more contiguous genomic regions in the unmasked data outweigh the 77 

concerns about errors caused by poor mapping quality. 78 

3.3. Mispolarization of ERVs 79 

While most singletons in the BRIDGES sample are the true derived allele, population genetic theory 80 

suggests that 1/N=0.014% of singletons in a sample are the ancestral allele, and hence subject to the 81 

same evolutionary biases we wish to avoid. These mispolarized singletons may be hard to detect, as 82 

we expect ~0.25% of all singletons to carry the same allele in human and chimpanzee due to parallel 83 

mutations that have occurred since splitting from a common ancestor. Intuitively, these parallel 84 

mutations are especially likely to occur in hypermutable loci, so removing the 0.25% “ancestral” alleles 85 

created by parallel mutation may create a bigger bias than including the 0.015% truly ancestral alleles.  86 

To understand the impact of removing all putatively ancestral alleles, we used an ancestral genome 87 

inferred by 6-way primate alignment9 to annotate each allele with the putative ancestral state. We 88 

identified 363,705 singletons (~1% of all singletons) where the alternative allele was the same as the 89 

ancestral allele, and recalculated 7-mer relative mutation rates after removing these putatively 90 

mispolarized singletons. We found that this polarization filter did not strongly affect estimated rates: 91 

across all types combined as well as within each type, the rates before and after removal of these sites 92 

were nearly perfectly correlated (Spearman’s r>0.999). Further, we found that only 9 of the 24,576 7-93 

mer rates differed significantly after applying this filter, and the re-estimated rates for these 9 subtypes 94 

differed from the original rates by no more than 10%. More importantly, 8 of these 9 subtypes were 95 

hypermutable CpG>TpG subtypes, consistent with our intuition that many putatively mispolarized sites 96 

are in fact parallel mutations in the human and chimpanzee lineages. 97 

As a final analysis of the potential effects of mispolarization on our estimates, we applied these filtered 98 

rates to predict the GoNL/ITMI de novo mutations in the same logistic regression framework used to 99 
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compare other estimation strategies. Goodness-of-fit statistics indicated that the filtered rates predicted 100 

de novo mutations comparably to the 7-mer rates estimated without the polarization filter: comparing 101 

the AIC between type-specific models, only two had differences in AIC greater than 10: A>T types were 102 

predicted slightly better by the filtered rates (ΔAIC=16), but CpG>TpG types were predicted better by 103 

the unfiltered rates (ΔAIC=22), suggesting the accuracy of the filtered rates is affected by parallel 104 

mutations at these hypermutable sites. All other types showed negligible differences in AIC (ΔAIC < 7). 105 

In addition, neither set of estimates resulted in consistently lower AIC among the other 7 mutation 106 

types, further supporting that filtering putatively mispolarized singletons does not lead to inherently 107 

more accurate results. Given this lack of consistent improvement, results presented for all subsequent 108 

analyses use the full set of 35.6 million ERVs without applying a polarization filter. 109 

Supplementary Note 4. Curation of MAC10+-derived mutation rate estimates  110 

A potential concern with comparisons between our ERV-derived mutation rate estimates and 111 

Aggarwala & Voight’s 1000G-based estimates10 is that discrepancies might be partially attributable to 112 

technical differences between the two samples, not necessarily because the 1000G estimates are 113 

based on ancestrally older SNVs. For a more direct comparison, we curated a set of higher-frequency 114 

SNVs found in the BRIDGES data, removing the possibility that the dissimilar estimates are a result of 115 

differences in sequencing platform, variant calling, QC methods, and sampled individuals.  116 

Aggarwala & Voight’s mutation rate estimates are based on 7,051,667 intergenic variants observed in 117 

N=379 Europeans from the 1000 Genomes Phase I study10. Aggarwala & Voight do not state the exact 118 

site frequency spectrum for the European intergenic variants, but claim 26% of intergenic variants in the 119 

1000G Phase I African sample are singletons or doubletons10. Thus, it is reasonable to assume that 120 

>80% of European intergenic SNVs in the 1000G data occur at a frequency greater than 121 

1/(379*2)=0.0013 (i.e., the sample MAF of a singleton in the 1000G sample). To obtain SNVs in the 122 

BRIDGES sample in a frequency range comparable to this, we selected all SNVs with a minor allele 123 

count ≥10 (MAF≥0.0014). We identified 12,088,037 such variants in our data, and proceeded to use 124 

these MAC10+-derived relative mutation rates as a proxy for the 1000 Genomes model. 125 
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Supplementary Note 5. Potential mechanisms for NTTAAAA hypermutability  126 

Our finding of a 3-fold depletion of NTT[A>T]AAA motifs in DNase hypersensitive sites provides an 127 

excellent example of how our results can be leveraged to better understand the origins of certain 128 

mutation patterns. We identify two possible mechanisms that might explain the context-dependent 129 

mutation probabilities of this mutation subtype. As described in the main text, L1 EN nicking activity has 130 

been shown to vary according to the nucleosomal context of its target motifs, usually occurring at a 131 

higher rate in nucleosome-free DNA, but in some cases actually decreasing in nucleosome-free DNA11. 132 

Therefore, under the L1 EN model, it is possible to see either a positive or negative association 133 

between NTTAAAA mutability and DHS. 134 

Slipped-strand mispairing, also known as replication slippage, is another plausible hypothesis for the 135 

hypermutability of this motif10. Because the nucleosomal architecture is disrupted ahead of the 136 

replication fork12, and reassembled almost immediately thereafter13, nascent DNA containing 137 

unresolved lesions that is packaged in nucleosomes could be inaccessible to mismatch repair 138 

machinery, thus preserving any errors caused by slippage. In this case, it is also possible to see a 139 

negative association between NTTAAAA mutability and DHS. This slippage mechanism, however, 140 

appears to be unlikely for the following reasons. First, replication slippage inherently results in short 141 

insertions or deletions rather than point mutations. Mapping error could potentially cause an insertion or 142 

deletion to be falsely identified as a single-nucleotide variant, but such errors would need to be 143 

extremely prevalent in our data (and also context-dependent) in order to observe a 3-fold depletion of 144 

these singletons in DHS. Given the quality metrics we report for the BRIDGES singletons, it seems 145 

unlikely that these results are purely a technical artifact. Furthermore, if slippage were the primary 146 

mechanism, we would expect other motifs ending in poly-A 4-mers to also show an inverse association 147 

with DHS. Among the 13 NNNAAAA subtypes whose mutability is significantly associated with DHS, 148 

only five are inversely associated, three of which are NNTAAAA motifs (i.e., conforming closely to the 149 

canonical target for L1 EN nicking activity). The other eight subtypes all show higher mutation rates in 150 

DHS, which conflicts with the proposed slippage+chromatinization mechanism.   151 
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c. 

 
 

 

Supplementary Figure 1  High-resolution heatmaps of relative mutation rates for mutation 

subtypes up to a 7-mer resolution, estimated from the BRIDGES ERVs. (a) estimates for 3-mer 

mutation subtypes. (b) estimates for 5-mer mutation subtypes. (c) estimates for 7-mer mutation 

subtypes. Each cell delineates a subtype defined by the upstream sequence (y-axis) and downstream 

sequence (x-axis) from the central (mutated) nucleotide.  
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Supplementary Figure 2 Density plots comparing the distribution of ratios between the 1000G and 

ERV rate estimates. For each type, we grouped 7-mer subtypes by the number of G:C base pairs in the 
+/-3 flanking sequence, and plotted the distribution of ratios separately for each of these group. Mass to 
the right of the dashed line indicates estimated rates tend to be higher in the 1000G data, while mass to 
the left shows subtypes where estimated rates are higher in the BRIDGES ERV data. 
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a.                                                                b. 
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Supplementary Figure 3   

(a) Relationship between 7-mer relative mutation rates estimated using BRIDGES variants with a minor 
allele count >= 10 (MAC10+; x-axis), and 7-mer rates calculated from intergenic variants in the 
European 1000G phase I sample (y-axis) (b) Type-specific 2D-density plots, as situated in the 
scatterplot of a. The dashed line indicates an expected least-squares regression line if there is no bias 
present. (c) Heatmap shows ratio between relative mutation rates calculated on MAC10+ variants and 
1000G variants for each 7-mer mutation subtype. Subtypes with higher 1000G-derived rates relative to 
MAC10+-derived rates are shaded gold, and subtypes with lower 1000G-derived rates relative to 
MAC10+-derived rates are shaded green. 1000G-derived rates shown here are scaled relative to the 
MAC10+-derived rates.  
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a.                                                                 b. 
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Supplementary Figure 4   

(a) Relationship between 7-mer relative mutation rates estimated using BRIDGES ERVs (x-axis) and 
variants with a minor allele count >= 10 (MAC10+; y-axis), after randomly downsampling the ERVs to 
12,088,037. (b) Type-specific 2D-density plots, as situated in the scatterplot of a. The dashed line 
indicates an expected least-squares regression line if there is no bias present. (c) Heatmap shows ratio 
between relative mutation rates calculated on MAC10+ variants and ERVs for each 7-mer mutation 
subtype. Subtypes with higher MAC10+-derived rates relative to ERV-derived rates are shaded gold, 
and subtypes with lower MAC10+-derived rates relative to ERV-derived rates are shaded green.  
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Supplementary Figure 5  Correlation between 3-mer mutational spectra among de novo 

mutations from the ITMI (x axis) GoNL (y axis) trio sequencing studies. In each study, we calculated the 
proportion of all mutations within each of the 96 3-mer subtypes. 
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a. 

 
 

b. 

 
Supplementary Figure 6 (a) relationship between masked and unmasked 7-mer relative mutation 

rate estimates, separated by type. (b) relationship between number of ERVs per subtype (x axis) and 
discordance between the masked and unmasked rates, measured as the log ratio between the 
estimates (y axis). 
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Supplementary Figure 7  Distributions of effect sizes (including non-significant effects) on 

mutability for the 14 genomic features (and depth of sequencing) considered in the logistic regression 
model. For each feature, we plotted the empirical distributions of these subtype-specific odds ratios for 
each basic mutation type. *Replication timing is coded with negative values indicating later replicating 
regions, so an OR<1 means mutation rate increases in late-replicating regions. Note that effects in CpG 
islands are shown on a wider scale than other features.   
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Supplementary Tables 
 

Supplementary Table 1 Quality comparison between filtered partitions  

of BRIDGES singletons  

Partition # 
Singletons 

Ts/Tv 
ratio 

%dbSNP 
(b142) 

% of Full 
Set 

Full Set 35,574,417 2.00 17.4 100 

Filter 2 (MQ>56) 33,550,098 2.01 17.3 94 

Filter 3 (passed 1000G strict mask) 26,810,791  1.97 17.5 75 

All Filters (MQ>56, 1000G strict 
mask) 

16,535,856 2.00 17.6 46 

 
 
Supplementary Tables 2a-2d Relative mutation rate estimates for 1-mers, 3-mers, 5-mers, 

and 7-mers 
 

[see separate spreadsheet, table_S2_K-mer_relative_rates.xlsx] 

Each table contains data used to calculate relative mutation rates for K-mers of a given length. Each 

row in the table contains the following columns: 1) basic mutation type; 2) K-mer motif corresponding to 

a reference base A or C at the central mutated position (the reverse complement of each motif, 

corresponding to reference base T or G is given in parentheses); 3) number of singletons observed in 

the BRIDGES data of the K-mer subtype defined by columns 1 and 2; 4) total number of times the motif 

in column 2 is observed in the reference genome; 5) relative mutation rate of singletons in that subtype 

(column 3 divided by column 4). For 7-mer subtypes (Supplementary Table 2d), we include five 

additional columns: 6) number of singletons in that subtype that pass the 1000G strict accessibility 

mask; 7) number of motifs of that subtype that pass the 1000G strict accessibility mask; 8) relative 

mutation rate of the masked data (column 6 divided by column 7); 9) number of MAC10+ variants 

observed in the BRIDGES data of that subtype; 10) relative mutation rate of MAC10+ variants of that 

subtype (column 9 divided by column 4). 
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Supplementary Table 3  t-tests for differences in mean 1000G/ERV ratio of GC-poor vs. GC-

rich 7-mer motifs 

For each mutation subtype, we calculated the ratio between 1000G-derived and ERV-derived relative 
mutation rates. Then, for each of the 9 basic types, we grouped 7-mer subtypes into low C/G subtypes 
(≤3 C/G bases in the +/-3 flanking positions) and high C/G subtypes (≥4 C/G bases in the +/-3 flanking 
positions) and performed t-tests for differences in the mean 1000G/ERV ratios of these two groups.  

Type 
Mean 1000G/ERV 

ratio 
(≤3 C/G bases) 

Mean 1000G/ERV 
ratio 

(≥4 C/G bases) 
P-value 

A>C 0.97 1.12 8.00e-30 

A>G 1.00 1.28 2.37e-161 

A>T 0.89 0.89 0.81 

C>A (non-CpG) 0.76 0.72 2.61e-09 

C>G (non-CpG) 0.89 0.93 2.98e-04 

C>T (non-CpG) 0.93 0.85 1.75e-39 

CpG>ApG 1.15 0.96 4.97e-22 

CpG>GpG 1.46 1.33 2.80e-04 

CpG>TpG 1.02 0.98 1.01e-09 
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Supplementary Table 4 Comparison of observed and simulated goodness-of-fit for de novo 

prediction models under different sized non-mutated backgrounds 

Model 
Observed Simulated Background 

size AIC R^2 AIC R^2* 

1-mers 292542 .109 272925 .185 

500,000 

3-mers 284889 .139 241863 .299 

5-mers 282995 .146 239672 .307 

7-mers 282491 .148 238967 .310 

7-mers (BRIDGES MAC10+ SNVs) 283599 .144 240434 .304 

7-mers (1000G intergenic SNVs)  284764 .139 241724 .300 

1-mers 353896 .088 344108 .117 

1,000,000 

3-mers 343716 .118 317322 .197 

5-mers 341778 .124 315400 .202 

7-mers 341295 .126 314760 .204 

7-mers (BRIDGES MAC10+ SNVs) 342886 .121 316791 .198 

7-mers (1000G intergenic SNVs)  344003 .118 317953 .195 

1-mers 416998 .072 414016 .080 

2,000,000 

3-mers 404738 .102 392367 .132 

5-mers 402853 .107 390698 .136 

7-mers 402375 .108 390051 .138 

7-mers (BRIDGES MAC10+ SNVs) 404378 .103 392509 .132 

7-mers (1000G intergenic SNVs)  405523 .100 393741 .129 

1-mers 454267 .066 452950 .069 

3,000,000 

3-mers 441042 .095 434665 .109 

5-mers 439153 .099 433243 .112 

7-mers 438700 .100 432517 .114 

7-mers (BRIDGES MAC10+ SNVs) 441059 .095 435270 .108 

7-mers (1000G intergenic SNVs)  442181 .092 436443 .105 

*The simulated R^2 of the best possible model for each background size, indicated in bold, represents 

the optimal performance we can expect. 

 
Supplementary Table 5 Comparison of model AIC considering only de novo mutations from 

the GoNL or ITMI study 

Model GoNL DNMs (11,020) ITMI DNMs (35k) 

1-mers 114945 288707 

3-mers 111952 280025 

5-mers 111507 278542 

7-mers 111381 278201 

7-mers (BRIDGES MAC10+ SNVs) 111913 279580 

7-mers (1000G intergenic SNVs)  112185 280401 

Models fitted to a background of 1 million non-mutated sites, as described previously. Note that the 
difference in AIC between the two datasets is due to the difference in number of DNMs, and is not 
comparable between the GoNL and ITMI studies; what matters here is the rank order 
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Supplementary Table 6 Type-specific model fit statistics for mutation rate estimation 

strategies applied to the de novo testing data. Each type is shown in a sub-table, with the 
number of de novo mutations and non-mutated sites used in the partitioned testing data 
indicated in the subheading. 

 
A>C (2920 de novo mutations; 198481 non-mutated sites) 

Model Nagelkerke's R2 AIC 

3-mers 0.002 32831 

5-mers 0.007 32701 

7-mers 0.009 32641 

7-mers+features 0.009 32636 

7-mers (downsampled BRIDGES ERVs) 0.008 32670 

7-mers (BRIDGES MAC10+ SNVs) 0.003 32809 

7-mers (1000G intergenic SNVs)  0.004 32775 

 
A>G (11400 de novo mutations; 198793 non-mutated sites) 

Model Nagelkerke's R2 AIC 

3-mers 0.039 91474 

5-mers 0.065 89455 

7-mers 0.068 89212 

7-mers+features 0.069 89111 

7-mers (downsampled BRIDGES ERVs) 0.064 89505 

7-mers (BRIDGES MAC10+ SNVs) 0.061 89732 

7-mers (1000G intergenic SNVs)  0.061 89746 

 

A>T (2455 de novo mutations; 198320 non-mutated sites) 

Model Nagelkerke's R2 AIC 

3-mers 0.015 28130 

5-mers 0.016 28114 

7-mers 0.016 28106 

7-mers+features 0.016 28105 

7-mers (downsampled BRIDGES ERVs) 0.007 28350 

7-mers (BRIDGES MAC10+ SNVs) 0.001 28498 

7-mers (1000G intergenic SNVs)  0.003 28463 
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non-CpG C>A (3620 de novo mutations; 128765 non-mutated sites) 

Model Nagelkerke's R2 AIC 

3-mers 0.012 35362 
5-mers 0.022 35039 
7-mers 0.03 34794 
7-mers+features 0.032 34743 
7-mers (downsampled BRIDGES ERVs) 0.029 34823 
7-mers (BRIDGES MAC10+ SNVs) 0.024 35000 
7-mers (1000G intergenic SNVs)  0.027 34892 

 
non-CpG C>G (3561 de novo mutations; 128746 non-mutated sites) 

Model Nagelkerke's R2 AIC 

3-mers 0.006 35889 

5-mers 0.018 35490 

7-mers 0.024 35321 

7-mers+features 0.024 35321 

7-mers (downsampled BRIDGES ERVs) 0.023 35350 

7-mers (BRIDGES MAC10+ SNVs) 0.019 35480 

7-mers (1000G intergenic SNVs)  0.018 35489 

 
non-CpG C>T (10321 de novo mutations; 128774 non-mutated sites) 

Model Nagelkerke's R2 AIC 

3-mers 0.005 79879 

5-mers 0.012 79502 

7-mers 0.014 79379 

7-mers+features 0.014 79353 

7-mers (downsampled BRIDGES ERVs) 0.013 79395 

7-mers (BRIDGES MAC10+ SNVs) 0.012 79487 

7-mers (1000G intergenic SNVs)  0.013 79434 
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CpG>ApG (304 de novo mutations; 6108 non-mutated sites) 

Model Nagelkerke's R2 AIC 

3-mers 0.014 2788 

5-mers 0.024 2767 

7-mers 0.027 2763 

7-mers+features 0.029 2761 

7-mers (downsampled BRIDGES ERVs) 0.025 2763 

7-mers (BRIDGES MAC10+ SNVs) 0.022 2771 

7-mers (1000G intergenic SNVs)  0.025 2762 

 

CpG>GpG (270 de novo mutations; 6292 non-mutated sites) 

Model Nagelkerke's R2 AIC 

3-mers 0.013 2560 

5-mers 0.015 2557 

7-mers 0.022 2545 

7-mers+features 0.026 2538 

7-mers (downsampled BRIDGES ERVs) 0.015 2556 

7-mers (BRIDGES MAC10+ SNVs) 0.015 2556 

7-mers (1000G intergenic SNVs)  0.011 2564 

 

CpG>TpG (6960 de novo mutations; 6289 non-mutated sites) 

Model Nagelkerke's R2 AIC 

3-mers 0.011 20321 

5-mers 0.02 20232 

7-mers 0.025 20173 

7-mers+features 0.06 19777 

7-mers (downsampled BRIDGES ERVs) 0.024 20182 

7-mers (BRIDGES MAC10+ SNVs) 0.027 20151 

7-mers (1000G intergenic SNVs)  0.027 20148 
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Supplementary Table 7  Genomic features used in mutation models 

A script to download the exact external data files used in this paper is available at 

https://github.com/carjed/smaug-genetics    

Feature Source Cell Type Resolution 

H3K4me1, H3K4me3, 
H3K9ac, H3K9me3, 
H3K27ac, H3K27me3, 
H3K36me3 

Roadmap Epigenomics 
Project14 

Peripheral Blood 
Mononuclear 
Primary Cells 

1bp (inside vs. outside 
of broad peak) 

Replication timing Koren et al., 201215 Lymphoblastoid 1kb window 

Recombination rate Kong et al., 201016 
(deCODE sex-averaged 
recombination rate map) 

-- 10kb window 

Lamin B1 domains Guelen et al., 200817 Tig3ET normal 
human 
embryonic lung 
fibroblasts 

1bp (inside vs. outside 
of LAD) 

DNase hypersensitivity 
sites 

ENCODE multiple 1bp (inside vs. outside 
of DHS region) 

Exonic site RefSeq gene database -- 1bp (inside vs. outside 
of exon) 

CpG island Wu et al., 201018 -- 1bp (inside vs. outside 
of CpG island) 

% GC content Calculated from 
reference genome 

-- 10kb 

https://github.com/carjed/smaug-genetics
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Supplementary Table 8 Parameter estimates for genomic features model 

[see separate spreadsheet, table_S8_feature_parameter_estimates.xlsx] 

This table contains effect size estimates and standard errors of 16 parameters (14 features, plus 

intercept and read depth) for each of the 24,396 7-mer subtypes with at least 20 singletons in the 

BRIDGES data.  
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Supplementary Table 9 Chi-squared tests for enrichment or depletion of de novo mutations 

occurring in feature-associated subtypes 

Feature 
Expected 

direction of 
effect 

de novo relative mutation rate 

p-value 
aInside feature bOutside feature 

H3K9me3† Increased 1.98E-05 1.73E-05 4.87E-05 

High Recombination 
rate (> 2) 

Increased 3.66E-05 3.43E-05 0.18 

H3K27me3† Decreased 5.44E-06 3.14E-06 0.99 

H3K27ac Decreased 1.22E-04 1.23E-04 0.50 

Exons Decreased 1.20E-04 8.66E-05 0.99 

H3K4me1 Decreased 1.10E-04 1.40E-04 1.84E-10 

H3K4me3† Decreased 1.00E-04 1.50E-04 4.92E-23 

H3K9ac† Decreased 1.49E-05 7.49E-06 0.99 

Lamin-associated 
domains 

Increased 6.91E-05 7.46E-05 0.75 

High GC content  
(> 0.55) 

Decreased 1.23E-05 9.74E-06 0.82 

Increased 1.14E-05 4.65E-06 6.61E-04 

H3K36me3 
Decreased 4.73E-06 6.14E-06 2.59E-03 

Increased 1.99E-05 1.51E-05 5.50E-10 

CpG Islands 
Decreased 3.68E-05 1.60E-04 5.00E-117 

Increased 5.39E-06 6.69E-06 0.79 

Late replication timing 
(< -1.25)* 

Increased 6.18E-06 5.48E-06 0.026 

Early replication timing 
(> 1.25)* 

Increased 1.55E-05 8.06E-06 2.25E-02 

DHS 
Decreased 5.03E-05 3.08E-05 0.99 

Increased 1.75E-05 1.21E-05 4.92E-04 

Significant differences that are consistent with the expected direction of effect are indicated by a one-

sided p-value in bold. †Four features had associations in the opposite direction, but these predicted 

effects could not be tested due to a lack of de novo mutations observed within the associated subtypes. 

*Some subtypes showed a significant negative association with replication timing, such that the 

mutation rate would be higher in early- rather than late-replicating regions, so we tested these subtypes 

separately. 


